Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation
How to attach cable mounting points to a bicycle frame?
Is Jon Snow the last of his House?
A steel cutting sword?
I know that there is a preselected candidate for a position to be filled at my department. What should I do?
Is the field of q-series 'dead'?
How to cut a climbing rope?
Do photons bend spacetime or not?
Where have Brexit voters gone?
Is it legal to have an abortion in another state or abroad?
Did this character show any indication of wanting to rule before S8E6?
How to respond to upset student?
Compaq Portable vs IBM 5155 Portable PC
Is the Indo-European language family made up?
Can I summon an otherworldly creature with the Gate spell without knowing its true name?
USPS Back Room - Trespassing?
Can my floppy disk still work without a shutter spring?
Alternatives to achieve certain output format
Are black holes spherical during merger?
Can the product of any two aperiodic functions which are defined on the entire number line be periodic?
Do I need full recovery mode when I have multiple daily backup?
How to patch glass cuts in a bicycle tire?
Efficient Algorithm for the boundary of a set of tiles
Using credit/debit card details vs swiping a card in a payment (credit card) terminal
Find the three digit Prime number P from the given unusual relationships
Circuit construction for execution of conditional statements using least significant bit
How are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
Suppose I have integers and encode them as binary strings for example: $$|0rangle=|00rangle,|1rangle= |01rangle,|2rangle=|10rangle,|3rangle=|11rangle.$$
Now an $n$ bit integer, say $x$, is encoded as a state $|x_0x_1....x_n-1rangle$ with $x_0$ being the most significant bit. To check the remainder by $4$ we only care about the two least significant bit i.e. $x_n-2x_n-1$. If the remainder is $0$ or $2$ then the least significant bit is $0$, and hence for a controlled operation that executes whether the remainder is $2$ or $0$ can be triggered only by the least significant bit being $0$. But my question is if I want to execute a controlled operation conditioned on the remainder being $3$ or $1$ what should be done? Since $|3rangle=|11rangle$ and $|0rangle=|00rangle $, should this be the circuit for the control?
algorithm circuit-construction
$endgroup$
add a comment |
$begingroup$
Suppose I have integers and encode them as binary strings for example: $$|0rangle=|00rangle,|1rangle= |01rangle,|2rangle=|10rangle,|3rangle=|11rangle.$$
Now an $n$ bit integer, say $x$, is encoded as a state $|x_0x_1....x_n-1rangle$ with $x_0$ being the most significant bit. To check the remainder by $4$ we only care about the two least significant bit i.e. $x_n-2x_n-1$. If the remainder is $0$ or $2$ then the least significant bit is $0$, and hence for a controlled operation that executes whether the remainder is $2$ or $0$ can be triggered only by the least significant bit being $0$. But my question is if I want to execute a controlled operation conditioned on the remainder being $3$ or $1$ what should be done? Since $|3rangle=|11rangle$ and $|0rangle=|00rangle $, should this be the circuit for the control?
algorithm circuit-construction
$endgroup$
add a comment |
$begingroup$
Suppose I have integers and encode them as binary strings for example: $$|0rangle=|00rangle,|1rangle= |01rangle,|2rangle=|10rangle,|3rangle=|11rangle.$$
Now an $n$ bit integer, say $x$, is encoded as a state $|x_0x_1....x_n-1rangle$ with $x_0$ being the most significant bit. To check the remainder by $4$ we only care about the two least significant bit i.e. $x_n-2x_n-1$. If the remainder is $0$ or $2$ then the least significant bit is $0$, and hence for a controlled operation that executes whether the remainder is $2$ or $0$ can be triggered only by the least significant bit being $0$. But my question is if I want to execute a controlled operation conditioned on the remainder being $3$ or $1$ what should be done? Since $|3rangle=|11rangle$ and $|0rangle=|00rangle $, should this be the circuit for the control?
algorithm circuit-construction
$endgroup$
Suppose I have integers and encode them as binary strings for example: $$|0rangle=|00rangle,|1rangle= |01rangle,|2rangle=|10rangle,|3rangle=|11rangle.$$
Now an $n$ bit integer, say $x$, is encoded as a state $|x_0x_1....x_n-1rangle$ with $x_0$ being the most significant bit. To check the remainder by $4$ we only care about the two least significant bit i.e. $x_n-2x_n-1$. If the remainder is $0$ or $2$ then the least significant bit is $0$, and hence for a controlled operation that executes whether the remainder is $2$ or $0$ can be triggered only by the least significant bit being $0$. But my question is if I want to execute a controlled operation conditioned on the remainder being $3$ or $1$ what should be done? Since $|3rangle=|11rangle$ and $|0rangle=|00rangle $, should this be the circuit for the control?
algorithm circuit-construction
algorithm circuit-construction
edited May 18 at 23:29
Sanchayan Dutta♦
7,26741659
7,26741659
asked May 18 at 18:22
UpstartUpstart
27819
27819
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I would use a circuit that looks like:
Where $|0rangle$ is an ancillary output bit. Assume the initial state of the system is in the standard basis.
