Do we need dark matter and dark energy, if the behaviour of the universe in its initial stages was similar to that of the Sun? [on hold] Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) 2019 Moderator Election Q&A - Question CollectionIs cosmic background radiation dark-matter and/or dark-energy?Spectrum of CMB vs. duration of last scatteringIf we could build a telescope to view the cosmic neutrino background, what would we see?Is entropy absolute (as in absolute temperature)?The infinitely dense point from which the universe allegedly originated - the universe must expand, right?Implications of dark matter imprints on Cosmic Microwave Background Radiation?Dark energy, dark matter and the expansion of the UniverseThermal equilibrium of universeNon-observable universe vs last scattering surfaceWhy is CMB not considered as the edge of the universe?

Why are there no cargo aircraft with "flying wing" design?

The logistics of corpse disposal

Single word antonym of "flightless"

How to bypass password on Windows XP account?

Why do we bend a book to keep it straight?

Why was the term "discrete" used in discrete logarithm?

51k Euros annually for a family of 4 in Berlin: Is it enough?

What is the role of the transistor and diode in a soft start circuit?

What does the "x" in "x86" represent?

Generate an RGB colour grid

Error "illegal generic type for instanceof" when using local classes

Storing hydrofluoric acid before the invention of plastics

Why is "Consequences inflicted." not a sentence?

Book where humans were engineered with genes from animal species to survive hostile planets

Identify plant with long narrow paired leaves and reddish stems

In predicate logic, does existential quantification (∃) include universal quantification (∀), i.e. can 'some' imply 'all'?

Can I cast Passwall to drop an enemy into a 20-foot pit?

Why light coming from distant stars is not discreet?

Why am I getting the error "non-boolean type specified in a context where a condition is expected" for this request?

Is it ethical to give a final exam after the professor has quit before teaching the remaining chapters of the course?

Should I use a zero-interest credit card for a large one-time purchase?

What does an IRS interview request entail when called in to verify expenses for a sole proprietor small business?

What is a non-alternating simple group with big order, but relatively few conjugacy classes?

What is Arya's weapon design?



Do we need dark matter and dark energy, if the behaviour of the universe in its initial stages was similar to that of the Sun? [on hold]



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
2019 Moderator Election Q&A - Question CollectionIs cosmic background radiation dark-matter and/or dark-energy?Spectrum of CMB vs. duration of last scatteringIf we could build a telescope to view the cosmic neutrino background, what would we see?Is entropy absolute (as in absolute temperature)?The infinitely dense point from which the universe allegedly originated - the universe must expand, right?Implications of dark matter imprints on Cosmic Microwave Background Radiation?Dark energy, dark matter and the expansion of the UniverseThermal equilibrium of universeNon-observable universe vs last scattering surfaceWhy is CMB not considered as the edge of the universe?










3












$begingroup$


According to CMBR the universe was a cloud of plasma and was a perfect black body, $380,!000$ years after big bang.



But the Sun in our solar system also is in the state of plasma, thus making it a blackbody. So it is possible that the universe in its initial stage also behaved similarly(I.e. radiated the energy produced as a result of fusion reactions during the recombination epoch beyond the boundary of the plasma). And this is the reason we find find less baryonic matter than we should. Thus making the concept of dark matter irrelevant.










share|cite|improve this question









New contributor




N Pranav Subhraveti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



put on hold as unclear what you're asking by StephenG, A.V.S., Chair, knzhou, Ruslan yesterday


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.













  • 13




    $begingroup$
    Black bodies DO radiate; dark matter is not black, because it does not radiate. Thermodynamic principles require surfaces which absorb (are black) be good radiators of light, which is a feature absent in dark matter.
    $endgroup$
    – Whit3rd
    2 days ago






  • 5




    $begingroup$
    Dark matter and dark energy are not the same thing
    $endgroup$
    – lcv
    yesterday






  • 5




    $begingroup$
    I don't see how your conclusions follow from your premises. And that's ignoring that your premises aren't correct. And given how you mix up dark matter and dark energy, not to mention the baryon asymmetry (which has nothing to do with either) I'm quite interested in the way you arrived at your conclusion. How did you come to think that either of these three are in any way related?
    $endgroup$
    – Luaan
    yesterday






  • 6




    $begingroup$
    You seem to be mixing up dark matter, dark energy, the baryon asymmetry, and blackbodies (which are almost the exact opposite of dark matter) into one big soup -- it's hard to tell what your logic is.
    $endgroup$
    – knzhou
    yesterday






  • 3




    $begingroup$
    @eromod Uh... no offense, that seems to be a near total reversal of what the video actually says. I know that skepticism of dark matter is very popular in popsci these days, but still.
    $endgroup$
    – knzhou
    yesterday















3












$begingroup$


According to CMBR the universe was a cloud of plasma and was a perfect black body, $380,!000$ years after big bang.



But the Sun in our solar system also is in the state of plasma, thus making it a blackbody. So it is possible that the universe in its initial stage also behaved similarly(I.e. radiated the energy produced as a result of fusion reactions during the recombination epoch beyond the boundary of the plasma). And this is the reason we find find less baryonic matter than we should. Thus making the concept of dark matter irrelevant.










share|cite|improve this question









New contributor




N Pranav Subhraveti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



put on hold as unclear what you're asking by StephenG, A.V.S., Chair, knzhou, Ruslan yesterday


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.













