Prove that for $ninmathbbN$, $sum_k=1^inftyleft[fracn5^kright]=15iffleft[fracn5right]=13.$Let $p=q+4a$. Prove that $left( fracap right) = left( fracaq right)$.Is it true that $leftlfloorsum_s=1^noperatornameLi_sleft(frac 1k right)rightrfloorstackrel?=leftlfloorfrac nk rightrfloor$A little help with $ x_n = frac1n^2 sum_k=1^n left[ k alpha right] $Show that $x^2+x+23equiv 0mod 173$ has a solution $iff left(frac28173right) = 1$Prove $sum_k=1^inftyleft lfloorfracnp^krightrfloor leq 2sum_k=1^inftyleft lfloorfracn-1p^krightrfloor$Proving that $ sum_i=1^b-1 leftlfloor fracabi rightrfloor = sum_j=1^a-1 leftlfloor fracbaj rightrfloor $What is the inverse of $left[ sum_k=1^j leftlfloor fracik rightrfloor right]_n times n$?How to prove that $sum_k=1^am-1leftlfloorfrac karightrfloor=asum_k=1^m-1k$?Reference request for $sum_i=1^inftyleftlfloorfracnp^irightrfloor$

Thought experiment and possible contradiction between electromagnetism and special relativity

Who was the most successful German spy against Great Britain in WWII, from the contemporary German perspective?

Why is getting a PhD may be considered as "financially irresponsible" by some people?

How to prevent a hosting company from accessing a VM's encryption keys?

Reusing studs to hang shoe bins

Talk interpreter

Did Dr. Hannibal Lecter like Clarice or was he attracted to her?

Notice period 60 days but I need to join in 45 days

Shift lens vs move body?

Breaker Mapping Questions

Router on a stick not connecting 2 different VLANs

What stops you from using fixed income in developing countries?

To what extent should we fear giving offense?

How can I download a file from a host I can only SSH to through another host?

Why does Windows store Wi-Fi passwords in a reversible format?

Count the number of paths to n

Why is the winner of Pow different everytime?

Is it legal for source code containing undefined behavior to crash the compiler?

How does the OS tell whether an "Address is already in use"?

Does a Mace of Disruption's Frightened effect override undead immunity to the Frightened condition?

How to say "I only speak one which is English." in French?

74S vs 74LS ICs

What is the loud noise of a helicopter when the rotors are not yet moving?

How can I draw lines between cells from two different tabulars to indicate correlation?



Prove that for $ninmathbbN$, $sum_k=1^inftyleft[fracn5^kright]=15iffleft[fracn5right]=13.$


Let $p=q+4a$. Prove that $left( fracap right) = left( fracaq right)$.Is it true that $leftlfloorsum_s=1^noperatornameLi_sleft(frac 1k right)rightrfloorstackrel?=leftlfloorfrac nk rightrfloor$A little help with $ x_n = frac1n^2 sum_k=1^n left[ k alpha right] $Show that $x^2+x+23equiv 0mod 173$ has a solution $iff left(frac28173right) = 1$Prove $sum_k=1^inftyleft lfloorfracnp^krightrfloor leq 2sum_k=1^inftyleft lfloorfracn-1p^krightrfloor$Proving that $ sum_i=1^b-1 leftlfloor fracabi rightrfloor = sum_j=1^a-1 leftlfloor fracbaj rightrfloor $What is the inverse of $left[ sum_k=1^j leftlfloor fracik rightrfloor right]_n times n$?How to prove that $sum_k=1^am-1leftlfloorfrac karightrfloor=asum_k=1^m-1k$?Reference request for $sum_i=1^inftyleftlfloorfracnp^irightrfloor$






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








3












$begingroup$


How to show that the following relation? : for $ninmathbbN$, $$sum_k=1^inftyleft[fracn5^kright]=15iffleft[fracn5right]=13.$$ It's not obvious to me. Can anyone help me? Thank you!










share|cite|improve this question











$endgroup$









  • 1




    $begingroup$
    15=sigma([n/5^k])<sigma(n/5^k).(strict inequality here) Sum the infinite GP to get n>60 or n/5>12. Now you are left with cases [n/5]=12,13,14. Can you handle this?
    $endgroup$
    – thewitness
    Aug 14 at 5:01

