Here, the first $land_2(X)$ (CCNOT) applies the $X$ gate to the target qubit for all states that have their two least significant bits set to 1. Note that if none of the states have $|x_n-1rangle=|1rangle$ and $|x_n-2rangle=|1rangle$ then the $X$ gate is never applied to the ancilla.
We then negate both of the control bits, so that if they were previously 1 they are then set to 0, and vice versa. This results in the next $land_2(X)$ gate only being applied if originally, $|x_n-1rangle=|0rangle$ and $|x_n-2rangle=|0rangle$. The final two $X$ gates uncompute the original negation, so that the original states of the two least significant bits are preserved.
Therefore, the only states that will have the ancillary bit set to $|1rangle$, are those for which the two least significant bits were either $|00rangle$ or $|11rangle$. Satisfying the requirements of your question.
Please let me know if I can clarify further.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "694"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f6188%2fcircuit-construction-for-execution-of-conditional-statements-using-least-signifi%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I would use a circuit that looks like:
Where $|0rangle$ is an ancillary output bit. Assume the initial state of the system is in the standard basis.
Here, the first $land_2(X)$ (CCNOT) applies the $X$ gate to the target qubit for all states that have their two least significant bits set to 1. Note that if none of the states have $|x_n-1rangle=|1rangle$ and $|x_n-2rangle=|1rangle$ then the $X$ gate is never applied to the ancilla.
We then negate both of the control bits, so that if they were previously 1 they are then set to 0, and vice versa. This results in the next $land_2(X)$ gate only being applied if originally, $|x_n-1rangle=|0rangle$ and $|x_n-2rangle=|0rangle$. The final two $X$ gates uncompute the original negation, so that the original states of the two least significant bits are preserved.
Therefore, the only states that will have the ancillary bit set to $|1rangle$, are those for which the two least significant bits were either $|00rangle$ or $|11rangle$. Satisfying the requirements of your question.
Please let me know if I can clarify further.
$endgroup$
add a comment |
$begingroup$
I would use a circuit that looks like:
Where $|0rangle$ is an ancillary output bit. Assume the initial state of the system is in the standard basis.
Here, the first $land_2(X)$ (CCNOT) applies the $X$ gate to the target qubit for all states that have their two least significant bits set to 1. Note that if none of the states have $|x_n-1rangle=|1rangle$ and $|x_n-2rangle=|1rangle$ then the $X$ gate is never applied to the ancilla.
We then negate both of the control bits, so that if they were previously 1 they are then set to 0, and vice versa. This results in the next $land_2(X)$ gate only being applied if originally, $|x_n-1rangle=|0rangle$ and $|x_n-2rangle=|0rangle$. The final two $X$ gates uncompute the original negation, so that the original states of the two least significant bits are preserved.
Therefore, the only states that will have the ancillary bit set to $|1rangle$, are those for which the two least significant bits were either $|00rangle$ or $|11rangle$. Satisfying the requirements of your question.
Please let me know if I can clarify further.
$endgroup$
add a comment |
$begingroup$
I would use a circuit that looks like:
Where $|0rangle$ is an ancillary output bit. Assume the initial state of the system is in the standard basis.
Here, the first $land_2(X)$ (CCNOT) applies the $X$ gate to the target qubit for all states that have their two least significant bits set to 1. Note that if none of the states have $|x_n-1rangle=|1rangle$ and $|x_n-2rangle=|1rangle$ then the $X$ gate is never applied to the ancilla.
We then negate both of the control bits, so that if they were previously 1 they are then set to 0, and vice versa. This results in the next $land_2(X)$ gate only being applied if originally, $|x_n-1rangle=|0rangle$ and $|x_n-2rangle=|0rangle$. The final two $X$ gates uncompute the original negation, so that the original states of the two least significant bits are preserved.
Therefore, the only states that will have the ancillary bit set to $|1rangle$, are those for which the two least significant bits were either $|00rangle$ or $|11rangle$. Satisfying the requirements of your question.
Please let me know if I can clarify further.
$endgroup$
I would use a circuit that looks like:
Where $|0rangle$ is an ancillary output bit. Assume the initial state of the system is in the standard basis.
Here, the first $land_2(X)$ (CCNOT) applies the $X$ gate to the target qubit for all states that have their two least significant bits set to 1. Note that if none of the states have $|x_n-1rangle=|1rangle$ and $|x_n-2rangle=|1rangle$ then the $X$ gate is never applied to the ancilla.
We then negate both of the control bits, so that if they were previously 1 they are then set to 0, and vice versa. This results in the next $land_2(X)$ gate only being applied if originally, $|x_n-1rangle=|0rangle$ and $|x_n-2rangle=|0rangle$. The final two $X$ gates uncompute the original negation, so that the original states of the two least significant bits are preserved.
Therefore, the only states that will have the ancillary bit set to $|1rangle$, are those for which the two least significant bits were either $|00rangle$ or $|11rangle$. Satisfying the requirements of your question.
Please let me know if I can clarify further.
edited May 18 at 23:21
answered May 18 at 23:11
Arthur-1Arthur-1
965
965
add a comment |
add a comment |
Thanks for contributing an answer to Quantum Computing Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fquantumcomputing.stackexchange.com%2fquestions%2f6188%2fcircuit-construction-for-execution-of-conditional-statements-using-least-signifi%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown