Prove every subset of in the discrete metric is clopen Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)discrete metric, both open and closed.discrete metric, both open and closed.Open set in a metric space is union of closed balls?Every metric space contains a discrete, coarsely dense subsetProving that a subset endowed with the discrete metric is both open and closed - choice of radius of the ball around a pointIn a metric space, is every open set the countable union of closed sets?Compact Sets of $(X,d)$ with discrete metricDoes there exist any non discrete metric space $(X,d)$ in which every $F_sigma$ (resp. $G_delta$) set is clopen?Open and closed balls in discrete metricOpen and Closed Sets Discrete MetricHow to prove the set of bounded sequences is clopen in the uniform metric?

What LEGO pieces have "real-world" functionality?

iPhone Wallpaper?

How to recreate this effect in Photoshop?

How to motivate offshore teams and trust them to deliver?

What is the longest distance a 13th-level monk can jump while attacking on the same turn?

Why are there no cargo aircraft with "flying wing" design?

What happens to sewage if there is no river near by?

What is this single-engine low-wing propeller plane?

Why is there no army of Iron-Mans in the MCU?

Did Xerox really develop the first LAN?

Why is black pepper both grey and black?

Disable hyphenation for an entire paragraph

When -s is used with third person singular. What's its use in this context?

Does surprise arrest existing movement?

Is above average number of years spent on PhD considered a red flag in future academia or industry positions?

Single word antonym of "flightless"

Antler Helmet: Can it work?

How does a Death Domain cleric's Touch of Death feature work with Touch-range spells delivered by familiars?

How to bypass password on Windows XP account?

If Jon Snow became King of the Seven Kingdoms what would his regnal number be?

How to deal with a team lead who never gives me credit?

Storing hydrofluoric acid before the invention of plastics

I need to find the potential function of a vector field.

If 'B is more likely given A', then 'A is more likely given B'



Prove every subset of in the discrete metric is clopen



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)discrete metric, both open and closed.discrete metric, both open and closed.Open set in a metric space is union of closed balls?Every metric space contains a discrete, coarsely dense subsetProving that a subset endowed with the discrete metric is both open and closed - choice of radius of the ball around a pointIn a metric space, is every open set the countable union of closed sets?Compact Sets of $(X,d)$ with discrete metricDoes there exist any non discrete metric space $(X,d)$ in which every $F_sigma$ (resp. $G_delta$) set is clopen?Open and closed balls in discrete metricOpen and Closed Sets Discrete MetricHow to prove the set of bounded sequences is clopen in the uniform metric?










1












$begingroup$


Hey fellow math enthusiasts! I am reading in ”Introduction to Topology” by Gameline and Greene and I got stuck on an exercise in the first chapter, and I’d love some help on understanding their solution. The problem is as follows:



”Given a set $X$ and metric $d(x, y) = 1$ if $x neq y$ and $d(x, y) = 0$ if $x = y$ then we want to prove that every subset of the resulting metric space $(X, d)$ is both open and closed.”.



And the solution is as follows:



”Since each ball $B(x; frac12)$ reduces to the singleton set $x$, every subset is a union of open balls, hence every subset is open.”.



My interpretation of the solution is that they are just providing the way to reason. They only showed that each subset is open but not closed.



In the book there is a theorem that states that a subset of $X$ is open if and only if it is a union of open balls in $X$, and is being used in the proof.



I get that in $X$ each subset is a singleton set $x$ or a collection of singletons and since each singleton can be rewritten in X as an open ball $B(x; frac12)$ then each collection of singletons can be written as a union of these open balls and thus each subset of $X$ is open.



But how do we get that each subset is closed? My idea is that we look at the complements of the sets we considered above. Since each of these complement-sets also obey the same structure (so in practice would not be distinguishable from the sets above) they too, using the ball-argument, can be showed to be open sets. Then using the argument (theorem in book) that if a subset is open, it’s complement is closed. So both the subsets of individual singletons or collections of singletons are both open and closed.