3












$begingroup$


How to show that the following relation? : for $ninmathbbN$, $$sum_k=1^inftyleft[fracn5^kright]=15iffleft[fracn5right]=13.$$ It's not obvious to me. Can anyone help me? Thank you!










share|cite|improve this question











$endgroup$









  • 1




    $begingroup$
    15=sigma([n/5^k])<sigma(n/5^k).(strict inequality here) Sum the infinite GP to get n>60 or n/5>12. Now you are left with cases [n/5]=12,13,14. Can you handle this?
    $endgroup$
    – thewitness
    Aug 14 at 5:01













3












3








3





$begingroup$


How to show that the following relation? : for $ninmathbbN$, $$sum_k=1^inftyleft[fracn5^kright]=15iffleft[fracn5right]=13.$$ It's not obvious to me. Can anyone help me? Thank you!










share|cite|improve this question











$endgroup$




How to show that the following relation? : for $ninmathbbN$, $$sum_k=1^inftyleft[fracn5^kright]=15iffleft[fracn5right]=13.$$ It's not obvious to me. Can anyone help me? Thank you!







elementary-number-theory floor-function






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Aug 14 at 13:45









Asaf Karagila

316k35 gold badges454 silver badges791 bronze badges




316k35 gold badges454 silver badges791 bronze badges










asked Aug 14 at 4:53









PrimaveraPrimavera

4722 silver badges9 bronze badges




4722 silver badges9 bronze badges










  • 1




    $begingroup$
    15=sigma([n/5^k])<sigma(n/5^k).(strict inequality here) Sum the infinite GP to get n>60 or n/5>12. Now you are left with cases [n/5]=12,13,14. Can you handle this?
    $endgroup$
    – thewitness
    Aug 14 at 5:01












  • 1




    $begingroup$
    15=sigma([n/5^k])<sigma(n/5^k).(strict inequality here) Sum the infinite GP to get n>60 or n/5>12. Now you are left with cases [n/5]=12,13,14. Can you handle this?
    $endgroup$
    – thewitness
    Aug 14 at 5:01







1




1




$begingroup$
15=sigma([n/5^k])<sigma(n/5^k).(strict inequality here) Sum the infinite GP to get n>60 or n/5>12. Now you are left with cases [n/5]=12,13,14. Can you handle this?
$endgroup$
– thewitness
Aug 14 at 5:01




$begingroup$
15=sigma([n/5^k])<sigma(n/5^k).(strict inequality here) Sum the infinite GP to get n>60 or n/5>12. Now you are left with cases [n/5]=12,13,14. Can you handle this?
$endgroup$
– thewitness
Aug 14 at 5:01










3 Answers
3






active

oldest

votes


















3













$begingroup$

Observe that $sum_k=1^inftyleftlfloorfracn5^krightrfloor=nu_5(n!)$, where $nu_5(n!)$ is the exponent of the largest power of $5$ that divides $n!$ (if you are not familiar with this, then see Legendre's formula).



Since this sum is $15$, thus the highest power of $5$ that divides $n!$ is $15$.



Consider $n!=(1cdot 2 cdot 3 cdot 4 cdot colorred5)(6cdot 7 cdot 8 cdot 9 cdot colorred10)dotsb ((n-4) cdot (n-3) cdot (n-2) cdot (n-1) cdot colorredn).$



Each group of $((a+1)cdot (a+2) cdot (a+3) cdot (a+4) cdot (a+5))$ contributes a single power of $5$, until we reach $25$, where we get a contribution of $2$ towards the exponent of $5$. Likewise until we reach $50$ each such group of five numbers contribute only a single power of $5$ and so on. Thus the number $n$ must be such that
$$n!=underbrace(1cdot 2 cdot 3 cdot 4 cdot colorred5)_5^1underbrace(6cdot 7 cdot 8 cdot 9 cdot colorred10)_5^1dotsb underbrace(21cdot 22 cdot 23 cdot 24 cdot colorred25)_colorgreenboxed5^2dotsb underbrace(61cdot 62 cdot 63 cdot 64 cdot colorred65)_5^1 dotsb ()$$
When $n=65$, that is the first time we will have $nu_5(n!)=15$. Thus $65 leq n < 70$ which implies $leftlfloorfracn5rightrfloor=13.$






share|cite|improve this answer











$endgroup$










  • 1




    $begingroup$
    That some nice Latex'ing
    $endgroup$
    – Klangen
    Aug 14 at 13:33


















