Determine the generator of an ideal of ring of integersNon-zero prime ideals in the ring of all algebraic integersConstructing Idempotent Generator of Idempotent Idealideal and ideal classes in the ring of integers.Is the minimal number of generators of an ideal the rank of the ideal as a free $mathbb Z$-module?Number of generators of an ideal of the polynomial ring over a fieldIs the ratio of the norms of generators in an ideal well defined?Finding ideal generator in real quadratic fieldsIdeal Class Group Calculation: How to conclude the classes of two ideals are distinctIs there a non-constant $h in mathbbC[x_1 , dots , x_n ]$ that divides every element of this given ideal?Show that an ideal of the ring of integers of a real number field is not principal

How exactly does Hawking radiation decrease the mass of black holes?

Prove that the countable union of countable sets is also countable

Can a level 2 Warlock take one level in rogue, then continue advancing as a warlock?

Why doesn't the standard consider a template constructor as a copy constructor?

Contradiction proof for inequality of P and NP?

Find the identical rows in a matrix

Crossed out red box fitting tightly around image

What does "function" actually mean in music?

Where was the County of Thurn und Taxis located?

Is Electric Central Heating worth it if using Solar Panels?

Why do games have consumables?

Can I criticise the more senior developers around me for not writing clean code?

How do I check if a string is entirely made of the same substring?

Multiple fireplaces in an apartment building?

Are there moral objections to a life motivated purely by money? How to sway a person from this lifestyle?

Does the damage from the Absorb Elements spell apply to your next attack, or to your first attack on your next turn?

What *exactly* is electrical current, voltage, and resistance?

What is the most expensive material in the world that could be used to create Pun-Pun's lute?

How to have a sharp product image?

Retract an already submitted recommendation letter (written for an undergrad student)

Von Neumann Extractor - Which bit is retained?

How important is it that $TERM is correct?

Older movie/show about humans on derelict alien warship which refuels by passing through a star

What was Apollo 13's "Little Jolt" after MECO?



Determine the generator of an ideal of ring of integers


Non-zero prime ideals in the ring of all algebraic integersConstructing Idempotent Generator of Idempotent Idealideal and ideal classes in the ring of integers.Is the minimal number of generators of an ideal the rank of the ideal as a free $mathbb Z$-module?Number of generators of an ideal of the polynomial ring over a fieldIs the ratio of the norms of generators in an ideal well defined?Finding ideal generator in real quadratic fieldsIdeal Class Group Calculation: How to conclude the classes of two ideals are distinctIs there a non-constant $h in mathbbC[x_1 , dots , x_n ]$ that divides every element of this given ideal?Show that an ideal of the ring of integers of a real number field is not principal













4












$begingroup$


I am trying to find the generators of the ideal $(3)$ in the ring of integers of $mathbbQ[sqrt-83]$ the ring of integers is $mathbbZleft[frac1+sqrt-832right]$ I evaluated the Minkowski constant and it is $2/pi sqrt83 sim 5.8;$ then I checked the minimal polynomial of $x^2-x+84/2, $ which is reducible module $3,$ hence the ideal $(3)$ is generated by two elements, right? Did I miss something? I want to say the ring of integers is not a UFD.










share|cite|improve this question











$endgroup$
















    4












    $begingroup$


    I am trying to find the generators of the ideal $(3)$ in the ring of integers of $mathbbQ[sqrt-83]$ the ring of integers is $mathbbZleft[frac1+sqrt-832right]$ I evaluated the Minkowski constant and it is $2/pi sqrt83 sim 5.8;$ then I checked the minimal polynomial of $x^2-x+84/2, $ which is reducible module $3,$ hence the ideal $(3)$ is generated by two elements, right? Did I miss something? I want to say the ring of integers is not a UFD.










    share|cite|improve this question











    $endgroup$














      4












      4








      4


      2



      $begingroup$


      I am trying to find the generators of the ideal $(3)$ in the ring of integers of $mathbbQ[sqrt-83]$ the ring of integers is $mathbbZleft[frac1+sqrt-832right]$ I evaluated the Minkowski constant and it is $2/pi sqrt83 sim 5.8;$ then I checked the minimal polynomial of $x^2-x+84/2, $ which is reducible module $3,$ hence the ideal $(3)$ is generated by two elements, right? Did I miss something? I want to say the ring of integers is not a UFD.