  • 13




    $begingroup$
    Black bodies DO radiate; dark matter is not black, because it does not radiate. Thermodynamic principles require surfaces which absorb (are black) be good radiators of light, which is a feature absent in dark matter.
    $endgroup$
    – Whit3rd
    2 days ago






  • 5




    $begingroup$
    Dark matter and dark energy are not the same thing
    $endgroup$
    – lcv
    yesterday






  • 5




    $begingroup$
    I don't see how your conclusions follow from your premises. And that's ignoring that your premises aren't correct. And given how you mix up dark matter and dark energy, not to mention the baryon asymmetry (which has nothing to do with either) I'm quite interested in the way you arrived at your conclusion. How did you come to think that either of these three are in any way related?
    $endgroup$
    – Luaan
    yesterday






  • 6




    $begingroup$
    You seem to be mixing up dark matter, dark energy, the baryon asymmetry, and blackbodies (which are almost the exact opposite of dark matter) into one big soup -- it's hard to tell what your logic is.
    $endgroup$
    – knzhou
    yesterday






  • 3




    $begingroup$
    @eromod Uh... no offense, that seems to be a near total reversal of what the video actually says. I know that skepticism of dark matter is very popular in popsci these days, but still.
    $endgroup$
    – knzhou
    yesterday













3












3








3





$begingroup$


According to CMBR the universe was a cloud of plasma and was a perfect black body, $380,!000$ years after big bang.



But the Sun in our solar system also is in the state of plasma, thus making it a blackbody. So it is possible that the universe in its initial stage also behaved similarly(I.e. radiated the energy produced as a result of fusion reactions during the recombination epoch beyond the boundary of the plasma). And this is the reason we find find less baryonic matter than we should. Thus making the concept of dark matter irrelevant.










share|cite|improve this question









New contributor




N Pranav Subhraveti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




According to CMBR the universe was a cloud of plasma and was a perfect black body, $380,!000$ years after big bang.



But the Sun in our solar system also is in the state of plasma, thus making it a blackbody. So it is possible that the universe in its initial stage also behaved similarly(I.e. radiated the energy produced as a result of fusion reactions during the recombination epoch beyond the boundary of the plasma). And this is the reason we find find less baryonic matter than we should. Thus making the concept of dark matter irrelevant.







cosmology big-bang dark-matter cosmic-microwave-background baryons






share|cite|improve this question









New contributor




N Pranav Subhraveti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




N Pranav Subhraveti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 22 hours ago







N Pranav Subhraveti













New contributor




N Pranav Subhraveti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 days ago









N Pranav SubhravetiN Pranav Subhraveti

2814




2814




New contributor




N Pranav Subhraveti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





N Pranav Subhraveti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






N Pranav Subhraveti is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




put on hold as unclear what you're asking by StephenG, A.V.S., Chair, knzhou, Ruslan yesterday


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.









put on hold as unclear what you're asking by StephenG, A.V.S., Chair, knzhou, Ruslan yesterday


Please clarify your specific problem or add additional details to highlight exactly what you need. As it's currently written, it’s hard to tell exactly what you're asking. See the How to Ask page for help clarifying this question. If this question can be reworded to fit the rules in the help center, please edit the question.









  • 13




    $begingroup$
    Black bodies DO radiate; dark matter is not black, because it does not radiate. Thermodynamic principles require surfaces which absorb (are black) be good radiators of light, which is a feature absent in dark matter.
    $endgroup$
    – Whit3rd
    2 days ago






  • 5




    $begingroup$
    Dark matter and dark energy are not the same thing
    $endgroup$
    – lcv
    yesterday






  • 5




    $begingroup$
    I don't see how your conclusions follow from your premises. And that's ignoring that your premises aren't correct. And given how you mix up dark matter and dark energy, not to mention the baryon asymmetry (which has nothing to do with either) I'm quite interested in the way you arrived at your conclusion. How did you come to think that either of these three are in any way related?
    $endgroup$
    – Luaan
    yesterday






  • 6




    $begingroup$
    You seem to be mixing up dark matter, dark energy, the baryon asymmetry, and blackbodies (which are almost the exact opposite of dark matter) into one big soup -- it's hard to tell what your logic is.
    $endgroup$
    – knzhou
    yesterday






  • 3




    $begingroup$
    @eromod Uh... no offense, that seems to be a near total reversal of what the video actually says. I know that skepticism of dark matter is very popular in popsci these days, but still.
    $endgroup$
    – knzhou
    yesterday












  • 13




    $begingroup$
    Black bodies DO radiate; dark matter is not black, because it does not radiate. Thermodynamic principles require surfaces which absorb (are black) be good radiators of light, which is a feature absent in dark matter.
    $endgroup$
    – Whit3rd
    2 days ago






  • 5




    $begingroup$
    Dark matter and dark energy are not the same thing
    $endgroup$
    – lcv
    yesterday






  • 5




    $begingroup$
    I don't see how your conclusions follow from your premises. And that's ignoring that your premises aren't correct. And given how you mix up dark matter and dark energy, not to mention the baryon asymmetry (which has nothing to do with either) I'm quite interested in the way you arrived at your conclusion. How did you come to think that either of these three are in any way related?
    $endgroup$
    – Luaan
    yesterday






  • 6




    $begingroup$
    You seem to be mixing up dark matter, dark energy, the baryon asymmetry, and blackbodies (which are almost the exact opposite of dark matter) into one big soup -- it's hard to tell what your logic is.
    $endgroup$
    – knzhou
    yesterday






  • 3




    $begingroup$
    @eromod Uh... no offense, that seems to be a near total reversal of what the video actually says. I know that skepticism of dark matter is very popular in popsci these days, but still.
    $endgroup$
    – knzhou
    yesterday







13




13




$begingroup$
Black bodies DO radiate; dark matter is not black, because it does not radiate. Thermodynamic principles require surfaces which absorb (are black) be good radiators of light, which is a feature absent in dark matter.
$endgroup$
– Whit3rd
2 days ago




$begingroup$
Black bodies DO radiate; dark matter is not black, because it does not radiate. Thermodynamic principles require surfaces which absorb (are black) be good radiators of light, which is a feature absent in dark matter.
$endgroup$
– Whit3rd
2 days ago




5




5




$begingroup$
Dark matter and dark energy are not the same thing
$endgroup$
– lcv
yesterday




