Prove that for $ninmathbbN$, $sum_k=1^inftyleft[fracn5^kright]=15iffleft[fracn5right]=13.$Let $p=q+4a$. Prove that $left( fracap right) = left( fracaq right)$.Is it true that $leftlfloorsum_s=1^noperatornameLi_sleft(frac 1k right)rightrfloorstackrel?=leftlfloorfrac nk rightrfloor$A little help with $ x_n = frac1n^2 sum_k=1^n left[ k alpha right] $Show that $x^2+x+23equiv 0mod 173$ has a solution $iff left(frac28173right) = 1$Prove $sum_k=1^inftyleft lfloorfracnp^krightrfloor leq 2sum_k=1^inftyleft lfloorfracn-1p^krightrfloor$Proving that $ sum_i=1^b-1 leftlfloor fracabi rightrfloor = sum_j=1^a-1 leftlfloor fracbaj rightrfloor $What is the inverse of $left[ sum_k=1^j leftlfloor fracik rightrfloor right]_n times n$?How to prove that $sum_k=1^am-1leftlfloorfrac karightrfloor=asum_k=1^m-1k$?Reference request for $sum_i=1^inftyleftlfloorfracnp^irightrfloor$
Thought experiment and possible contradiction between electromagnetism and special relativity
Who was the most successful German spy against Great Britain in WWII, from the contemporary German perspective?
Why is getting a PhD may be considered as "financially irresponsible" by some people?
How to prevent a hosting company from accessing a VM's encryption keys?
Reusing studs to hang shoe bins
Talk interpreter
Did Dr. Hannibal Lecter like Clarice or was he attracted to her?
Notice period 60 days but I need to join in 45 days
Shift lens vs move body?
Breaker Mapping Questions
Router on a stick not connecting 2 different VLANs
What stops you from using fixed income in developing countries?
To what extent should we fear giving offense?
How can I download a file from a host I can only SSH to through another host?
Why does Windows store Wi-Fi passwords in a reversible format?
Count the number of paths to n
Why is the winner of Pow different everytime?
Is it legal for source code containing undefined behavior to crash the compiler?
How does the OS tell whether an "Address is already in use"?
Does a Mace of Disruption's Frightened effect override undead immunity to the Frightened condition?
How to say "I only speak one which is English." in French?
74S vs 74LS ICs
What is the loud noise of a helicopter when the rotors are not yet moving?
How can I draw lines between cells from two different tabulars to indicate correlation?
Prove that for $ninmathbbN$, $sum_k=1^inftyleft[fracn5^kright]=15iffleft[fracn5right]=13.$
Let $p=q+4a$. Prove that $left( fracap right) = left( fracaq right)$.Is it true that $leftlfloorsum_s=1^noperatornameLi_sleft(frac 1k right)rightrfloorstackrel?=leftlfloorfrac nk rightrfloor$A little help with $ x_n = frac1n^2 sum_k=1^n left[ k alpha right] $Show that $x^2+x+23equiv 0mod 173$ has a solution $iff left(frac28173right) = 1$Prove $sum_k=1^inftyleft lfloorfracnp^krightrfloor leq 2sum_k=1^inftyleft lfloorfracn-1p^krightrfloor$Proving that $ sum_i=1^b-1 leftlfloor fracabi rightrfloor = sum_j=1^a-1 leftlfloor fracbaj rightrfloor $What is the inverse of $left[ sum_k=1^j leftlfloor fracik rightrfloor right]_n times n$?How to prove that $sum_k=1^am-1leftlfloorfrac karightrfloor=asum_k=1^m-1k$?Reference request for $sum_i=1^inftyleftlfloorfracnp^irightrfloor$
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
How to show that the following relation? : for $ninmathbbN$, $$sum_k=1^inftyleft[fracn5^kright]=15iffleft[fracn5right]=13.$$ It's not obvious to me. Can anyone help me? Thank you!
elementary-number-theory floor-function
$endgroup$
add a comment |
$begingroup$
How to show that the following relation? : for $ninmathbbN$, $$sum_k=1^inftyleft[fracn5^kright]=15iffleft[fracn5right]=13.$$ It's not obvious to me. Can anyone help me? Thank you!
elementary-number-theory floor-function
$endgroup$
1
$begingroup$
15=sigma([n/5^k])<sigma(n/5^k).(strict inequality here) Sum the infinite GP to get n>60 or n/5>12. Now you are left with cases [n/5]=12,13,14. Can you handle this?