      share|cite|improve this question











      $endgroup$




      I am trying to find the generators of the ideal $(3)$ in the ring of integers of $mathbbQ[sqrt-83]$ the ring of integers is $mathbbZleft[frac1+sqrt-832right]$ I evaluated the Minkowski constant and it is $2/pi sqrt83 sim 5.8;$ then I checked the minimal polynomial of $x^2-x+84/2, $ which is reducible module $3,$ hence the ideal $(3)$ is generated by two elements, right? Did I miss something? I want to say the ring of integers is not a UFD.







      ring-theory algebraic-number-theory ideal-class-group






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Apr 22 at 19:05









      J. W. Tanner

      5,2001520




      5,2001520










      asked Apr 22 at 18:33









      AmeryrAmeryr

      768312




      768312




















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          You seem to have touched upon several different ideas here.



          Generators of the ideal $(3)$. Usually, when you talk about the generators of $(3)$, you mean its generators as an abelian group.



          Define $theta := tfrac 1 2 (1 + sqrt-83)$. We know that the ring of integers $mathbb Z[theta]$ is generated by $1, theta $ as an abelian group, so $(3)$ is generated by $3, 3theta $ as an abelian group.



          But having read the remainder of your question, it looks like this is not what you're after! What you're really after are the generators of the ideal class group for $mathbb Z[theta]$...



          Minkowski constant. The fact that the Minkowski constant is $5.8$ implies that the ideal class group is generated by prime ideals that are factors of $(2)$ or $(3)$.



          Dedekind's criterion. Dedekind's criterion is a way of factorising $(3)$ as a product of primes.



          As you pointed out, we have the factorisation
          $$ x^2 - x + frac 842 equiv x(x-1) mod 3,$$



          so Dedekind's criterion says that
          $$ (3) = (3, theta)(3, theta - 1)$$
          is the prime factorisation of $(3)$ in $mathbb Z[theta]$.



          Whether $mathbb Z[theta]$ is a UFD. This is equivalent to asking whether the ideal class group is trivial, i.e. whether all ideals are principal.



          Why don't we check whether $(3, theta)$ is principal? The answer must be "no". Note that $(3, theta)$ has norm $3$. If it was principal, then there would exist $x, y in mathbb Z$ such that $(3, theta) = (x + ytheta)$. But then
          $$ 3 = N(3, theta) = N(x + ytheta) = (x + tfrac 1 2 y)^2 + 83(tfrac 1 2 y)^2,$$
          which is impossible.



          So $mathbb Z[theta]$ is not a principal ideal domain, and hence, is not a unique factorisation domain.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Thanks that helpful, that what I was looking for
            $endgroup$
            – Ameryr
            Apr 22 at 19:57



















          3












          $begingroup$

          The minimal polynomial of $alpha=frac1+sqrt-832$ is $f = x^2 - x + 84/4 = x^2 - x + 21$. Modulo $3$ this factors as $$f equiv x^2 - x = x(x-1) pmod 3,$$
          so by the Kummer-Dedekind theorem the ideal $(3)$ factors into primes in $mathbbZbigg[frac1+sqrt-832bigg]$ as $(3) = (3, alpha)(3, alpha-1)$.



          The ideal $(3)$ is principal, generated by $3$. You can show that the prime factors are not principal, e.g. using the field norm:



          If $(3,alpha) = (beta)$ then $N(beta)$ divides both $N(3) = 3^2$ and $N(alpha) = f(0) = 21 = 3cdot 7$, so $N(beta) = 3$.



          If we write $beta = a+balpha$ then $$N(beta)=(a+balpha)(a+b(1-alpha)) = ldots = a^2+ab + 21b^2.$$



          The equation $a^2+ab + 21b^2 = 3$ is an ellipse in the $(a,b)$-plane without integral points, so there is no such $beta$.






          share|cite|improve this answer









          $endgroup$








          • 1




            $begingroup$
            How could you determine that the ellipse has no integral points?
            $endgroup$
            – Ameryr
            Apr 22 at 20:05






          • 1




            $begingroup$
            I plotted it (with a grid in the background). It's a very small ellipse, so there are very few candidates for integral points, and you can see that it misses them all.
            $endgroup$
            – Ricardo Buring
            Apr 22 at 20:11











          Your Answer








          StackExchange.ready(function()
          var channelOptions =
          tags: "".split(" "),
          id: "69"
          ;
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function()
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled)
          StackExchange.using("snippets", function()
          createEditor();
          );

          else
          createEditor();

          );

          function createEditor()
          StackExchange.prepareEditor(
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader:
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          ,
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          );



          );













          draft saved

          draft discarded


















          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3197383%2fdetermine-the-generator-of-an-ideal-of-ring-of-integers%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          4












          $begingroup$

          You seem to have touched upon several different ideas here.