How do I formalize? Any feedback is greatly appreciated. Thanks in advance.



/Isak










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Possible duplicate of discrete metric, both open and closed.
    $endgroup$
    – YuiTo Cheng
    yesterday






  • 1




    $begingroup$
    You essentially have the entire formal argument here. It may be that the original text considered the part you added to be easy enough for the reader to figure out themselves.
    $endgroup$
    – Ben Millwood
    yesterday















1












$begingroup$


Hey fellow math enthusiasts! I am reading in ”Introduction to Topology” by Gameline and Greene and I got stuck on an exercise in the first chapter, and I’d love some help on understanding their solution. The problem is as follows:



”Given a set $X$ and metric $d(x, y) = 1$ if $x neq y$ and $d(x, y) = 0$ if $x = y$ then we want to prove that every subset of the resulting metric space $(X, d)$ is both open and closed.”.



And the solution is as follows:



”Since each ball $B(x; frac12)$ reduces to the singleton set $x$, every subset is a union of open balls, hence every subset is open.”.



My interpretation of the solution is that they are just providing the way to reason. They only showed that each subset is open but not closed.



In the book there is a theorem that states that a subset of $X$ is open if and only if it is a union of open balls in $X$, and is being used in the proof.



I get that in $X$ each subset is a singleton set $x$ or a collection of singletons and since each singleton can be rewritten in X as an open ball $B(x; frac12)$ then each collection of singletons can be written as a union of these open balls and thus each subset of $X$ is open.



But how do we get that each subset is closed? My idea is that we look at the complements of the sets we considered above. Since each of these complement-sets also obey the same structure (so in practice would not be distinguishable from the sets above) they too, using the ball-argument, can be showed to be open sets. Then using the argument (theorem in book) that if a subset is open, it’s complement is closed. So both the subsets of individual singletons or collections of singletons are both open and closed.



How do I formalize? Any feedback is greatly appreciated. Thanks in advance.



/Isak










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    Possible duplicate of discrete metric, both open and closed.
    $endgroup$
    – YuiTo Cheng
    yesterday






  • 1




    $begingroup$
    You essentially have the entire formal argument here. It may be that the original text considered the part you added to be easy enough for the reader to figure out themselves.
    $endgroup$
    – Ben Millwood
    yesterday













1












1








1





$begingroup$


Hey fellow math enthusiasts! I am reading in ”Introduction to Topology” by Gameline and Greene and I got stuck on an exercise in the first chapter, and I’d love some help on understanding their solution. The problem is as follows:



”Given a set $X$ and metric $d(x, y) = 1$ if $x neq y$ and $d(x, y) = 0$ if $x = y$ then we want to prove that every subset of the resulting metric space $(X, d)$ is both open and closed.”.



And the solution is as follows:



”Since each ball $B(x; frac12)$ reduces to the singleton set $x$, every subset is a union of open balls, hence every subset is open.”.



My interpretation of the solution is that they are just providing the way to reason. They only showed that each subset is open but not closed.



In the book there is a theorem that states that a subset of $X$ is open if and only if it is a union of open balls in $X$, and is being used in the proof.



I get that in $X$ each subset is a singleton set $x$ or a collection of singletons and since each singleton can be rewritten in X as an open ball $B(x; frac12)$ then each collection of singletons can be written as a union of these open balls and thus each subset of $X$ is open.



But how do we get that each subset is closed? My idea is that we look at the complements of the sets we considered above. Since each of these complement-sets also obey the same structure (so in practice would not be distinguishable from the sets above) they too, using the ball-argument, can be showed to be open sets. Then using the argument (theorem in book) that if a subset is open, it’s complement is closed. So both the subsets of individual singletons or collections of singletons are both open and closed.



How do I formalize? Any feedback is greatly appreciated. Thanks in advance.