$endgroup$
– thewitness
Aug 14 at 5:01
add a comment |
$begingroup$
How to show that the following relation? : for $ninmathbbN$, $$sum_k=1^inftyleft[fracn5^kright]=15iffleft[fracn5right]=13.$$ It's not obvious to me. Can anyone help me? Thank you!
elementary-number-theory floor-function
$endgroup$
How to show that the following relation? : for $ninmathbbN$, $$sum_k=1^inftyleft[fracn5^kright]=15iffleft[fracn5right]=13.$$ It's not obvious to me. Can anyone help me? Thank you!
elementary-number-theory floor-function
elementary-number-theory floor-function
edited Aug 14 at 13:45
Asaf Karagila♦
316k35 gold badges454 silver badges791 bronze badges
316k35 gold badges454 silver badges791 bronze badges
asked Aug 14 at 4:53
PrimaveraPrimavera
4722 silver badges9 bronze badges
4722 silver badges9 bronze badges
1
$begingroup$
15=sigma([n/5^k])<sigma(n/5^k).(strict inequality here) Sum the infinite GP to get n>60 or n/5>12. Now you are left with cases [n/5]=12,13,14. Can you handle this?
$endgroup$
– thewitness
Aug 14 at 5:01
add a comment |
1
$begingroup$
15=sigma([n/5^k])<sigma(n/5^k).(strict inequality here) Sum the infinite GP to get n>60 or n/5>12. Now you are left with cases [n/5]=12,13,14. Can you handle this?
$endgroup$
– thewitness
Aug 14 at 5:01
1
1
$begingroup$
15=sigma([n/5^k])<sigma(n/5^k).(strict inequality here) Sum the infinite GP to get n>60 or n/5>12. Now you are left with cases [n/5]=12,13,14. Can you handle this?
$endgroup$
– thewitness
Aug 14 at 5:01
$begingroup$
15=sigma([n/5^k])<sigma(n/5^k).(strict inequality here) Sum the infinite GP to get n>60 or n/5>12. Now you are left with cases [n/5]=12,13,14. Can you handle this?
$endgroup$
– thewitness
Aug 14 at 5:01
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Observe that $sum_k=1^inftyleftlfloorfracn5^krightrfloor=nu_5(n!)$, where $nu_5(n!)$ is the exponent of the largest power of $5$ that divides $n!$ (if you are not familiar with this, then see Legendre's formula).
Since this sum is $15$, thus the highest power of $5$ that divides $n!$ is $15$.