          Generators of the ideal $(3)$. Usually, when you talk about the generators of $(3)$, you mean its generators as an abelian group.



          Define $theta := tfrac 1 2 (1 + sqrt-83)$. We know that the ring of integers $mathbb Z[theta]$ is generated by $1, theta $ as an abelian group, so $(3)$ is generated by $3, 3theta $ as an abelian group.



          But having read the remainder of your question, it looks like this is not what you're after! What you're really after are the generators of the ideal class group for $mathbb Z[theta]$...



          Minkowski constant. The fact that the Minkowski constant is $5.8$ implies that the ideal class group is generated by prime ideals that are factors of $(2)$ or $(3)$.



          Dedekind's criterion. Dedekind's criterion is a way of factorising $(3)$ as a product of primes.



          As you pointed out, we have the factorisation
          $$ x^2 - x + frac 842 equiv x(x-1) mod 3,$$



          so Dedekind's criterion says that
          $$ (3) = (3, theta)(3, theta - 1)$$
          is the prime factorisation of $(3)$ in $mathbb Z[theta]$.



          Whether $mathbb Z[theta]$ is a UFD. This is equivalent to asking whether the ideal class group is trivial, i.e. whether all ideals are principal.



          Why don't we check whether $(3, theta)$ is principal? The answer must be "no". Note that $(3, theta)$ has norm $3$. If it was principal, then there would exist $x, y in mathbb Z$ such that $(3, theta) = (x + ytheta)$. But then
          $$ 3 = N(3, theta) = N(x + ytheta) = (x + tfrac 1 2 y)^2 + 83(tfrac 1 2 y)^2,$$
          which is impossible.



          So $mathbb Z[theta]$ is not a principal ideal domain, and hence, is not a unique factorisation domain.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Thanks that helpful, that what I was looking for
            $endgroup$
            – Ameryr
            Apr 22 at 19:57
















          4












          $begingroup$

          You seem to have touched upon several different ideas here.



          Generators of the ideal $(3)$. Usually, when you talk about the generators of $(3)$, you mean its generators as an abelian group.



          Define $theta := tfrac 1 2 (1 + sqrt-83)$. We know that the ring of integers $mathbb Z[theta]$ is generated by $1, theta $ as an abelian group, so $(3)$ is generated by $3, 3theta $ as an abelian group.



          But having read the remainder of your question, it looks like this is not what you're after! What you're really after are the generators of the ideal class group for $mathbb Z[theta]$...



          Minkowski constant. The fact that the Minkowski constant is $5.8$ implies that the ideal class group is generated by prime ideals that are factors of $(2)$ or $(3)$.



          Dedekind's criterion. Dedekind's criterion is a way of factorising $(3)$ as a product of primes.



          As you pointed out, we have the factorisation
          $$ x^2 - x + frac 842 equiv x(x-1) mod 3,$$



          so Dedekind's criterion says that
          $$ (3) = (3, theta)(3, theta - 1)$$
          is the prime factorisation of $(3)$ in $mathbb Z[theta]$.



          Whether $mathbb Z[theta]$ is a UFD. This is equivalent to asking whether the ideal class group is trivial, i.e. whether all ideals are principal.



          Why don't we check whether $(3, theta)$ is principal? The answer must be "no". Note that $(3, theta)$ has norm $3$. If it was principal, then there would exist $x, y in mathbb Z$ such that $(3, theta) = (x + ytheta)$. But then
          $$ 3 = N(3, theta) = N(x + ytheta) = (x + tfrac 1 2 y)^2 + 83(tfrac 1 2 y)^2,$$
          which is impossible.



