Symmetry in quantum mechanics The 2019 Stack Overflow Developer Survey Results Are InSymmetry transformations on a quantum system; DefinitionsQuantum mechanics and Lorentz symmetryGenerators of a certain symmetry in Quantum MechanicsEquivalence of symmetry and commuting unitary operatorConcrete example that projective representation of symmetry group occurs in a quantum system except the case of spin half integer?Symmetry transformations on a quantum system; DefinitionsWhat is the definition of parity operator in quantum mechanics?Symmetry of Hamiltonian in harmonic oscillatorDifference between symmetry transformation and basis transformationSymmetries in quantum mechanicsWhat happens to the global $U(1)$ symmetry in alternative formulations of Quantum Mechanics?

What is the use of option -o in the useradd command?

How long do I have to send payment?

Where to refill my bottle in India?

Is "plugging out" electronic devices an American expression?

Is there a name of the flying bionic bird?

What are my rights when I have a Sparpreis ticket but can't board an overcrowded train?

Does light intensity oscillate really fast since it is a wave?

Landlord wants to switch my lease to a "Land contract" to "get back at the city"

Lethal sonic weapons

Why did Howard Stark use all the Vibranium they had on a prototype shield?

Inversion Puzzle

Should I write numbers in words or as numerals when there are multiple next to each other?

How to manage monthly salary

Are there any other methods to apply to solving simultaneous equations?

What is the best strategy for white in this position?

What are the motivations for publishing new editions of an existing textbook, beyond new discoveries in a field?

Spanish for "widget"

Is domain driven design an anti-SQL pattern?

How was Skylab's orbit inclination chosen?

How are circuits which use complex ICs normally simulated?

How come people say “Would of”?

Falsification in Math vs Science

Does it makes sense to buy a new cycle to learn riding?

What effect does the “loading” weapon property have in practical terms?



Symmetry in quantum mechanics



The 2019 Stack Overflow Developer Survey Results Are InSymmetry transformations on a quantum system; DefinitionsQuantum mechanics and Lorentz symmetryGenerators of a certain symmetry in Quantum MechanicsEquivalence of symmetry and commuting unitary operatorConcrete example that projective representation of symmetry group occurs in a quantum system except the case of spin half integer?Symmetry transformations on a quantum system; DefinitionsWhat is the definition of parity operator in quantum mechanics?Symmetry of Hamiltonian in harmonic oscillatorDifference between symmetry transformation and basis transformationSymmetries in quantum mechanicsWhat happens to the global $U(1)$ symmetry in alternative formulations of Quantum Mechanics?










9












$begingroup$


My professor told us that in quantum mechanics a transformation is a symmetry transformation if $$ UH(psi) = HU(psi) $$



Can you give me an easy explanation for this definition?










share|cite|improve this question











$endgroup$
















    9












    $begingroup$


    My professor told us that in quantum mechanics a transformation is a symmetry transformation if $$ UH(psi) = HU(psi) $$



    Can you give me an easy explanation for this definition?










    share|cite|improve this question











    $endgroup$














      9












      9








      9


      4



      $begingroup$


      My professor told us that in quantum mechanics a transformation is a symmetry transformation if $$ UH(psi) = HU(psi) $$



      Can you give me an easy explanation for this definition?










      share|cite|improve this question











      $endgroup$




      My professor told us that in quantum mechanics a transformation is a symmetry transformation if $$ UH(psi) = HU(psi) $$



      Can you give me an easy explanation for this definition?







      quantum-mechanics operators symmetry hamiltonian commutator






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited yesterday









      Qmechanic

      107k121991239




      107k121991239










      asked yesterday









      SimoBartzSimoBartz

      1017




      1017




















          2 Answers
          2






          active

          oldest

          votes


















          17












          $begingroup$

          In a context like this, a symmetry is a transformation that converts solutions of the equation(s) of motion to other solutions of the equation(s) of motion.