Consider $n!=(1cdot 2 cdot 3 cdot 4 cdot colorred5)(6cdot 7 cdot 8 cdot 9 cdot colorred10)dotsb ((n-4) cdot (n-3) cdot (n-2) cdot (n-1) cdot colorredn).$
Each group of $((a+1)cdot (a+2) cdot (a+3) cdot (a+4) cdot (a+5))$ contributes a single power of $5$, until we reach $25$, where we get a contribution of $2$ towards the exponent of $5$. Likewise until we reach $50$ each such group of five numbers contribute only a single power of $5$ and so on. Thus the number $n$ must be such that
$$n!=underbrace(1cdot 2 cdot 3 cdot 4 cdot colorred5)_5^1underbrace(6cdot 7 cdot 8 cdot 9 cdot colorred10)_5^1dotsb underbrace(21cdot 22 cdot 23 cdot 24 cdot colorred25)_colorgreenboxed5^2dotsb underbrace(61cdot 62 cdot 63 cdot 64 cdot colorred65)_5^1 dotsb ()$$
When $n=65$, that is the first time we will have $nu_5(n!)=15$. Thus $65 leq n < 70$ which implies $leftlfloorfracn5rightrfloor=13.$
$endgroup$
1
$begingroup$
That some nice Latex'ing
$endgroup$
– Klangen
Aug 14 at 13:33
add a comment |
$begingroup$
There are three parts to the claim:
- If $fracn5<13$ then $sum_k=1^inftyleft[fracn5^kright]<15$
- If $13leqfracn5<14$ then $sum_k=1^inftyleft[fracn5^kright]=15$
- If $fracn5geq14$ then $sum_k=1^inftyleft[fracn5^kright]>15$
So choose whichever part strikes your fancy and tackle it in isolation. Repeat until all three are done.
$endgroup$
add a comment |
$begingroup$
It's simple.
Let us assume $left[fracn5right]=13$ to be true.
Since $left[fracn5right]=13$,
$Rightarrowfracn5in[13,14)$
$Rightarrow nin[13*5,14*5)$
$Rightarrow nin[65,70)$
Let us consider,
$$sum_k=1^inftyleft[fracn5^kright]=left[fracn5right]+left[fracn5^2right]+left[fracn5^3right]+left[fracn5^4right]+ …...$$
We know that $left[fracn5right]=13$.
Previously we had found $nin[65,70)$, so $fracn5^2inleft[frac6525,frac7025right)$, or $fracn5^2inleft[2.6,2.8right)$
So, $left[fracn5^2right]=2$
For other terms till infinity, the fraction inside the floor function goes below one and thus the value of floor will be zero. So we finally get the following result,
$$sum_k=1^inftyleft[fracn5^kright]=13+2=15$$
Hence proved!
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3322763%2fprove-that-for-n-in-mathbbn-sum-k-1-infty-left-fracn5k-right%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Observe that $sum_k=1^inftyleftlfloorfracn5^krightrfloor=nu_5(n!)$, where $nu_5(n!)$ is the exponent of the largest power of $5$ that divides $n!$ (if you are not familiar with this, then see Legendre's formula).
Since this sum is $15$, thus the highest power of $5$ that divides $n!$ is $15$.
Consider $n!=(1cdot 2 cdot 3 cdot 4 cdot colorred5)(6cdot 7 cdot 8 cdot 9 cdot colorred10)dotsb ((n-4) cdot (n-3) cdot (n-2) cdot (n-1) cdot colorredn).$
Each group of $((a+1)cdot (a+2) cdot (a+3) cdot (a+4) cdot (a+5))$ contributes a single power of $5$, until we reach $25$, where we get a contribution of $2$ towards the exponent of $5$. Likewise until we reach $50$ each such group of five numbers contribute only a single power of $5$ and so on. Thus the number $n$ must be such that
$$n!=underbrace(1cdot 2 cdot 3 cdot 4 cdot colorred5)_5^1underbrace(6cdot 7 cdot 8 cdot 9 cdot colorred10)_5^1dotsb underbrace(21cdot 22 cdot 23 cdot 24 cdot colorred25)_colorgreenboxed5^2dotsb underbrace(61cdot 62 cdot 63 cdot 64 cdot colorred65)_5^1 dotsb ()$$
When $n=65$, that is the first time we will have $nu_5(n!)=15$. Thus $65 leq n < 70$ which implies $leftlfloorfracn5rightrfloor=13.$
$endgroup$
1
$begingroup$
That some nice Latex'ing
$endgroup$
– Klangen
Aug 14 at 13:33
add a comment |
$begingroup$
Observe that $sum_k=1^inftyleftlfloorfracn5^krightrfloor=nu_5(n!)$, where $nu_5(n!)$ is the exponent of the largest power of $5$ that divides $n!$ (if you are not familiar with this, then see Legendre's formula).