          So $mathbb Z[theta]$ is not a principal ideal domain, and hence, is not a unique factorisation domain.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            Thanks that helpful, that what I was looking for
            $endgroup$
            – Ameryr
            Apr 22 at 19:57














          4












          4








          4





          $begingroup$

          You seem to have touched upon several different ideas here.



          Generators of the ideal $(3)$. Usually, when you talk about the generators of $(3)$, you mean its generators as an abelian group.



          Define $theta := tfrac 1 2 (1 + sqrt-83)$. We know that the ring of integers $mathbb Z[theta]$ is generated by $1, theta $ as an abelian group, so $(3)$ is generated by $3, 3theta $ as an abelian group.



          But having read the remainder of your question, it looks like this is not what you're after! What you're really after are the generators of the ideal class group for $mathbb Z[theta]$...



          Minkowski constant. The fact that the Minkowski constant is $5.8$ implies that the ideal class group is generated by prime ideals that are factors of $(2)$ or $(3)$.



          Dedekind's criterion. Dedekind's criterion is a way of factorising $(3)$ as a product of primes.



          As you pointed out, we have the factorisation
          $$ x^2 - x + frac 842 equiv x(x-1) mod 3,$$



          so Dedekind's criterion says that
          $$ (3) = (3, theta)(3, theta - 1)$$
          is the prime factorisation of $(3)$ in $mathbb Z[theta]$.



          Whether $mathbb Z[theta]$ is a UFD. This is equivalent to asking whether the ideal class group is trivial, i.e. whether all ideals are principal.



          Why don't we check whether $(3, theta)$ is principal? The answer must be "no". Note that $(3, theta)$ has norm $3$. If it was principal, then there would exist $x, y in mathbb Z$ such that $(3, theta) = (x + ytheta)$. But then
          $$ 3 = N(3, theta) = N(x + ytheta) = (x + tfrac 1 2 y)^2 + 83(tfrac 1 2 y)^2,$$
          which is impossible.



          So $mathbb Z[theta]$ is not a principal ideal domain, and hence, is not a unique factorisation domain.






          share|cite|improve this answer









          $endgroup$



          You seem to have touched upon several different ideas here.



          Generators of the ideal $(3)$. Usually, when you talk about the generators of $(3)$, you mean its generators as an abelian group.



          Define $theta := tfrac 1 2 (1 + sqrt-83)$. We know that the ring of integers $mathbb Z[theta]$ is generated by $1, theta $ as an abelian group, so $(3)$ is generated by $3, 3theta $ as an abelian group.



          But having read the remainder of your question, it looks like this is not what you're after! What you're really after are the generators of the ideal class group for $mathbb Z[theta]$...



          Minkowski constant. The fact that the Minkowski constant is $5.8$ implies that the ideal class group is generated by prime ideals that are factors of $(2)$ or $(3)$.



          Dedekind's criterion. Dedekind's criterion is a way of factorising $(3)$ as a product of primes.



          As you pointed out, we have the factorisation
          $$ x^2 - x + frac 842 equiv x(x-1) mod 3,$$



          so Dedekind's criterion says that
          $$ (3) = (3, theta)(3, theta - 1)$$
          is the prime factorisation of $(3)$ in $mathbb Z[theta]$.



          Whether $mathbb Z[theta]$ is a UFD. This is equivalent to asking whether the ideal class group is trivial, i.e. whether all ideals are principal.



          Why don't we check whether $(3, theta)$ is principal? The answer must be "no". Note that $(3, theta)$ has norm $3$. If it was principal, then there would exist $x, y in mathbb Z$ such that $(3, theta) = (x + ytheta)$. But then
          $$ 3 = N(3, theta) = N(x + ytheta) = (x + tfrac 1 2 y)^2 + 83(tfrac 1 2 y)^2,$$
          which is impossible.