/Isak










share|cite|improve this question











$endgroup$




Hey fellow math enthusiasts! I am reading in ”Introduction to Topology” by Gameline and Greene and I got stuck on an exercise in the first chapter, and I’d love some help on understanding their solution. The problem is as follows:



”Given a set $X$ and metric $d(x, y) = 1$ if $x neq y$ and $d(x, y) = 0$ if $x = y$ then we want to prove that every subset of the resulting metric space $(X, d)$ is both open and closed.”.



And the solution is as follows:



”Since each ball $B(x; frac12)$ reduces to the singleton set $x$, every subset is a union of open balls, hence every subset is open.”.



My interpretation of the solution is that they are just providing the way to reason. They only showed that each subset is open but not closed.



In the book there is a theorem that states that a subset of $X$ is open if and only if it is a union of open balls in $X$, and is being used in the proof.



I get that in $X$ each subset is a singleton set $x$ or a collection of singletons and since each singleton can be rewritten in X as an open ball $B(x; frac12)$ then each collection of singletons can be written as a union of these open balls and thus each subset of $X$ is open.



But how do we get that each subset is closed? My idea is that we look at the complements of the sets we considered above. Since each of these complement-sets also obey the same structure (so in practice would not be distinguishable from the sets above) they too, using the ball-argument, can be showed to be open sets. Then using the argument (theorem in book) that if a subset is open, it’s complement is closed. So both the subsets of individual singletons or collections of singletons are both open and closed.



How do I formalize? Any feedback is greatly appreciated. Thanks in advance.



/Isak







metric-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









YuiTo Cheng

2,43841037




2,43841037










asked yesterday









iaenstromiaenstrom

487




487







  • 1




    $begingroup$
    Possible duplicate of discrete metric, both open and closed.
    $endgroup$
    – YuiTo Cheng
    yesterday






  • 1




    $begingroup$
    You essentially have the entire formal argument here. It may be that the original text considered the part you added to be easy enough for the reader to figure out themselves.
    $endgroup$
    – Ben Millwood
    yesterday












  • 1




    $begingroup$
    Possible duplicate of discrete metric, both open and closed.
    $endgroup$
    – YuiTo Cheng
    yesterday






  • 1




    $begingroup$
    You essentially have the entire formal argument here. It may be that the original text considered the part you added to be easy enough for the reader to figure out themselves.
    $endgroup$
    – Ben Millwood
    yesterday







1




1




$begingroup$
Possible duplicate of discrete metric, both open and closed.
$endgroup$
– YuiTo Cheng
yesterday




$begingroup$
Possible duplicate of discrete metric, both open and closed.
$endgroup$
– YuiTo Cheng
yesterday




1




1




$begingroup$
You essentially have the entire formal argument here. It may be that the original text considered the part you added to be easy enough for the reader to figure out themselves.
$endgroup$
– Ben Millwood
yesterday




$begingroup$
You essentially have the entire formal argument here. It may be that the original text considered the part you added to be easy enough for the reader to figure out themselves.
$endgroup$
– Ben Millwood
yesterday










2 Answers
2






active

oldest

votes


















6












$begingroup$

Let every subset of a topolgical space be open. A subset is closed if and only if its complement is open. The complement of every subset is a subset so is open. Therefore every subset is closed






share|cite|improve this answer









$endgroup$




















    2












    $begingroup$

    Another way to reason: suppose $x in overlineA$ (the closure of $A$) for some arbitary subset of $A$. Then every ball around $x$ intersects $A$, in particular $B(x,frac12)=x$ must intersect $A$, which means $x in A$.



    So for all $A subseteq X$, $overlineA subseteq A (subseteq overlineA)$ so $A = overlineA$ and every subset $A$ is closed.