$begingroup$
Dark matter and dark energy are not the same thing
$endgroup$
– lcv
yesterday




5




5




$begingroup$
I don't see how your conclusions follow from your premises. And that's ignoring that your premises aren't correct. And given how you mix up dark matter and dark energy, not to mention the baryon asymmetry (which has nothing to do with either) I'm quite interested in the way you arrived at your conclusion. How did you come to think that either of these three are in any way related?
$endgroup$
– Luaan
yesterday




$begingroup$
I don't see how your conclusions follow from your premises. And that's ignoring that your premises aren't correct. And given how you mix up dark matter and dark energy, not to mention the baryon asymmetry (which has nothing to do with either) I'm quite interested in the way you arrived at your conclusion. How did you come to think that either of these three are in any way related?
$endgroup$
– Luaan
yesterday




6




6




$begingroup$
You seem to be mixing up dark matter, dark energy, the baryon asymmetry, and blackbodies (which are almost the exact opposite of dark matter) into one big soup -- it's hard to tell what your logic is.
$endgroup$
– knzhou
yesterday




$begingroup$
You seem to be mixing up dark matter, dark energy, the baryon asymmetry, and blackbodies (which are almost the exact opposite of dark matter) into one big soup -- it's hard to tell what your logic is.
$endgroup$
– knzhou
yesterday




3




3




$begingroup$
@eromod Uh... no offense, that seems to be a near total reversal of what the video actually says. I know that skepticism of dark matter is very popular in popsci these days, but still.
$endgroup$
– knzhou
yesterday




$begingroup$
@eromod Uh... no offense, that seems to be a near total reversal of what the video actually says. I know that skepticism of dark matter is very popular in popsci these days, but still.
$endgroup$
– knzhou
yesterday










2 Answers
2






active

oldest

votes


















14












$begingroup$

Short answer: yes.



You should look in to the history behind the dark matter hypothesis. It started not from the examination of cosmology and the CMB, but from the motion of galaxies in clusters and stars orbiting around galaxies. See, the vast majority of ordinary matter in every galaxy is contained in the gas between the stars, not the stars themselves. Because of that, we can get a decent handle on how much ordinary matter is around by observing that. Tools for this purpose: the 21 cm line of atomic hydrogen, when the gas is cold, as much of it is in spiral galaxies, and looking at the x-ray spectrum when it is exceptionally hot, as it is between galaxies in large clusters.



When we examine the way the parts of galaxies, and the galaxies in clusters, move, they're travelling way too fast. If the mass we can see direct evidence for is all there is, the clusters would not be able to hold on to their hot gas and galaxies, and the galaxies would not hold together, either.



"So what? Maybe the matter is there, it just isn't giving off light." Trouble is, if it were hot enough to be a plasma, and thus lack spectral lines, we could see it directly. If it were too cold to be a plasma, it would block light from galaxies and quasars in the background more in the matter's spectral lines. So whatever is producing this extra gravity has to neither emit nor absorb light in any way we've been able to detect.



It just so happens that adding dark matter (or something very like it) to the cosmology simulations is also essential to explain the CMB data.



Now, you may object that the extra gravity we've observed may have some other source. For instance, maybe Newton's law of gravitation is simply wrong on the scale of galaxies and larger. The trouble that idea runs into is you're no longer able to explain the bullet cluster, where the gas between the galaxies has collided, but the dark matter and galaxies did not.



On the subject of black body spectra. The black body is the spectrum that a gas of photons assumes if it is in thermal equilibrium (constant uniform temperature everywhere). The CMB is very very nearly a black-body because at the time the differences in temperature between any two parts of the universe were very very small. The sun, however, is surrounded by a very cold vacuum, and that lack of equilibrium will inevitably cause the spectrum to deviate from the ideal Planck function.






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    @0x90 Not likely. The way we measure mass is based on the physics of how light interacts with matter, something we have measured extremely well here on the ground. See, if a gas is thin enough that it is unlikely to reabsorb anything it emits ("optically thin" - see the 21 cm line), then we can deduce the gas temperature from the way the shape of the line is distorted, and the amount of gas along the line of sight ("column density") from brightness. Total mass is just adding up the lines of sight. The process is similar for absorption, just inverted.
    $endgroup$
    – Sean E. Lake
    yesterday






  • 4




    $begingroup$
    @0x90 That still leaves the question of what could that matter possibly be. Normal atoms and molecules aren't perfectly transparent - plasma even less so. We see the galaxy illuminated in many wavelengths of light. If there is extra mass out there (it's entirely possible there isn't - keep in mind that the calculations are entirely classical, and it's possible e.g. a quantum theory of inertia and/or gravity will correct better than dark matter), it really seems like it doesn't interact with light. That's not really weird on its own - particles don't have to interact electromagnetically.
    $endgroup$
    – Luaan
    yesterday






  • 1




    $begingroup$
    @JollyJoker Dark matter is a hypothesis that lacks some specifics. Dark matter, for example, is not modified gravity. In other words, when we say "dark matter" we really do mean that it is some kind of "matter" - it obeys F=ma, is constructed of particles that have mass, etc. In the language of particle physics, we'd say that dark matter is composed of excitations in some field (probably fermionic). Modifed gravity, on the other hand, is a change to how the gravitational field behaves, no other fields involved. Crucially, dark matter and regular matter are separable.
    $endgroup$
    – Sean E. Lake
    yesterday







  • 3




    $begingroup$
    @SeanE.Lake: Just wanted to say thanks for your patient and thorough answer and replies. I have literally never seen anyone explain dark matter so helpfully to laymen.
    $endgroup$
    – Mehrdad
    yesterday







  • 2




    $begingroup$
    @SeanE.Lake I think that goes a little too far -- at least, it's not how people in the field use the word. For example, "axion dark matter" is quite a popular field of research, but axions are bosonic.
    $endgroup$
    – knzhou
    yesterday


















10












$begingroup$


But the Sun in our solar system also is in the state of plasma and yet doesn't act like a blackbody




Wrong, the sun radiation is approximately fitted as a black body. The word "black body" does not describe the frequencies, but the assumption that it absorbs all radiation falling on it and re-emits it.