4













$begingroup$

There are three parts to the claim:



  1. If $fracn5<13$ then $sum_k=1^inftyleft[fracn5^kright]<15$

  2. If $13leqfracn5<14$ then $sum_k=1^inftyleft[fracn5^kright]=15$

  3. If $fracn5geq14$ then $sum_k=1^inftyleft[fracn5^kright]>15$

So choose whichever part strikes your fancy and tackle it in isolation. Repeat until all three are done.






share|cite|improve this answer









$endgroup$






















    2













    $begingroup$

    It's simple.



    Let us assume $left[fracn5right]=13$ to be true.



    Since $left[fracn5right]=13$,



    $Rightarrowfracn5in[13,14)$



    $Rightarrow nin[13*5,14*5)$



    $Rightarrow nin[65,70)$



    Let us consider,



    $$sum_k=1^inftyleft[fracn5^kright]=left[fracn5right]+left[fracn5^2right]+left[fracn5^3right]+left[fracn5^4right]+ …...$$



    We know that $left[fracn5right]=13$.



    Previously we had found $nin[65,70)$, so $fracn5^2inleft[frac6525,frac7025right)$, or $fracn5^2inleft[2.6,2.8right)$



    So, $left[fracn5^2right]=2$



    For other terms till infinity, the fraction inside the floor function goes below one and thus the value of floor will be zero. So we finally get the following result,



    $$sum_k=1^inftyleft[fracn5^kright]=13+2=15$$



    Hence proved!






    share|cite|improve this answer











    $endgroup$

















      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "69"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3322763%2fprove-that-for-n-in-mathbbn-sum-k-1-infty-left-fracn5k-right%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      3













      $begingroup$

      Observe that $sum_k=1^inftyleftlfloorfracn5^krightrfloor=nu_5(n!)$, where $nu_5(n!)$ is the exponent of the largest power of $5$ that divides $n!$ (if you are not familiar with this, then see Legendre's formula).



      Since this sum is $15$, thus the highest power of $5$ that divides $n!$ is $15$.



      Consider $n!=(1cdot 2 cdot 3 cdot 4 cdot colorred5)(6cdot 7 cdot 8 cdot 9 cdot colorred10)dotsb ((n-4) cdot (n-3) cdot (n-2) cdot (n-1) cdot colorredn).$



      Each group of $((a+1)cdot (a+2) cdot (a+3) cdot (a+4) cdot (a+5))$ contributes a single power of $5$, until we reach $25$, where we get a contribution of $2$ towards the exponent of $5$. Likewise until we reach $50$ each such group of five numbers contribute only a single power of $5$ and so on. Thus the number $n$ must be such that
      $$n!=underbrace(1cdot 2 cdot 3 cdot 4 cdot colorred5)_5^1underbrace(6cdot 7 cdot 8 cdot 9 cdot colorred10)_5^1dotsb underbrace(21cdot 22 cdot 23 cdot 24 cdot colorred25)_colorgreenboxed5^2dotsb underbrace(61cdot 62 cdot 63 cdot 64 cdot colorred65)_5^1 dotsb ()$$
      When $n=65$, that is the first time we will have $nu_5(n!)=15$. Thus $65 leq n < 70$ which implies $leftlfloorfracn5rightrfloor=13.$






      share|cite|improve this answer











      $endgroup$










      • 1




        $begingroup$
        That some nice Latex'ing
        $endgroup$
        – Klangen
        Aug 14 at 13:33















      3













      $begingroup$

      Observe that $sum_k=1^inftyleftlfloorfracn5^krightrfloor=nu_5(n!)$, where $nu_5(n!)$ is the exponent of the largest power of $5$ that divides $n!$ (if you are not familiar with this, then see Legendre's formula).



      Since this sum is $15$, thus the highest power of $5$ that divides $n!$ is $15$.