          In this case, the equation of motion is the Schrödinger equation
          $$
          ihbarfracddtpsi=Hpsi.
          tag1
          $$

          We can multiply both sides of equation (1) by $U$ to get
          $$
          Uihbarfracddtpsi=UHpsi.
          tag2
          $$

          If $UH=HU$ and $U$ is independent of time, then equation (2) may be rewritten as
          $$
          ihbarfracddtUpsi=HUpsi.
          tag3
          $$

          which says that if $psi$ solves equation (1), then so does $Upsi$, so $U$ is a symmetry.




          For a more general definition of symmetry in QM, see



          Symmetry transformations on a quantum system; Definitions






          share|cite|improve this answer









          $endgroup$








          • 3




            $begingroup$
            This is a good answer but it brings to another question, why do we call symmetry this condition?
            $endgroup$
            – SimoBartz
            yesterday










          • $begingroup$
            @SimoBartz That's a good question. In a more completely specified model, say with lots of local observables as in quantum field theory, we would require that a symmetry preserve things like the relationships between those observables in space and time. But in the present question, only the Hamiltonian is specified, so there is nothing else to preserve.
            $endgroup$
            – Chiral Anomaly
            yesterday







          • 1




            $begingroup$
            @SimoBartz, what does the word "symmetry" mean to you? Have you encountered it in other contexts, such as classical mechanics or geometry?
            $endgroup$
            – Vectornaut
            yesterday










          • $begingroup$
            @Vectornaut What if they answered yes to any of those? What would you say?
            $endgroup$
            – opa
            11 hours ago


















          0












          $begingroup$

          What you have written there is nothing but the commutator. Consider for example the time evolution operator beginalign*
          Uleft(t-t_0right)=e^-ileft(t-t_0right) H
          endalign*

          If $psileft(xi_1, dots, xi_N ; t_0right)$ is the wave function at time $t_0$ and $U(t−t0)$ is the time evolution operator that for all permutations $P$ satisfies
          $left[Uleft(t-t_0right), Pright]=0$
          then also
          $$left(P Uleft(t-t_0right) psiright)left(xi_1, ldots, xi_N ; t_0right)=left(Uleft(t-t_0right) P psiright)left(xi_1, ldots, xi_N ; t_0right)$$
          This means that the permuted time evolved wave function is the same as the time evolved permuted wave function.



          Another example would be if you consider identical particles. An arbitrary observable $A$ should be the same under the permutation operator $P$ if one has identical particles. This is to say:
          beginalign*
          [A, P]=0
          endalign*

          for all $Pin S_N$ (in permutation group of $N$ particles).






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "151"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471292%2fsymmetry-in-quantum-mechanics%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            17












            $begingroup$

            In a context like this, a symmetry is a transformation that converts solutions of the equation(s) of motion to other solutions of the equation(s) of motion.



            In this case, the equation of motion is the Schrödinger equation
            $$
            ihbarfracddtpsi=Hpsi.
            tag1
            $$

            We can multiply both sides of equation (1) by $U$ to get
            $$
            Uihbarfracddtpsi=UHpsi.
            tag2
            $$

            If $UH=HU$ and $U$ is independent of time, then equation (2) may be rewritten as
            $$
            ihbarfracddtUpsi=HUpsi.
            tag3
            $$

            which says that if $psi$ solves equation (1), then so does $Upsi$, so $U$ is a symmetry.




            For a more general definition of symmetry in QM, see



            Symmetry transformations on a quantum system; Definitions






            share|cite|improve this answer









            $endgroup$








            • 3




              $begingroup$
              This is a good answer but it brings to another question, why do we call symmetry this condition?
              $endgroup$
              – SimoBartz
              yesterday










            • $begingroup$
              @SimoBartz That's a good question. In a more completely specified model, say with lots of local observables as in quantum field theory, we would require that a symmetry preserve things like the relationships between those observables in space and time. But in the present question, only the Hamiltonian is specified, so there is nothing else to preserve.
              $endgroup$
              – Chiral Anomaly
              yesterday







            • 1




              $begingroup$
              @SimoBartz, what does the word "symmetry" mean to you? Have you encountered it in other contexts, such as classical mechanics or geometry?
              $endgroup$
              – Vectornaut
              yesterday










            • $begingroup$
              @Vectornaut What if they answered yes to any of those? What would you say?
              $endgroup$
              – opa
              11 hours ago















            17












            $begingroup$

            In a context like this, a symmetry is a transformation that converts solutions of the equation(s) of motion to other solutions of the equation(s) of motion.