Here is the sun, and it fits the black body formula approximately.



sunbb




Solar irradiance spectrum above atmosphere and at surface. Extreme UV and X-rays are produced (at left of wavelength range shown) but comprise very small amounts of the Sun's total output power.




Plasma is also described by black body radiation.




so it is possible that the universe in its initial stage also behaved similarly. And this is the reason we find find less baryonic matter than we should. Thus making the concept of dark energy irrelevant.




This is wrong, as seen above because your premiss is wrong, but also, dark matter is necessary to fit the newtonian rotational curves of galaxies, and more observational evidence can be found in this link..



Dark matter is a completely classical observation of newtonian and general relativity. Baryon asymmetry comes from quantum mechanical knowledge of the content of the classical masses, and does not involve dark matter in any meaningful manner.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    The resolution of your picture is too small, I can't read it.
    $endgroup$
    – Azzinoth
    yesterday










  • $begingroup$
    @Azzinoth sorry, I thought I had given the link. If you click on the image in the link a large version appears
    $endgroup$
    – anna v
    yesterday

















2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









14












$begingroup$

Short answer: yes.



You should look in to the history behind the dark matter hypothesis. It started not from the examination of cosmology and the CMB, but from the motion of galaxies in clusters and stars orbiting around galaxies. See, the vast majority of ordinary matter in every galaxy is contained in the gas between the stars, not the stars themselves. Because of that, we can get a decent handle on how much ordinary matter is around by observing that. Tools for this purpose: the 21 cm line of atomic hydrogen, when the gas is cold, as much of it is in spiral galaxies, and looking at the x-ray spectrum when it is exceptionally hot, as it is between galaxies in large clusters.



When we examine the way the parts of galaxies, and the galaxies in clusters, move, they're travelling way too fast. If the mass we can see direct evidence for is all there is, the clusters would not be able to hold on to their hot gas and galaxies, and the galaxies would not hold together, either.



"So what? Maybe the matter is there, it just isn't giving off light." Trouble is, if it were hot enough to be a plasma, and thus lack spectral lines, we could see it directly. If it were too cold to be a plasma, it would block light from galaxies and quasars in the background more in the matter's spectral lines. So whatever is producing this extra gravity has to neither emit nor absorb light in any way we've been able to detect.



It just so happens that adding dark matter (or something very like it) to the cosmology simulations is also essential to explain the CMB data.



Now, you may object that the extra gravity we've observed may have some other source. For instance, maybe Newton's law of gravitation is simply wrong on the scale of galaxies and larger. The trouble that idea runs into is you're no longer able to explain the bullet cluster, where the gas between the galaxies has collided, but the dark matter and galaxies did not.



On the subject of black body spectra. The black body is the spectrum that a gas of photons assumes if it is in thermal equilibrium (constant uniform temperature everywhere). The CMB is very very nearly a black-body because at the time the differences in temperature between any two parts of the universe were very very small. The sun, however, is surrounded by a very cold vacuum, and that lack of equilibrium will inevitably cause the spectrum to deviate from the ideal Planck function.






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    @0x90 Not likely. The way we measure mass is based on the physics of how light interacts with matter, something we have measured extremely well here on the ground. See, if a gas is thin enough that it is unlikely to reabsorb anything it emits ("optically thin" - see the 21 cm line), then we can deduce the gas temperature from the way the shape of the line is distorted, and the amount of gas along the line of sight ("column density") from brightness. Total mass is just adding up the lines of sight. The process is similar for absorption, just inverted.
    $endgroup$
    – Sean E. Lake
    yesterday






  • 4




    $begingroup$
    @0x90 That still leaves the question of what could that matter possibly be. Normal atoms and molecules aren't perfectly transparent - plasma even less so. We see the galaxy illuminated in many wavelengths of light. If there is extra mass out there (it's entirely possible there isn't - keep in mind that the calculations are entirely classical, and it's possible e.g. a quantum theory of inertia and/or gravity will correct better than dark matter), it really seems like it doesn't interact with light. That's not really weird on its own - particles don't have to interact electromagnetically.
    $endgroup$
    – Luaan
    yesterday






  • 1




    $begingroup$
    @JollyJoker Dark matter is a hypothesis that lacks some specifics. Dark matter, for example, is not modified gravity. In other words, when we say "dark matter" we really do mean that it is some kind of "matter" - it obeys F=ma, is constructed of particles that have mass, etc. In the language of particle physics, we'd say that dark matter is composed of excitations in some field (probably fermionic). Modifed gravity, on the other hand, is a change to how the gravitational field behaves, no other fields involved. Crucially, dark matter and regular matter are separable.
    $endgroup$
    – Sean E. Lake
    yesterday







  • 3




    $begingroup$
    @SeanE.Lake: Just wanted to say thanks for your patient and thorough answer and replies. I have literally never seen anyone explain dark matter so helpfully to laymen.
    $endgroup$
    – Mehrdad
    yesterday







  • 2




    $begingroup$
    @SeanE.Lake I think that goes a little too far -- at least, it's not how people in the field use the word. For example, "axion dark matter" is quite a popular field of research, but axions are bosonic.
    $endgroup$
    – knzhou
    yesterday















14












$begingroup$

Short answer: yes.



You should look in to the history behind the dark matter hypothesis. It started not from the examination of cosmology and the CMB, but from the motion of galaxies in clusters and stars orbiting around galaxies. See, the vast majority of ordinary matter in every galaxy is contained in the gas between the stars, not the stars themselves. Because of that, we can get a decent handle on how much ordinary matter is around by observing that. Tools for this purpose: the 21 cm line of atomic hydrogen, when the gas is cold, as much of it is in spiral galaxies, and looking at the x-ray spectrum when it is exceptionally hot, as it is between galaxies in large clusters.