      Consider $n!=(1cdot 2 cdot 3 cdot 4 cdot colorred5)(6cdot 7 cdot 8 cdot 9 cdot colorred10)dotsb ((n-4) cdot (n-3) cdot (n-2) cdot (n-1) cdot colorredn).$



      Each group of $((a+1)cdot (a+2) cdot (a+3) cdot (a+4) cdot (a+5))$ contributes a single power of $5$, until we reach $25$, where we get a contribution of $2$ towards the exponent of $5$. Likewise until we reach $50$ each such group of five numbers contribute only a single power of $5$ and so on. Thus the number $n$ must be such that
      $$n!=underbrace(1cdot 2 cdot 3 cdot 4 cdot colorred5)_5^1underbrace(6cdot 7 cdot 8 cdot 9 cdot colorred10)_5^1dotsb underbrace(21cdot 22 cdot 23 cdot 24 cdot colorred25)_colorgreenboxed5^2dotsb underbrace(61cdot 62 cdot 63 cdot 64 cdot colorred65)_5^1 dotsb ()$$
      When $n=65$, that is the first time we will have $nu_5(n!)=15$. Thus $65 leq n < 70$ which implies $leftlfloorfracn5rightrfloor=13.$






      share|cite|improve this answer











      $endgroup$










      • 1




        $begingroup$
        That some nice Latex'ing
        $endgroup$
        – Klangen
        Aug 14 at 13:33













      3














      3










      3







      $begingroup$

      Observe that $sum_k=1^inftyleftlfloorfracn5^krightrfloor=nu_5(n!)$, where $nu_5(n!)$ is the exponent of the largest power of $5$ that divides $n!$ (if you are not familiar with this, then see Legendre's formula).



      Since this sum is $15$, thus the highest power of $5$ that divides $n!$ is $15$.



      Consider $n!=(1cdot 2 cdot 3 cdot 4 cdot colorred5)(6cdot 7 cdot 8 cdot 9 cdot colorred10)dotsb ((n-4) cdot (n-3) cdot (n-2) cdot (n-1) cdot colorredn).$



      Each group of $((a+1)cdot (a+2) cdot (a+3) cdot (a+4) cdot (a+5))$ contributes a single power of $5$, until we reach $25$, where we get a contribution of $2$ towards the exponent of $5$. Likewise until we reach $50$ each such group of five numbers contribute only a single power of $5$ and so on. Thus the number $n$ must be such that
      $$n!=underbrace(1cdot 2 cdot 3 cdot 4 cdot colorred5)_5^1underbrace(6cdot 7 cdot 8 cdot 9 cdot colorred10)_5^1dotsb underbrace(21cdot 22 cdot 23 cdot 24 cdot colorred25)_colorgreenboxed5^2dotsb underbrace(61cdot 62 cdot 63 cdot 64 cdot colorred65)_5^1 dotsb ()$$
      When $n=65$, that is the first time we will have $nu_5(n!)=15$. Thus $65 leq n < 70$ which implies $leftlfloorfracn5rightrfloor=13.$






      share|cite|improve this answer











      $endgroup$



      Observe that $sum_k=1^inftyleftlfloorfracn5^krightrfloor=nu_5(n!)$, where $nu_5(n!)$ is the exponent of the largest power of $5$ that divides $n!$ (if you are not familiar with this, then see Legendre's formula).



      Since this sum is $15$, thus the highest power of $5$ that divides $n!$ is $15$.



      Consider $n!=(1cdot 2 cdot 3 cdot 4 cdot colorred5)(6cdot 7 cdot 8 cdot 9 cdot colorred10)dotsb ((n-4) cdot (n-3) cdot (n-2) cdot (n-1) cdot colorredn).$



      Each group of $((a+1)cdot (a+2) cdot (a+3) cdot (a+4) cdot (a+5))$ contributes a single power of $5$, until we reach $25$, where we get a contribution of $2$ towards the exponent of $5$. Likewise until we reach $50$ each such group of five numbers contribute only a single power of $5$ and so on. Thus the number $n$ must be such that
      $$n!=underbrace(1cdot 2 cdot 3 cdot 4 cdot colorred5)_5^1underbrace(6cdot 7 cdot 8 cdot 9 cdot colorred10)_5^1dotsb underbrace(21cdot 22 cdot 23 cdot 24 cdot colorred25)_colorgreenboxed5^2dotsb underbrace(61cdot 62 cdot 63 cdot 64 cdot colorred65)_5^1 dotsb ()$$
      When $n=65$, that is the first time we will have $nu_5(n!)=15$. Thus $65 leq n < 70$ which implies $leftlfloorfracn5rightrfloor=13.$