          So $mathbb Z[theta]$ is not a principal ideal domain, and hence, is not a unique factorisation domain.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Apr 22 at 19:36









          Kenny WongKenny Wong

          20.1k21442




          20.1k21442











          • $begingroup$
            Thanks that helpful, that what I was looking for
            $endgroup$
            – Ameryr
            Apr 22 at 19:57

















          • $begingroup$
            Thanks that helpful, that what I was looking for
            $endgroup$
            – Ameryr
            Apr 22 at 19:57
















          $begingroup$
          Thanks that helpful, that what I was looking for
          $endgroup$
          – Ameryr
          Apr 22 at 19:57





          $begingroup$
          Thanks that helpful, that what I was looking for
          $endgroup$
          – Ameryr
          Apr 22 at 19:57












          3












          $begingroup$

          The minimal polynomial of $alpha=frac1+sqrt-832$ is $f = x^2 - x + 84/4 = x^2 - x + 21$. Modulo $3$ this factors as $$f equiv x^2 - x = x(x-1) pmod 3,$$
          so by the Kummer-Dedekind theorem the ideal $(3)$ factors into primes in $mathbbZbigg[frac1+sqrt-832bigg]$ as $(3) = (3, alpha)(3, alpha-1)$.



          The ideal $(3)$ is principal, generated by $3$. You can show that the prime factors are not principal, e.g. using the field norm:



          If $(3,alpha) = (beta)$ then $N(beta)$ divides both $N(3) = 3^2$ and $N(alpha) = f(0) = 21 = 3cdot 7$, so $N(beta) = 3$.



          If we write $beta = a+balpha$ then $$N(beta)=(a+balpha)(a+b(1-alpha)) = ldots = a^2+ab + 21b^2.$$



          The equation $a^2+ab + 21b^2 = 3$ is an ellipse in the $(a,b)$-plane without integral points, so there is no such $beta$.






          share|cite|improve this answer









          $endgroup$








          • 1




            $begingroup$
            How could you determine that the ellipse has no integral points?
            $endgroup$
            – Ameryr
            Apr 22 at 20:05






          • 1




            $begingroup$
            I plotted it (with a grid in the background). It's a very small ellipse, so there are very few candidates for integral points, and you can see that it misses them all.
            $endgroup$
            – Ricardo Buring
            Apr 22 at 20:11















          3












          $begingroup$

          The minimal polynomial of $alpha=frac1+sqrt-832$ is $f = x^2 - x + 84/4 = x^2 - x + 21$. Modulo $3$ this factors as $$f equiv x^2 - x = x(x-1) pmod 3,$$
          so by the Kummer-Dedekind theorem the ideal $(3)$ factors into primes in $mathbbZbigg[frac1+sqrt-832bigg]$ as $(3) = (3, alpha)(3, alpha-1)$.



          The ideal $(3)$ is principal, generated by $3$. You can show that the prime factors are not principal, e.g. using the field norm:



          If $(3,alpha) = (beta)$ then $N(beta)$ divides both $N(3) = 3^2$ and $N(alpha) = f(0) = 21 = 3cdot 7$, so $N(beta) = 3$.



          If we write $beta = a+balpha$ then $$N(beta)=(a+balpha)(a+b(1-alpha)) = ldots = a^2+ab + 21b^2.$$



          The equation $a^2+ab + 21b^2 = 3$ is an ellipse in the $(a,b)$-plane without integral points, so there is no such $beta$.






          share|cite|improve this answer









          $endgroup$








          • 1




            $begingroup$
            How could you determine that the ellipse has no integral points?
            $endgroup$
            – Ameryr
            Apr 22 at 20:05






          • 1




            $begingroup$
            I plotted it (with a grid in the background). It's a very small ellipse, so there are very few candidates for integral points, and you can see that it misses them all.
            $endgroup$
            – Ricardo Buring
            Apr 22 at 20:11













          3












          3








          3





          $begingroup$

          The minimal polynomial of $alpha=frac1+sqrt-832$ is $f = x^2 - x + 84/4 = x^2 - x + 21$. Modulo $3$ this factors as $$f equiv x^2 - x = x(x-1) pmod 3,$$
          so by the Kummer-Dedekind theorem the ideal $(3)$ factors into primes in $mathbbZbigg[frac1+sqrt-832bigg]$ as $(3) = (3, alpha)(3, alpha-1)$.



          The ideal $(3)$ is principal, generated by $3$. You can show that the prime factors are not principal, e.g. using the field norm:



          If $(3,alpha) = (beta)$ then $N(beta)$ divides both $N(3) = 3^2$ and $N(alpha) = f(0) = 21 = 3cdot 7$, so $N(beta) = 3$.