When we examine the way the parts of galaxies, and the galaxies in clusters, move, they're travelling way too fast. If the mass we can see direct evidence for is all there is, the clusters would not be able to hold on to their hot gas and galaxies, and the galaxies would not hold together, either.



"So what? Maybe the matter is there, it just isn't giving off light." Trouble is, if it were hot enough to be a plasma, and thus lack spectral lines, we could see it directly. If it were too cold to be a plasma, it would block light from galaxies and quasars in the background more in the matter's spectral lines. So whatever is producing this extra gravity has to neither emit nor absorb light in any way we've been able to detect.



It just so happens that adding dark matter (or something very like it) to the cosmology simulations is also essential to explain the CMB data.



Now, you may object that the extra gravity we've observed may have some other source. For instance, maybe Newton's law of gravitation is simply wrong on the scale of galaxies and larger. The trouble that idea runs into is you're no longer able to explain the bullet cluster, where the gas between the galaxies has collided, but the dark matter and galaxies did not.



On the subject of black body spectra. The black body is the spectrum that a gas of photons assumes if it is in thermal equilibrium (constant uniform temperature everywhere). The CMB is very very nearly a black-body because at the time the differences in temperature between any two parts of the universe were very very small. The sun, however, is surrounded by a very cold vacuum, and that lack of equilibrium will inevitably cause the spectrum to deviate from the ideal Planck function.






share|cite|improve this answer









$endgroup$








  • 2




    $begingroup$
    @0x90 Not likely. The way we measure mass is based on the physics of how light interacts with matter, something we have measured extremely well here on the ground. See, if a gas is thin enough that it is unlikely to reabsorb anything it emits ("optically thin" - see the 21 cm line), then we can deduce the gas temperature from the way the shape of the line is distorted, and the amount of gas along the line of sight ("column density") from brightness. Total mass is just adding up the lines of sight. The process is similar for absorption, just inverted.
    $endgroup$
    – Sean E. Lake
    yesterday






  • 4




    $begingroup$
    @0x90 That still leaves the question of what could that matter possibly be. Normal atoms and molecules aren't perfectly transparent - plasma even less so. We see the galaxy illuminated in many wavelengths of light. If there is extra mass out there (it's entirely possible there isn't - keep in mind that the calculations are entirely classical, and it's possible e.g. a quantum theory of inertia and/or gravity will correct better than dark matter), it really seems like it doesn't interact with light. That's not really weird on its own - particles don't have to interact electromagnetically.
    $endgroup$
    – Luaan
    yesterday






  • 1




    $begingroup$
    @JollyJoker Dark matter is a hypothesis that lacks some specifics. Dark matter, for example, is not modified gravity. In other words, when we say "dark matter" we really do mean that it is some kind of "matter" - it obeys F=ma, is constructed of particles that have mass, etc. In the language of particle physics, we'd say that dark matter is composed of excitations in some field (probably fermionic). Modifed gravity, on the other hand, is a change to how the gravitational field behaves, no other fields involved. Crucially, dark matter and regular matter are separable.
    $endgroup$
    – Sean E. Lake
    yesterday







  • 3




    $begingroup$
    @SeanE.Lake: Just wanted to say thanks for your patient and thorough answer and replies. I have literally never seen anyone explain dark matter so helpfully to laymen.
    $endgroup$
    – Mehrdad
    yesterday







  • 2




    $begingroup$
    @SeanE.Lake I think that goes a little too far -- at least, it's not how people in the field use the word. For example, "axion dark matter" is quite a popular field of research, but axions are bosonic.
    $endgroup$
    – knzhou
    yesterday













14












14








14





$begingroup$

Short answer: yes.



You should look in to the history behind the dark matter hypothesis. It started not from the examination of cosmology and the CMB, but from the motion of galaxies in clusters and stars orbiting around galaxies. See, the vast majority of ordinary matter in every galaxy is contained in the gas between the stars, not the stars themselves. Because of that, we can get a decent handle on how much ordinary matter is around by observing that. Tools for this purpose: the 21 cm line of atomic hydrogen, when the gas is cold, as much of it is in spiral galaxies, and looking at the x-ray spectrum when it is exceptionally hot, as it is between galaxies in large clusters.



When we examine the way the parts of galaxies, and the galaxies in clusters, move, they're travelling way too fast. If the mass we can see direct evidence for is all there is, the clusters would not be able to hold on to their hot gas and galaxies, and the galaxies would not hold together, either.



"So what? Maybe the matter is there, it just isn't giving off light." Trouble is, if it were hot enough to be a plasma, and thus lack spectral lines, we could see it directly. If it were too cold to be a plasma, it would block light from galaxies and quasars in the background more in the matter's spectral lines. So whatever is producing this extra gravity has to neither emit nor absorb light in any way we've been able to detect.



It just so happens that adding dark matter (or something very like it) to the cosmology simulations is also essential to explain the CMB data.



Now, you may object that the extra gravity we've observed may have some other source. For instance, maybe Newton's law of gravitation is simply wrong on the scale of galaxies and larger. The trouble that idea runs into is you're no longer able to explain the bullet cluster, where the gas between the galaxies has collided, but the dark matter and galaxies did not.



On the subject of black body spectra. The black body is the spectrum that a gas of photons assumes if it is in thermal equilibrium (constant uniform temperature everywhere). The CMB is very very nearly a black-body because at the time the differences in temperature between any two parts of the universe were very very small. The sun, however, is surrounded by a very cold vacuum, and that lack of equilibrium will inevitably cause the spectrum to deviate from the ideal Planck function.






share|cite|improve this answer









$endgroup$



Short answer: yes.