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Aug 14 at 8:56

























      answered Aug 14 at 5:17









      Anurag AAnurag A

      30.2k1 gold badge23 silver badges52 bronze badges




      30.2k1 gold badge23 silver badges52 bronze badges










      • 1




        $begingroup$
        That some nice Latex'ing
        $endgroup$
        – Klangen
        Aug 14 at 13:33












      • 1




        $begingroup$
        That some nice Latex'ing
        $endgroup$
        – Klangen
        Aug 14 at 13:33







      1




      1




      $begingroup$
      That some nice Latex'ing
      $endgroup$
      – Klangen
      Aug 14 at 13:33




      $begingroup$
      That some nice Latex'ing
      $endgroup$
      – Klangen
      Aug 14 at 13:33













      4













      $begingroup$

      There are three parts to the claim:



      1. If $fracn5<13$ then $sum_k=1^inftyleft[fracn5^kright]<15$

      2. If $13leqfracn5<14$ then $sum_k=1^inftyleft[fracn5^kright]=15$

      3. If $fracn5geq14$ then $sum_k=1^inftyleft[fracn5^kright]>15$

      So choose whichever part strikes your fancy and tackle it in isolation. Repeat until all three are done.






      share|cite|improve this answer









      $endgroup$



















        4













        $begingroup$

        There are three parts to the claim:



        1. If $fracn5<13$ then $sum_k=1^inftyleft[fracn5^kright]<15$

        2. If $13leqfracn5<14$ then $sum_k=1^inftyleft[fracn5^kright]=15$

        3. If $fracn5geq14$ then $sum_k=1^inftyleft[fracn5^kright]>15$

        So choose whichever part strikes your fancy and tackle it in isolation. Repeat until all three are done.






        share|cite|improve this answer









        $endgroup$

















          4














          4










          4







          $begingroup$

          There are three parts to the claim:



          1. If $fracn5<13$ then $sum_k=1^inftyleft[fracn5^kright]<15$

          2. If $13leqfracn5<14$ then $sum_k=1^inftyleft[fracn5^kright]=15$

          3. If $fracn5geq14$ then $sum_k=1^inftyleft[fracn5^kright]>15$

          So choose whichever part strikes your fancy and tackle it in isolation. Repeat until all three are done.






          share|cite|improve this answer









          $endgroup$



          There are three parts to the claim:



          1. If $fracn5<13$ then $sum_k=1^inftyleft[fracn5^kright]<15$

          2. If $13leqfracn5<14$ then $sum_k=1^inftyleft[fracn5^kright]=15$

          3. If $fracn5geq14$ then $sum_k=1^inftyleft[fracn5^kright]>15$

          So choose whichever part strikes your fancy and tackle it in isolation. Repeat until all three are done.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Aug 14 at 5:01









          Chris CulterChris Culter

          22.4k4 gold badges39 silver badges91 bronze badges




          22.4k4 gold badges39 silver badges91 bronze badges
























              2













              $begingroup$

              It's simple.



              Let us assume $left[fracn5right]=13$ to be true.



              Since $left[fracn5right]=13$,



              $Rightarrowfracn5in[13,14)$



              $Rightarrow nin[13*5,14*5)$



              $Rightarrow nin[65,70)$



              Let us consider,



              $$sum_k=1^inftyleft[fracn5^kright]=left[fracn5right]+left[fracn5^2right]+left[fracn5^3right]+left[fracn5^4right]+ …...$$



              We know that $left[fracn5right]=13$.