            In this case, the equation of motion is the Schrödinger equation
            $$
            ihbarfracddtpsi=Hpsi.
            tag1
            $$

            We can multiply both sides of equation (1) by $U$ to get
            $$
            Uihbarfracddtpsi=UHpsi.
            tag2
            $$

            If $UH=HU$ and $U$ is independent of time, then equation (2) may be rewritten as
            $$
            ihbarfracddtUpsi=HUpsi.
            tag3
            $$

            which says that if $psi$ solves equation (1), then so does $Upsi$, so $U$ is a symmetry.




            For a more general definition of symmetry in QM, see



            Symmetry transformations on a quantum system; Definitions






            share|cite|improve this answer









            $endgroup$








            • 3




              $begingroup$
              This is a good answer but it brings to another question, why do we call symmetry this condition?
              $endgroup$
              – SimoBartz
              yesterday










            • $begingroup$
              @SimoBartz That's a good question. In a more completely specified model, say with lots of local observables as in quantum field theory, we would require that a symmetry preserve things like the relationships between those observables in space and time. But in the present question, only the Hamiltonian is specified, so there is nothing else to preserve.
              $endgroup$
              – Chiral Anomaly
              yesterday







            • 1




              $begingroup$
              @SimoBartz, what does the word "symmetry" mean to you? Have you encountered it in other contexts, such as classical mechanics or geometry?
              $endgroup$
              – Vectornaut
              yesterday










            • $begingroup$
              @Vectornaut What if they answered yes to any of those? What would you say?
              $endgroup$
              – opa
              11 hours ago













            17












            17








            17





            $begingroup$

            In a context like this, a symmetry is a transformation that converts solutions of the equation(s) of motion to other solutions of the equation(s) of motion.



            In this case, the equation of motion is the Schrödinger equation
            $$
            ihbarfracddtpsi=Hpsi.
            tag1
            $$

            We can multiply both sides of equation (1) by $U$ to get
            $$
            Uihbarfracddtpsi=UHpsi.
            tag2
            $$

            If $UH=HU$ and $U$ is independent of time, then equation (2) may be rewritten as
            $$
            ihbarfracddtUpsi=HUpsi.
            tag3
            $$

            which says that if $psi$ solves equation (1), then so does $Upsi$, so $U$ is a symmetry.




            For a more general definition of symmetry in QM, see



            Symmetry transformations on a quantum system; Definitions






            share|cite|improve this answer









            $endgroup$



            In a context like this, a symmetry is a transformation that converts solutions of the equation(s) of motion to other solutions of the equation(s) of motion.



            In this case, the equation of motion is the Schrödinger equation
            $$
            ihbarfracddtpsi=Hpsi.
            tag1
            $$

            We can multiply both sides of equation (1) by $U$ to get
            $$
            Uihbarfracddtpsi=UHpsi.
            tag2
            $$

            If $UH=HU$ and $U$ is independent of time, then equation (2) may be rewritten as
            $$
            ihbarfracddtUpsi=HUpsi.
            tag3
            $$

            which says that if $psi$ solves equation (1), then so does $Upsi$, so $U$ is a symmetry.




            For a more general definition of symmetry in QM, see



            Symmetry transformations on a quantum system; Definitions







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered yesterday









            Chiral AnomalyChiral Anomaly

            13.4k21845




            13.4k21845







            • 3




              $begingroup$
              This is a good answer but it brings to another question, why do we call symmetry this condition?
              $endgroup$
              – SimoBartz
              yesterday










            • $begingroup$
              @SimoBartz That's a good question. In a more completely specified model, say with lots of local observables as in quantum field theory, we would require that a symmetry preserve things like the relationships between those observables in space and time. But in the present question, only the Hamiltonian is specified, so there is nothing else to preserve.
              $endgroup$
              – Chiral Anomaly
              yesterday







            • 1




              $begingroup$
              @SimoBartz, what does the word "symmetry" mean to you? Have you encountered it in other contexts, such as classical mechanics or geometry?
              $endgroup$
              – Vectornaut
              yesterday