You should look in to the history behind the dark matter hypothesis. It started not from the examination of cosmology and the CMB, but from the motion of galaxies in clusters and stars orbiting around galaxies. See, the vast majority of ordinary matter in every galaxy is contained in the gas between the stars, not the stars themselves. Because of that, we can get a decent handle on how much ordinary matter is around by observing that. Tools for this purpose: the 21 cm line of atomic hydrogen, when the gas is cold, as much of it is in spiral galaxies, and looking at the x-ray spectrum when it is exceptionally hot, as it is between galaxies in large clusters.



When we examine the way the parts of galaxies, and the galaxies in clusters, move, they're travelling way too fast. If the mass we can see direct evidence for is all there is, the clusters would not be able to hold on to their hot gas and galaxies, and the galaxies would not hold together, either.



"So what? Maybe the matter is there, it just isn't giving off light." Trouble is, if it were hot enough to be a plasma, and thus lack spectral lines, we could see it directly. If it were too cold to be a plasma, it would block light from galaxies and quasars in the background more in the matter's spectral lines. So whatever is producing this extra gravity has to neither emit nor absorb light in any way we've been able to detect.



It just so happens that adding dark matter (or something very like it) to the cosmology simulations is also essential to explain the CMB data.



Now, you may object that the extra gravity we've observed may have some other source. For instance, maybe Newton's law of gravitation is simply wrong on the scale of galaxies and larger. The trouble that idea runs into is you're no longer able to explain the bullet cluster, where the gas between the galaxies has collided, but the dark matter and galaxies did not.



On the subject of black body spectra. The black body is the spectrum that a gas of photons assumes if it is in thermal equilibrium (constant uniform temperature everywhere). The CMB is very very nearly a black-body because at the time the differences in temperature between any two parts of the universe were very very small. The sun, however, is surrounded by a very cold vacuum, and that lack of equilibrium will inevitably cause the spectrum to deviate from the ideal Planck function.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered yesterday









Sean E. LakeSean E. Lake

14.9k12352




14.9k12352







  • 2




    $begingroup$
    @0x90 Not likely. The way we measure mass is based on the physics of how light interacts with matter, something we have measured extremely well here on the ground. See, if a gas is thin enough that it is unlikely to reabsorb anything it emits ("optically thin" - see the 21 cm line), then we can deduce the gas temperature from the way the shape of the line is distorted, and the amount of gas along the line of sight ("column density") from brightness. Total mass is just adding up the lines of sight. The process is similar for absorption, just inverted.
    $endgroup$
    – Sean E. Lake
    yesterday






  • 4




    $begingroup$
    @0x90 That still leaves the question of what could that matter possibly be. Normal atoms and molecules aren't perfectly transparent - plasma even less so. We see the galaxy illuminated in many wavelengths of light. If there is extra mass out there (it's entirely possible there isn't - keep in mind that the calculations are entirely classical, and it's possible e.g. a quantum theory of inertia and/or gravity will correct better than dark matter), it really seems like it doesn't interact with light. That's not really weird on its own - particles don't have to interact electromagnetically.
    $endgroup$
    – Luaan
    yesterday






  • 1




    $begingroup$
    @JollyJoker Dark matter is a hypothesis that lacks some specifics. Dark matter, for example, is not modified gravity. In other words, when we say "dark matter" we really do mean that it is some kind of "matter" - it obeys F=ma, is constructed of particles that have mass, etc. In the language of particle physics, we'd say that dark matter is composed of excitations in some field (probably fermionic). Modifed gravity, on the other hand, is a change to how the gravitational field behaves, no other fields involved. Crucially, dark matter and regular matter are separable.
    $endgroup$
    – Sean E. Lake
    yesterday







  • 3




    $begingroup$
    @SeanE.Lake: Just wanted to say thanks for your patient and thorough answer and replies. I have literally never seen anyone explain dark matter so helpfully to laymen.
    $endgroup$
    – Mehrdad
    yesterday







  • 2




    $begingroup$
    @SeanE.Lake I think that goes a little too far -- at least, it's not how people in the field use the word. For example, "axion dark matter" is quite a popular field of research, but axions are bosonic.
    $endgroup$
    – knzhou
    yesterday












  • 2




    $begingroup$
    @0x90 Not likely. The way we measure mass is based on the physics of how light interacts with matter, something we have measured extremely well here on the ground. See, if a gas is thin enough that it is unlikely to reabsorb anything it emits ("optically thin" - see the 21 cm line), then we can deduce the gas temperature from the way the shape of the line is distorted, and the amount of gas along the line of sight ("column density") from brightness. Total mass is just adding up the lines of sight. The process is similar for absorption, just inverted.
    $endgroup$
    – Sean E. Lake
    yesterday






  • 4




    $begingroup$
    @0x90 That still leaves the question of what could that matter possibly be. Normal atoms and molecules aren't perfectly transparent - plasma even less so. We see the galaxy illuminated in many wavelengths of light. If there is extra mass out there (it's entirely possible there isn't - keep in mind that the calculations are entirely classical, and it's possible e.g. a quantum theory of inertia and/or gravity will correct better than dark matter), it really seems like it doesn't interact with light. That's not really weird on its own - particles don't have to interact electromagnetically.
    $endgroup$
    – Luaan
    yesterday






  • 1




    $begingroup$
    @JollyJoker Dark matter is a hypothesis that lacks some specifics. Dark matter, for example, is not modified gravity. In other words, when we say "dark matter" we really do mean that it is some kind of "matter" - it obeys F=ma, is constructed of particles that have mass, etc. In the language of particle physics, we'd say that dark matter is composed of excitations in some field (probably fermionic). Modifed gravity, on the other hand, is a change to how the gravitational field behaves, no other fields involved. Crucially, dark matter and regular matter are separable.
    $endgroup$
    – Sean E. Lake
    yesterday