Since this sum is $15$, thus the highest power of $5$ that divides $n!$ is $15$.
Consider $n!=(1cdot 2 cdot 3 cdot 4 cdot colorred5)(6cdot 7 cdot 8 cdot 9 cdot colorred10)dotsb ((n-4) cdot (n-3) cdot (n-2) cdot (n-1) cdot colorredn).$
Each group of $((a+1)cdot (a+2) cdot (a+3) cdot (a+4) cdot (a+5))$ contributes a single power of $5$, until we reach $25$, where we get a contribution of $2$ towards the exponent of $5$. Likewise until we reach $50$ each such group of five numbers contribute only a single power of $5$ and so on. Thus the number $n$ must be such that
$$n!=underbrace(1cdot 2 cdot 3 cdot 4 cdot colorred5)_5^1underbrace(6cdot 7 cdot 8 cdot 9 cdot colorred10)_5^1dotsb underbrace(21cdot 22 cdot 23 cdot 24 cdot colorred25)_colorgreenboxed5^2dotsb underbrace(61cdot 62 cdot 63 cdot 64 cdot colorred65)_5^1 dotsb ()$$
When $n=65$, that is the first time we will have $nu_5(n!)=15$. Thus $65 leq n < 70$ which implies $leftlfloorfracn5rightrfloor=13.$
$endgroup$
1
$begingroup$
That some nice Latex'ing
$endgroup$
– Klangen
Aug 14 at 13:33
add a comment |
$begingroup$
Observe that $sum_k=1^inftyleftlfloorfracn5^krightrfloor=nu_5(n!)$, where $nu_5(n!)$ is the exponent of the largest power of $5$ that divides $n!$ (if you are not familiar with this, then see Legendre's formula).
Since this sum is $15$, thus the highest power of $5$ that divides $n!$ is $15$.
Consider $n!=(1cdot 2 cdot 3 cdot 4 cdot colorred5)(6cdot 7 cdot 8 cdot 9 cdot colorred10)dotsb ((n-4) cdot (n-3) cdot (n-2) cdot (n-1) cdot colorredn).$
Each group of $((a+1)cdot (a+2) cdot (a+3) cdot (a+4) cdot (a+5))$ contributes a single power of $5$, until we reach $25$, where we get a contribution of $2$ towards the exponent of $5$. Likewise until we reach $50$ each such group of five numbers contribute only a single power of $5$ and so on. Thus the number $n$ must be such that
$$n!=underbrace(1cdot 2 cdot 3 cdot 4 cdot colorred5)_5^1underbrace(6cdot 7 cdot 8 cdot 9 cdot colorred10)_5^1dotsb underbrace(21cdot 22 cdot 23 cdot 24 cdot colorred25)_colorgreenboxed5^2dotsb underbrace(61cdot 62 cdot 63 cdot 64 cdot colorred65)_5^1 dotsb ()$$
When $n=65$, that is the first time we will have $nu_5(n!)=15$. Thus $65 leq n < 70$ which implies $leftlfloorfracn5rightrfloor=13.$
$endgroup$
Observe that $sum_k=1^inftyleftlfloorfracn5^krightrfloor=nu_5(n!)$, where $nu_5(n!)$ is the exponent of the largest power of $5$ that divides $n!$ (if you are not familiar with this, then see Legendre's formula).
Since this sum is $15$, thus the highest power of $5$ that divides $n!$ is $15$.