            • $begingroup$
              @Vectornaut What if they answered yes to any of those? What would you say?
              $endgroup$
              – opa
              11 hours ago












            • 3




              $begingroup$
              This is a good answer but it brings to another question, why do we call symmetry this condition?
              $endgroup$
              – SimoBartz
              yesterday










            • $begingroup$
              @SimoBartz That's a good question. In a more completely specified model, say with lots of local observables as in quantum field theory, we would require that a symmetry preserve things like the relationships between those observables in space and time. But in the present question, only the Hamiltonian is specified, so there is nothing else to preserve.
              $endgroup$
              – Chiral Anomaly
              yesterday







            • 1




              $begingroup$
              @SimoBartz, what does the word "symmetry" mean to you? Have you encountered it in other contexts, such as classical mechanics or geometry?
              $endgroup$
              – Vectornaut
              yesterday










            • $begingroup$
              @Vectornaut What if they answered yes to any of those? What would you say?
              $endgroup$
              – opa
              11 hours ago







            3




            3




            $begingroup$
            This is a good answer but it brings to another question, why do we call symmetry this condition?
            $endgroup$
            – SimoBartz
            yesterday




            $begingroup$
            This is a good answer but it brings to another question, why do we call symmetry this condition?
            $endgroup$
            – SimoBartz
            yesterday












            $begingroup$
            @SimoBartz That's a good question. In a more completely specified model, say with lots of local observables as in quantum field theory, we would require that a symmetry preserve things like the relationships between those observables in space and time. But in the present question, only the Hamiltonian is specified, so there is nothing else to preserve.
            $endgroup$
            – Chiral Anomaly
            yesterday





            $begingroup$
            @SimoBartz That's a good question. In a more completely specified model, say with lots of local observables as in quantum field theory, we would require that a symmetry preserve things like the relationships between those observables in space and time. But in the present question, only the Hamiltonian is specified, so there is nothing else to preserve.
            $endgroup$
            – Chiral Anomaly
            yesterday





            1




            1




            $begingroup$
            @SimoBartz, what does the word "symmetry" mean to you? Have you encountered it in other contexts, such as classical mechanics or geometry?
            $endgroup$
            – Vectornaut
            yesterday




            $begingroup$
            @SimoBartz, what does the word "symmetry" mean to you? Have you encountered it in other contexts, such as classical mechanics or geometry?
            $endgroup$
            – Vectornaut
            yesterday












            $begingroup$
            @Vectornaut What if they answered yes to any of those? What would you say?
            $endgroup$
            – opa
            11 hours ago




            $begingroup$
            @Vectornaut What if they answered yes to any of those? What would you say?
            $endgroup$
            – opa
            11 hours ago











            0












            $begingroup$

            What you have written there is nothing but the commutator. Consider for example the time evolution operator beginalign*
            Uleft(t-t_0right)=e^-ileft(t-t_0right) H
            endalign*

            If $psileft(xi_1, dots, xi_N ; t_0right)$ is the wave function at time $t_0$ and $U(t−t0)$ is the time evolution operator that for all permutations $P$ satisfies
            $left[Uleft(t-t_0right), Pright]=0$
            then also
            $$left(P Uleft(t-t_0right) psiright)left(xi_1, ldots, xi_N ; t_0right)=left(Uleft(t-t_0right) P psiright)left(xi_1, ldots, xi_N ; t_0right)$$
            This means that the permuted time evolved wave function is the same as the time evolved permuted wave function.



            Another example would be if you consider identical particles. An arbitrary observable $A$ should be the same under the permutation operator $P$ if one has identical particles. This is to say:
            beginalign*
            [A, P]=0
            endalign*

            for all $Pin S_N$ (in permutation group of $N$ particles).






            share|cite|improve this answer









            $endgroup$

















              0












              $begingroup$

              What you have written there is nothing but the commutator. Consider for example the time evolution operator beginalign*
              Uleft(t-t_0right)=e^-ileft(t-t_0right) H
              endalign*

              If $psileft(xi_1, dots, xi_N ; t_0right)$ is the wave function at time $t_0$ and $U(t−t0)$ is the time evolution operator that for all permutations $P$ satisfies
              $left[Uleft(t-t_0right), Pright]=0$
              then also
              $$left(P Uleft(t-t_0right) psiright)left(xi_1, ldots, xi_N ; t_0right)=left(Uleft(t-t_0right) P psiright)left(xi_1, ldots, xi_N ; t_0right)$$
              This means that the permuted time evolved wave function is the same as the time evolved permuted wave function.