  • 3




    $begingroup$
    @SeanE.Lake: Just wanted to say thanks for your patient and thorough answer and replies. I have literally never seen anyone explain dark matter so helpfully to laymen.
    $endgroup$
    – Mehrdad
    yesterday







  • 2




    $begingroup$
    @SeanE.Lake I think that goes a little too far -- at least, it's not how people in the field use the word. For example, "axion dark matter" is quite a popular field of research, but axions are bosonic.
    $endgroup$
    – knzhou
    yesterday







2




2




$begingroup$
@0x90 Not likely. The way we measure mass is based on the physics of how light interacts with matter, something we have measured extremely well here on the ground. See, if a gas is thin enough that it is unlikely to reabsorb anything it emits ("optically thin" - see the 21 cm line), then we can deduce the gas temperature from the way the shape of the line is distorted, and the amount of gas along the line of sight ("column density") from brightness. Total mass is just adding up the lines of sight. The process is similar for absorption, just inverted.
$endgroup$
– Sean E. Lake
yesterday




$begingroup$
@0x90 Not likely. The way we measure mass is based on the physics of how light interacts with matter, something we have measured extremely well here on the ground. See, if a gas is thin enough that it is unlikely to reabsorb anything it emits ("optically thin" - see the 21 cm line), then we can deduce the gas temperature from the way the shape of the line is distorted, and the amount of gas along the line of sight ("column density") from brightness. Total mass is just adding up the lines of sight. The process is similar for absorption, just inverted.
$endgroup$
– Sean E. Lake
yesterday




4




4




$begingroup$
@0x90 That still leaves the question of what could that matter possibly be. Normal atoms and molecules aren't perfectly transparent - plasma even less so. We see the galaxy illuminated in many wavelengths of light. If there is extra mass out there (it's entirely possible there isn't - keep in mind that the calculations are entirely classical, and it's possible e.g. a quantum theory of inertia and/or gravity will correct better than dark matter), it really seems like it doesn't interact with light. That's not really weird on its own - particles don't have to interact electromagnetically.
$endgroup$
– Luaan
yesterday




$begingroup$
@0x90 That still leaves the question of what could that matter possibly be. Normal atoms and molecules aren't perfectly transparent - plasma even less so. We see the galaxy illuminated in many wavelengths of light. If there is extra mass out there (it's entirely possible there isn't - keep in mind that the calculations are entirely classical, and it's possible e.g. a quantum theory of inertia and/or gravity will correct better than dark matter), it really seems like it doesn't interact with light. That's not really weird on its own - particles don't have to interact electromagnetically.
$endgroup$
– Luaan
yesterday




1




1




$begingroup$
@JollyJoker Dark matter is a hypothesis that lacks some specifics. Dark matter, for example, is not modified gravity. In other words, when we say "dark matter" we really do mean that it is some kind of "matter" - it obeys F=ma, is constructed of particles that have mass, etc. In the language of particle physics, we'd say that dark matter is composed of excitations in some field (probably fermionic). Modifed gravity, on the other hand, is a change to how the gravitational field behaves, no other fields involved. Crucially, dark matter and regular matter are separable.
$endgroup$
– Sean E. Lake
yesterday





$begingroup$
@JollyJoker Dark matter is a hypothesis that lacks some specifics. Dark matter, for example, is not modified gravity. In other words, when we say "dark matter" we really do mean that it is some kind of "matter" - it obeys F=ma, is constructed of particles that have mass, etc. In the language of particle physics, we'd say that dark matter is composed of excitations in some field (probably fermionic). Modifed gravity, on the other hand, is a change to how the gravitational field behaves, no other fields involved. Crucially, dark matter and regular matter are separable.
$endgroup$
– Sean E. Lake
yesterday





3




3




$begingroup$
@SeanE.Lake: Just wanted to say thanks for your patient and thorough answer and replies. I have literally never seen anyone explain dark matter so helpfully to laymen.
$endgroup$
– Mehrdad
yesterday





$begingroup$
@SeanE.Lake: Just wanted to say thanks for your patient and thorough answer and replies. I have literally never seen anyone explain dark matter so helpfully to laymen.
$endgroup$
– Mehrdad
yesterday





2




2




$begingroup$
@SeanE.Lake I think that goes a little too far -- at least, it's not how people in the field use the word. For example, "axion dark matter" is quite a popular field of research, but axions are bosonic.
$endgroup$
– knzhou
yesterday




$begingroup$
@SeanE.Lake I think that goes a little too far -- at least, it's not how people in the field use the word. For example, "axion dark matter" is quite a popular field of research, but axions are bosonic.
$endgroup$
– knzhou
yesterday











10












$begingroup$


But the Sun in our solar system also is in the state of plasma and yet doesn't act like a blackbody




Wrong, the sun radiation is approximately fitted as a black body. The word "black body" does not describe the frequencies, but the assumption that it absorbs all radiation falling on it and re-emits it.



Here is the sun, and it fits the black body formula approximately.



sunbb




Solar irradiance spectrum above atmosphere and at surface. Extreme UV and X-rays are produced (at left of wavelength range shown) but comprise very small amounts of the Sun's total output power.




Plasma is also described by black body radiation.




so it is possible that the universe in its initial stage also behaved similarly. And this is the reason we find find less baryonic matter than we should. Thus making the concept of dark energy irrelevant.




This is wrong, as seen above because your premiss is wrong, but also, dark matter is necessary to fit the newtonian rotational curves of galaxies, and more observational evidence can be found in this link..



Dark matter is a completely classical observation of newtonian and general relativity. Baryon asymmetry comes from quantum mechanical knowledge of the content of the classical masses, and does not involve dark matter in any meaningful manner.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    The resolution of your picture is too small, I can't read it.
    $endgroup$
    – Azzinoth
    yesterday










  • $begingroup$
    @Azzinoth sorry, I thought I had given the link. If you click on the image in the link a large version appears
    $endgroup$
    – anna v
    yesterday















10












$begingroup$


But the Sun in our solar system also is in the state of plasma and yet doesn't act like a blackbody




Wrong, the sun radiation is approximately fitted as a black body. The word "black body" does not describe the frequencies, but the assumption that it absorbs all radiation falling on it and re-emits it.