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3187178%2fprove-every-subset-of-in-the-discrete-metric-is-clopen%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      6












      $begingroup$

      Let every subset of a topolgical space be open. A subset is closed if and only if its complement is open. The complement of every subset is a subset so is open. Therefore every subset is closed






      share|cite|improve this answer









      $endgroup$

















        6












        $begingroup$

        Let every subset of a topolgical space be open. A subset is closed if and only if its complement is open. The complement of every subset is a subset so is open. Therefore every subset is closed






        share|cite|improve this answer









        $endgroup$















          6












          6








          6





          $begingroup$

          Let every subset of a topolgical space be open. A subset is closed if and only if its complement is open. The complement of every subset is a subset so is open. Therefore every subset is closed






          share|cite|improve this answer









          $endgroup$



          Let every subset of a topolgical space be open. A subset is closed if and only if its complement is open. The complement of every subset is a subset so is open. Therefore every subset is closed







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered yesterday









          G AkerG Aker

          3237




          3237





















              2












              $begingroup$

              Another way to reason: suppose $x in overlineA$ (the closure of $A$) for some arbitary subset of $A$. Then every ball around $x$ intersects $A$, in particular $B(x,frac12)=x$ must intersect $A$, which means $x in A$.



              So for all $A subseteq X$, $overlineA subseteq A (subseteq overlineA)$ so $A = overlineA$ and every subset $A$ is closed.






              share|cite|improve this answer









              $endgroup$

















                2












                $begingroup$

                Another way to reason: suppose $x in overlineA$ (the closure of $A$) for some arbitary subset of $A$. Then every ball around $x$ intersects $A$, in particular $B(x,frac12)=x$ must intersect $A$, which means $x in A$.



                So for all $A subseteq X$, $overlineA subseteq A (subseteq overlineA)$ so $A = overlineA$ and every subset $A$ is closed.






                share|cite|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  Another way to reason: suppose $x in overlineA$ (the closure of $A$) for some arbitary subset of $A$. Then every ball around $x$ intersects $A$, in particular $B(x,frac12)=x$ must intersect $A$, which means $x in A$.



                  So for all $A subseteq X$, $overlineA subseteq A (subseteq overlineA)$ so $A = overlineA$ and every subset $A$ is closed.






                  share|cite|improve this answer









                  $endgroup$



                  Another way to reason: suppose $x in overlineA$ (the closure of $A$) for some arbitary subset of $A$. Then every ball around $x$ intersects $A$, in particular $B(x,frac12)=x$ must intersect $A$, which means $x in A$.



                  So for all $A subseteq X$, $overlineA subseteq A (subseteq overlineA)$ so $A = overlineA$ and every subset $A$ is closed.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered yesterday









                  Henno BrandsmaHenno Brandsma

                  116k349127




                  116k349127



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3187178%2fprove-every-subset-of-in-the-discrete-metric-is-clopen%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Get product attribute by attribute group code in magento 2get product attribute by product attribute group in magento 2Magento 2 Log Bundle Product Data in List Page?How to get all product attribute of a attribute group of Default attribute set?Magento 2.1 Create a filter in the product grid by new attributeMagento 2 : Get Product Attribute values By GroupMagento 2 How to get all existing values for one attributeMagento 2 get custom attribute of a single product inside a pluginMagento 2.3 How to get all the Multi Source Inventory (MSI) locations collection in custom module?Magento2: how to develop rest API to get new productsGet product attribute by attribute group code ( [attribute_group_code] ) in magento 2

                      Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

                      Magento 2.3: How do i solve this, Not registered handle, on custom form?How can i rewrite TierPrice Block in Magento2magento 2 captcha not rendering if I override layout xmlmain.CRITICAL: Plugin class doesn't existMagento 2 : Problem while adding custom button order view page?Magento 2.2.5: Overriding Admin Controller sales/orderMagento 2.2.5: Add, Update and Delete existing products Custom OptionsMagento 2.3 : File Upload issue in UI Component FormMagento2 Not registered handleHow to configured Form Builder Js in my custom magento 2.3.0 module?Magento 2.3. How to create image upload field in an admin form