              Another example would be if you consider identical particles. An arbitrary observable $A$ should be the same under the permutation operator $P$ if one has identical particles. This is to say:
              beginalign*
              [A, P]=0
              endalign*

              for all $Pin S_N$ (in permutation group of $N$ particles).






              share|cite|improve this answer









              $endgroup$















                0












                0








                0





                $begingroup$

                What you have written there is nothing but the commutator. Consider for example the time evolution operator beginalign*
                Uleft(t-t_0right)=e^-ileft(t-t_0right) H
                endalign*

                If $psileft(xi_1, dots, xi_N ; t_0right)$ is the wave function at time $t_0$ and $U(t−t0)$ is the time evolution operator that for all permutations $P$ satisfies
                $left[Uleft(t-t_0right), Pright]=0$
                then also
                $$left(P Uleft(t-t_0right) psiright)left(xi_1, ldots, xi_N ; t_0right)=left(Uleft(t-t_0right) P psiright)left(xi_1, ldots, xi_N ; t_0right)$$
                This means that the permuted time evolved wave function is the same as the time evolved permuted wave function.



                Another example would be if you consider identical particles. An arbitrary observable $A$ should be the same under the permutation operator $P$ if one has identical particles. This is to say:
                beginalign*
                [A, P]=0
                endalign*

                for all $Pin S_N$ (in permutation group of $N$ particles).






                share|cite|improve this answer









                $endgroup$



                What you have written there is nothing but the commutator. Consider for example the time evolution operator beginalign*
                Uleft(t-t_0right)=e^-ileft(t-t_0right) H
                endalign*

                If $psileft(xi_1, dots, xi_N ; t_0right)$ is the wave function at time $t_0$ and $U(t−t0)$ is the time evolution operator that for all permutations $P$ satisfies
                $left[Uleft(t-t_0right), Pright]=0$
                then also
                $$left(P Uleft(t-t_0right) psiright)left(xi_1, ldots, xi_N ; t_0right)=left(Uleft(t-t_0right) P psiright)left(xi_1, ldots, xi_N ; t_0right)$$
                This means that the permuted time evolved wave function is the same as the time evolved permuted wave function.



                Another example would be if you consider identical particles. An arbitrary observable $A$ should be the same under the permutation operator $P$ if one has identical particles. This is to say:
                beginalign*
                [A, P]=0
                endalign*

                for all $Pin S_N$ (in permutation group of $N$ particles).







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered yesterday









                LeviathanLeviathan

                747




                747



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Physics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f471292%2fsymmetry-in-quantum-mechanics%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Get product attribute by attribute group code in magento 2get product attribute by product attribute group in magento 2Magento 2 Log Bundle Product Data in List Page?How to get all product attribute of a attribute group of Default attribute set?Magento 2.1 Create a filter in the product grid by new attributeMagento 2 : Get Product Attribute values By GroupMagento 2 How to get all existing values for one attributeMagento 2 get custom attribute of a single product inside a pluginMagento 2.3 How to get all the Multi Source Inventory (MSI) locations collection in custom module?Magento2: how to develop rest API to get new productsGet product attribute by attribute group code ( [attribute_group_code] ) in magento 2

                    Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

                    Magento 2.3: How do i solve this, Not registered handle, on custom form?How can i rewrite TierPrice Block in Magento2magento 2 captcha not rendering if I override layout xmlmain.CRITICAL: Plugin class doesn't existMagento 2 : Problem while adding custom button order view page?Magento 2.2.5: Overriding Admin Controller sales/orderMagento 2.2.5: Add, Update and Delete existing products Custom OptionsMagento 2.3 : File Upload issue in UI Component FormMagento2 Not registered handleHow to configured Form Builder Js in my custom magento 2.3.0 module?Magento 2.3. How to create image upload field in an admin form