Here is the sun, and it fits the black body formula approximately.



sunbb




Solar irradiance spectrum above atmosphere and at surface. Extreme UV and X-rays are produced (at left of wavelength range shown) but comprise very small amounts of the Sun's total output power.




Plasma is also described by black body radiation.




so it is possible that the universe in its initial stage also behaved similarly. And this is the reason we find find less baryonic matter than we should. Thus making the concept of dark energy irrelevant.




This is wrong, as seen above because your premiss is wrong, but also, dark matter is necessary to fit the newtonian rotational curves of galaxies, and more observational evidence can be found in this link..



Dark matter is a completely classical observation of newtonian and general relativity. Baryon asymmetry comes from quantum mechanical knowledge of the content of the classical masses, and does not involve dark matter in any meaningful manner.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    The resolution of your picture is too small, I can't read it.
    $endgroup$
    – Azzinoth
    yesterday










  • $begingroup$
    @Azzinoth sorry, I thought I had given the link. If you click on the image in the link a large version appears
    $endgroup$
    – anna v
    yesterday













10












10








10





$begingroup$


But the Sun in our solar system also is in the state of plasma and yet doesn't act like a blackbody




Wrong, the sun radiation is approximately fitted as a black body. The word "black body" does not describe the frequencies, but the assumption that it absorbs all radiation falling on it and re-emits it.



Here is the sun, and it fits the black body formula approximately.



sunbb




Solar irradiance spectrum above atmosphere and at surface. Extreme UV and X-rays are produced (at left of wavelength range shown) but comprise very small amounts of the Sun's total output power.




Plasma is also described by black body radiation.




so it is possible that the universe in its initial stage also behaved similarly. And this is the reason we find find less baryonic matter than we should. Thus making the concept of dark energy irrelevant.




This is wrong, as seen above because your premiss is wrong, but also, dark matter is necessary to fit the newtonian rotational curves of galaxies, and more observational evidence can be found in this link..



Dark matter is a completely classical observation of newtonian and general relativity. Baryon asymmetry comes from quantum mechanical knowledge of the content of the classical masses, and does not involve dark matter in any meaningful manner.






share|cite|improve this answer











$endgroup$




But the Sun in our solar system also is in the state of plasma and yet doesn't act like a blackbody




Wrong, the sun radiation is approximately fitted as a black body. The word "black body" does not describe the frequencies, but the assumption that it absorbs all radiation falling on it and re-emits it.



Here is the sun, and it fits the black body formula approximately.



sunbb




Solar irradiance spectrum above atmosphere and at surface. Extreme UV and X-rays are produced (at left of wavelength range shown) but comprise very small amounts of the Sun's total output power.




Plasma is also described by black body radiation.




so it is possible that the universe in its initial stage also behaved similarly. And this is the reason we find find less baryonic matter than we should. Thus making the concept of dark energy irrelevant.




This is wrong, as seen above because your premiss is wrong, but also, dark matter is necessary to fit the newtonian rotational curves of galaxies, and more observational evidence can be found in this link..



Dark matter is a completely classical observation of newtonian and general relativity. Baryon asymmetry comes from quantum mechanical knowledge of the content of the classical masses, and does not involve dark matter in any meaningful manner.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited yesterday

























answered yesterday









anna vanna v

162k8153457




162k8153457











  • $begingroup$
    The resolution of your picture is too small, I can't read it.
    $endgroup$
    – Azzinoth
    yesterday










  • $begingroup$
    @Azzinoth sorry, I thought I had given the link. If you click on the image in the link a large version appears
    $endgroup$
    – anna v
    yesterday
















  • $begingroup$
    The resolution of your picture is too small, I can't read it.
    $endgroup$
    – Azzinoth
    yesterday










  • $begingroup$
    @Azzinoth sorry, I thought I had given the link. If you click on the image in the link a large version appears
    $endgroup$
    – anna v
    yesterday















$begingroup$
The resolution of your picture is too small, I can't read it.
$endgroup$
– Azzinoth
yesterday




$begingroup$
The resolution of your picture is too small, I can't read it.
$endgroup$
– Azzinoth
yesterday












$begingroup$
@Azzinoth sorry, I thought I had given the link. If you click on the image in the link a large version appears
$endgroup$
– anna v
yesterday




$begingroup$
@Azzinoth sorry, I thought I had given the link. If you click on the image in the link a large version appears
$endgroup$
– anna v
yesterday



Popular posts from this blog

Get product attribute by attribute group code in magento 2get product attribute by product attribute group in magento 2Magento 2 Log Bundle Product Data in List Page?How to get all product attribute of a attribute group of Default attribute set?Magento 2.1 Create a filter in the product grid by new attributeMagento 2 : Get Product Attribute values By GroupMagento 2 How to get all existing values for one attributeMagento 2 get custom attribute of a single product inside a pluginMagento 2.3 How to get all the Multi Source Inventory (MSI) locations collection in custom module?Magento2: how to develop rest API to get new productsGet product attribute by attribute group code ( [attribute_group_code] ) in magento 2

Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

Magento 2.3: How do i solve this, Not registered handle, on custom form?How can i rewrite TierPrice Block in Magento2magento 2 captcha not rendering if I override layout xmlmain.CRITICAL: Plugin class doesn't existMagento 2 : Problem while adding custom button order view page?Magento 2.2.5: Overriding Admin Controller sales/orderMagento 2.2.5: Add, Update and Delete existing products Custom OptionsMagento 2.3 : File Upload issue in UI Component FormMagento2 Not registered handleHow to configured Form Builder Js in my custom magento 2.3.0 module?Magento 2.3. How to create image upload field in an admin form