              Previously we had found $nin[65,70)$, so $fracn5^2inleft[frac6525,frac7025right)$, or $fracn5^2inleft[2.6,2.8right)$



              So, $left[fracn5^2right]=2$



              For other terms till infinity, the fraction inside the floor function goes below one and thus the value of floor will be zero. So we finally get the following result,



              $$sum_k=1^inftyleft[fracn5^kright]=13+2=15$$



              Hence proved!






              share|cite|improve this answer











              $endgroup$



















                2













                $begingroup$

                It's simple.



                Let us assume $left[fracn5right]=13$ to be true.



                Since $left[fracn5right]=13$,



                $Rightarrowfracn5in[13,14)$



                $Rightarrow nin[13*5,14*5)$



                $Rightarrow nin[65,70)$



                Let us consider,



                $$sum_k=1^inftyleft[fracn5^kright]=left[fracn5right]+left[fracn5^2right]+left[fracn5^3right]+left[fracn5^4right]+ …...$$



                We know that $left[fracn5right]=13$.



                Previously we had found $nin[65,70)$, so $fracn5^2inleft[frac6525,frac7025right)$, or $fracn5^2inleft[2.6,2.8right)$



                So, $left[fracn5^2right]=2$



                For other terms till infinity, the fraction inside the floor function goes below one and thus the value of floor will be zero. So we finally get the following result,



                $$sum_k=1^inftyleft[fracn5^kright]=13+2=15$$



                Hence proved!






                share|cite|improve this answer











                $endgroup$

















                  2














                  2










                  2







                  $begingroup$

                  It's simple.



                  Let us assume $left[fracn5right]=13$ to be true.



                  Since $left[fracn5right]=13$,



                  $Rightarrowfracn5in[13,14)$



                  $Rightarrow nin[13*5,14*5)$



                  $Rightarrow nin[65,70)$



                  Let us consider,



                  $$sum_k=1^inftyleft[fracn5^kright]=left[fracn5right]+left[fracn5^2right]+left[fracn5^3right]+left[fracn5^4right]+ …...$$



                  We know that $left[fracn5right]=13$.



                  Previously we had found $nin[65,70)$, so $fracn5^2inleft[frac6525,frac7025right)$, or $fracn5^2inleft[2.6,2.8right)$



                  So, $left[fracn5^2right]=2$



                  For other terms till infinity, the fraction inside the floor function goes below one and thus the value of floor will be zero. So we finally get the following result,



                  $$sum_k=1^inftyleft[fracn5^kright]=13+2=15$$



                  Hence proved!






                  share|cite|improve this answer











                  $endgroup$



                  It's simple.



                  Let us assume $left[fracn5right]=13$ to be true.



                  Since $left[fracn5right]=13$,



                  $Rightarrowfracn5in[13,14)$



                  $Rightarrow nin[13*5,14*5)$



                  $Rightarrow nin[65,70)$



                  Let us consider,



                  $$sum_k=1^inftyleft[fracn5^kright]=left[fracn5right]+left[fracn5^2right]+left[fracn5^3right]+left[fracn5^4right]+ …...$$



                  We know that $left[fracn5right]=13$.



                  Previously we had found $nin[65,70)$, so $fracn5^2inleft[frac6525,frac7025right)$, or $fracn5^2inleft[2.6,2.8right)$



                  So, $left[fracn5^2right]=2$



                  For other terms till infinity, the fraction inside the floor function goes below one and thus the value of floor will be zero. So we finally get the following result,



                  $$sum_k=1^inftyleft[fracn5^kright]=13+2=15$$



                  Hence proved!







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited Aug 14 at 6:05

























                  answered Aug 14 at 5:27









                  IntellexIntellex

                  39512 bronze badges




                  39512 bronze badges






























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3322763%2fprove-that-for-n-in-mathbbn-sum-k-1-infty-left-fracn5k-right%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

                      Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation

                      Magento 2 “No Payment Methods” in Admin New OrderHow to integrate Paypal Express Checkout with the Magento APIMagento 1.5 - Sales > Order > edit order and shipping methods disappearAuto Invoice Check/Money Order Payment methodAdd more simple payment methods?Shipping methods not showingWhat should I do to change payment methods if changing the configuration has no effects?1.9 - No Payment Methods showing upMy Payment Methods not Showing for downloadable/virtual product when checkout?Magento2 API to access internal payment methodHow to call an existing payment methods in the registration form?