Consider $n!=(1cdot 2 cdot 3 cdot 4 cdot colorred5)(6cdot 7 cdot 8 cdot 9 cdot colorred10)dotsb ((n-4) cdot (n-3) cdot (n-2) cdot (n-1) cdot colorredn).$
Each group of $((a+1)cdot (a+2) cdot (a+3) cdot (a+4) cdot (a+5))$ contributes a single power of $5$, until we reach $25$, where we get a contribution of $2$ towards the exponent of $5$. Likewise until we reach $50$ each such group of five numbers contribute only a single power of $5$ and so on. Thus the number $n$ must be such that
$$n!=underbrace(1cdot 2 cdot 3 cdot 4 cdot colorred5)_5^1underbrace(6cdot 7 cdot 8 cdot 9 cdot colorred10)_5^1dotsb underbrace(21cdot 22 cdot 23 cdot 24 cdot colorred25)_colorgreenboxed5^2dotsb underbrace(61cdot 62 cdot 63 cdot 64 cdot colorred65)_5^1 dotsb ()$$
When $n=65$, that is the first time we will have $nu_5(n!)=15$. Thus $65 leq n < 70$ which implies $leftlfloorfracn5rightrfloor=13.$
edited Aug 14 at 8:56
answered Aug 14 at 5:17
Anurag AAnurag A
30.2k1 gold badge23 silver badges52 bronze badges
30.2k1 gold badge23 silver badges52 bronze badges
1
$begingroup$
That some nice Latex'ing
$endgroup$
– Klangen
Aug 14 at 13:33
add a comment |
1
$begingroup$
That some nice Latex'ing
$endgroup$
– Klangen
Aug 14 at 13:33
1
1
$begingroup$
That some nice Latex'ing
$endgroup$
– Klangen
Aug 14 at 13:33
$begingroup$
That some nice Latex'ing
$endgroup$
– Klangen
Aug 14 at 13:33
add a comment |
$begingroup$
There are three parts to the claim:
- If $fracn5<13$ then $sum_k=1^inftyleft[fracn5^kright]<15$
- If $13leqfracn5<14$ then $sum_k=1^inftyleft[fracn5^kright]=15$
- If $fracn5geq14$ then $sum_k=1^inftyleft[fracn5^kright]>15$
So choose whichever part strikes your fancy and tackle it in isolation. Repeat until all three are done.
$endgroup$
add a comment |
$begingroup$
There are three parts to the claim:
- If $fracn5<13$ then $sum_k=1^inftyleft[fracn5^kright]<15$
- If $13leqfracn5<14$ then $sum_k=1^inftyleft[fracn5^kright]=15$
- If $fracn5geq14$ then $sum_k=1^inftyleft[fracn5^kright]>15$
So choose whichever part strikes your fancy and tackle it in isolation. Repeat until all three are done.
$endgroup$
add a comment |
$begingroup$
There are three parts to the claim:
- If $fracn5<13$ then $sum_k=1^inftyleft[fracn5^kright]<15$
- If $13leqfracn5<14$ then $sum_k=1^inftyleft[fracn5^kright]=15$
- If $fracn5geq14$ then $sum_k=1^inftyleft[fracn5^kright]>15$
So choose whichever part strikes your fancy and tackle it in isolation. Repeat until all three are done.
$endgroup$
There are three parts to the claim:
- If $fracn5<13$ then $sum_k=1^inftyleft[fracn5^kright]<15$
- If $13leqfracn5<14$ then $sum_k=1^inftyleft[fracn5^kright]=15$
- If $fracn5geq14$ then $sum_k=1^inftyleft[fracn5^kright]>15$
So choose whichever part strikes your fancy and tackle it in isolation. Repeat until all three are done.
answered Aug 14 at 5:01
Chris CulterChris Culter
22.4k4 gold badges39 silver badges91 bronze badges
22.4k4 gold badges39 silver badges91 bronze badges
add a comment |
add a comment |
$begingroup$
It's simple.
Let us assume $left[fracn5right]=13$ to be true.
Since $left[fracn5right]=13$,
$Rightarrowfracn5in[13,14)$
$Rightarrow nin[13*5,14*5)$
$Rightarrow nin[65,70)$
Let us consider,
$$sum_k=1^inftyleft[fracn5^kright]=left[fracn5right]+left[fracn5^2right]+left[fracn5^3right]+left[fracn5^4right]+ …...$$
We know that $left[fracn5right]=13$.