          If we write $beta = a+balpha$ then $$N(beta)=(a+balpha)(a+b(1-alpha)) = ldots = a^2+ab + 21b^2.$$



          The equation $a^2+ab + 21b^2 = 3$ is an ellipse in the $(a,b)$-plane without integral points, so there is no such $beta$.






          share|cite|improve this answer









          $endgroup$



          The minimal polynomial of $alpha=frac1+sqrt-832$ is $f = x^2 - x + 84/4 = x^2 - x + 21$. Modulo $3$ this factors as $$f equiv x^2 - x = x(x-1) pmod 3,$$
          so by the Kummer-Dedekind theorem the ideal $(3)$ factors into primes in $mathbbZbigg[frac1+sqrt-832bigg]$ as $(3) = (3, alpha)(3, alpha-1)$.



          The ideal $(3)$ is principal, generated by $3$. You can show that the prime factors are not principal, e.g. using the field norm:



          If $(3,alpha) = (beta)$ then $N(beta)$ divides both $N(3) = 3^2$ and $N(alpha) = f(0) = 21 = 3cdot 7$, so $N(beta) = 3$.



          If we write $beta = a+balpha$ then $$N(beta)=(a+balpha)(a+b(1-alpha)) = ldots = a^2+ab + 21b^2.$$



          The equation $a^2+ab + 21b^2 = 3$ is an ellipse in the $(a,b)$-plane without integral points, so there is no such $beta$.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Apr 22 at 19:42









          Ricardo BuringRicardo Buring

          2,00621437




          2,00621437







          • 1




            $begingroup$
            How could you determine that the ellipse has no integral points?
            $endgroup$
            – Ameryr
            Apr 22 at 20:05






          • 1




            $begingroup$
            I plotted it (with a grid in the background). It's a very small ellipse, so there are very few candidates for integral points, and you can see that it misses them all.
            $endgroup$
            – Ricardo Buring
            Apr 22 at 20:11












          • 1




            $begingroup$
            How could you determine that the ellipse has no integral points?
            $endgroup$
            – Ameryr
            Apr 22 at 20:05






          • 1




            $begingroup$
            I plotted it (with a grid in the background). It's a very small ellipse, so there are very few candidates for integral points, and you can see that it misses them all.
            $endgroup$
            – Ricardo Buring
            Apr 22 at 20:11







          1




          1




          $begingroup$
          How could you determine that the ellipse has no integral points?
          $endgroup$
          – Ameryr
          Apr 22 at 20:05




          $begingroup$
          How could you determine that the ellipse has no integral points?
          $endgroup$
          – Ameryr
          Apr 22 at 20:05




          1




          1




          $begingroup$
          I plotted it (with a grid in the background). It's a very small ellipse, so there are very few candidates for integral points, and you can see that it misses them all.
          $endgroup$
          – Ricardo Buring
          Apr 22 at 20:11




          $begingroup$
          I plotted it (with a grid in the background). It's a very small ellipse, so there are very few candidates for integral points, and you can see that it misses them all.
          $endgroup$
          – Ricardo Buring
          Apr 22 at 20:11

















          draft saved

          draft discarded
















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid


          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.

          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function ()
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3197383%2fdetermine-the-generator-of-an-ideal-of-ring-of-integers%23new-answer', 'question_page');

          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Get product attribute by attribute group code in magento 2get product attribute by product attribute group in magento 2Magento 2 Log Bundle Product Data in List Page?How to get all product attribute of a attribute group of Default attribute set?Magento 2.1 Create a filter in the product grid by new attributeMagento 2 : Get Product Attribute values By GroupMagento 2 How to get all existing values for one attributeMagento 2 get custom attribute of a single product inside a pluginMagento 2.3 How to get all the Multi Source Inventory (MSI) locations collection in custom module?Magento2: how to develop rest API to get new productsGet product attribute by attribute group code ( [attribute_group_code] ) in magento 2

          Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

          Magento 2.3: How do i solve this, Not registered handle, on custom form?How can i rewrite TierPrice Block in Magento2magento 2 captcha not rendering if I override layout xmlmain.CRITICAL: Plugin class doesn't existMagento 2 : Problem while adding custom button order view page?Magento 2.2.5: Overriding Admin Controller sales/orderMagento 2.2.5: Add, Update and Delete existing products Custom OptionsMagento 2.3 : File Upload issue in UI Component FormMagento2 Not registered handleHow to configured Form Builder Js in my custom magento 2.3.0 module?Magento 2.3. How to create image upload field in an admin form