Previously we had found $nin[65,70)$, so $fracn5^2inleft[frac6525,frac7025right)$, or $fracn5^2inleft[2.6,2.8right)$
So, $left[fracn5^2right]=2$
For other terms till infinity, the fraction inside the floor function goes below one and thus the value of floor will be zero. So we finally get the following result,
$$sum_k=1^inftyleft[fracn5^kright]=13+2=15$$
Hence proved!
$endgroup$
add a comment |
$begingroup$
It's simple.
Let us assume $left[fracn5right]=13$ to be true.
Since $left[fracn5right]=13$,
$Rightarrowfracn5in[13,14)$
$Rightarrow nin[13*5,14*5)$
$Rightarrow nin[65,70)$
Let us consider,
$$sum_k=1^inftyleft[fracn5^kright]=left[fracn5right]+left[fracn5^2right]+left[fracn5^3right]+left[fracn5^4right]+ …...$$
We know that $left[fracn5right]=13$.
Previously we had found $nin[65,70)$, so $fracn5^2inleft[frac6525,frac7025right)$, or $fracn5^2inleft[2.6,2.8right)$
So, $left[fracn5^2right]=2$
For other terms till infinity, the fraction inside the floor function goes below one and thus the value of floor will be zero. So we finally get the following result,
$$sum_k=1^inftyleft[fracn5^kright]=13+2=15$$
Hence proved!
$endgroup$
add a comment |
$begingroup$
It's simple.
Let us assume $left[fracn5right]=13$ to be true.
Since $left[fracn5right]=13$,
$Rightarrowfracn5in[13,14)$
$Rightarrow nin[13*5,14*5)$
$Rightarrow nin[65,70)$
Let us consider,
$$sum_k=1^inftyleft[fracn5^kright]=left[fracn5right]+left[fracn5^2right]+left[fracn5^3right]+left[fracn5^4right]+ …...$$
We know that $left[fracn5right]=13$.
Previously we had found $nin[65,70)$, so $fracn5^2inleft[frac6525,frac7025right)$, or $fracn5^2inleft[2.6,2.8right)$
So, $left[fracn5^2right]=2$
For other terms till infinity, the fraction inside the floor function goes below one and thus the value of floor will be zero. So we finally get the following result,
$$sum_k=1^inftyleft[fracn5^kright]=13+2=15$$
Hence proved!
$endgroup$
It's simple.
Let us assume $left[fracn5right]=13$ to be true.
Since $left[fracn5right]=13$,
$Rightarrowfracn5in[13,14)$
$Rightarrow nin[13*5,14*5)$
$Rightarrow nin[65,70)$
Let us consider,
$$sum_k=1^inftyleft[fracn5^kright]=left[fracn5right]+left[fracn5^2right]+left[fracn5^3right]+left[fracn5^4right]+ …...$$
We know that $left[fracn5right]=13$.
Previously we had found $nin[65,70)$, so $fracn5^2inleft[frac6525,frac7025right)$, or $fracn5^2inleft[2.6,2.8right)$
So, $left[fracn5^2right]=2$
For other terms till infinity, the fraction inside the floor function goes below one and thus the value of floor will be zero. So we finally get the following result,
$$sum_k=1^inftyleft[fracn5^kright]=13+2=15$$
Hence proved!
edited Aug 14 at 6:05
answered Aug 14 at 5:27
IntellexIntellex
39512 bronze badges
39512 bronze badges
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3322763%2fprove-that-for-n-in-mathbbn-sum-k-1-infty-left-fracn5k-right%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
15=sigma([n/5^k])<sigma(n/5^k).(strict inequality here) Sum the infinite GP to get n>60 or n/5>12. Now you are left with cases [n/5]=12,13,14. Can you handle this?
$endgroup$
– thewitness
Aug 14 at 5:01