Typsetting diagram chases (with TikZ?) Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to define the default vertical distance between nodes?To wrap the external lines so that it can touch the perimeterDraw edge on arcNumerical conditional within tikz keys?TikZ: Drawing an arc from an intersection to an intersectionDrawing rectilinear curves in Tikz, aka an Etch-a-Sketch drawingLine up nested tikz enviroments or how to get rid of themHow to place nodes in an absolute coordinate system in tikzCommutative diagram with curve connecting between nodesTikz with standalone: pinning tikz coordinates to page cm
Sci-Fi book where patients in a coma ward all live in a subconscious world linked together
Why did the rest of the Eastern Bloc not invade Yugoslavia?
How does the particle を relate to the verb 行く in the structure「A を + B に行く」?
How to call a function with default parameter through a pointer to function that is the return of another function?
Why did the IBM 650 use bi-quinary?
What is the meaning of the new sigil in Game of Thrones Season 8 intro?
Selecting the same column from Different rows Based on Different Criteria
What's the meaning of 間時肆拾貳 at a car parking sign
Book where humans were engineered with genes from animal species to survive hostile planets
porting install scripts : can rpm replace apt?
The logistics of corpse disposal
List of Python versions
What is Arya's weapon design?
What exactly is a "Meth" in Altered Carbon?
Do I really need recursive chmod to restrict access to a folder?
String `!23` is replaced with `docker` in command line
How to tell that you are a giant?
2001: A Space Odyssey's use of the song "Daisy Bell" (Bicycle Built for Two); life imitates art or vice-versa?
Using et al. for a last / senior author rather than for a first author
Why aren't air breathing engines used as small first stages
Coloring maths inside a tcolorbox
Why are Kinder Surprise Eggs illegal in the USA?
Is the Standard Deduction better than Itemized when both are the same amount?
How to find out what spells would be useless to a blind NPC spellcaster?
Typsetting diagram chases (with TikZ?)
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)How to define the default vertical distance between nodes?To wrap the external lines so that it can touch the perimeterDraw edge on arcNumerical conditional within tikz keys?TikZ: Drawing an arc from an intersection to an intersectionDrawing rectilinear curves in Tikz, aka an Etch-a-Sketch drawingLine up nested tikz enviroments or how to get rid of themHow to place nodes in an absolute coordinate system in tikzCommutative diagram with curve connecting between nodesTikz with standalone: pinning tikz coordinates to page cm
Background. I recently came across a Youtube video with a bunch of really nicely typeset 'diagram chases' that seem to have been made in TeX (perhaps TikZ?):
I'd like to create something similar for a presentation that I'm working on, but I feel a bit lost when it comes to figuring out a systematic/scalable way to this.
Own attempt. For small diagrams, it's possible to do this in a very ad hoc way, by just playing around with coordinates and the bend right
and bend left
attributes in TikZ. A quick example of what this might look like:
documentclassarticle
usepackagetikz
usetikzlibraryarrows.meta
begindocument
begintikzpicture[scale=1.5, bend left=15, bend right=15]
node (B) at (0,0) $B$;
node (B') at (0,-1) $B'$;
node (C) at (1,0) $C$;
node (C') at (1,-1) $C'$;
draw[->,gray] (B) -- (B');
draw[->,gray,shorten >= -1pt] (B') -- (C');
draw[->,gray,shorten >= -1pt] (B) -- (C);
draw[->,gray] (C) -- (C');
node (b) at (-0.3,0.2) footnotesize $b$;
node (bprime) at (-0.3,-1.2) footnotesize $b'$;
node (cbar) at (0.7,0.2) footnotesize $barc$;
node (cdiff) at (0.7,-1.3) footnotesize $c'-c''$;
path (b) edge [[scale=0.7]->[scale=0.7],bend left] node [left] (cbar);
path (b) edge [[scale=0.7]->[scale=0.7],bend right] node [left] (bprime);
path (bprime) edge [[scale=0.7]->[scale=0.7],bend right] node [left] (cdiff);
path (cbar) edge [[scale=0.7]->[scale=0.7],bend right, shorten >= -2pt, shorten <= -1pt] node [left] (cdiff);
endtikzpicture
enddocument
I think this gives a decent end result. But for larger diagrams, it would be an absolute nightmare to work with a code that is so messy and so heavily dependent on coordinates and tweaked parameters.
Thus, if anyone has suggestions (big or small) for a more clever way to do this (with or without TikZ) and/or a way to make my own approach a bit cleaner or more systematic somehow, that would be greatly appreciated!
tikz-pgf diagrams tikz-cd commutative-diagrams
add a comment |
Background. I recently came across a Youtube video with a bunch of really nicely typeset 'diagram chases' that seem to have been made in TeX (perhaps TikZ?):
I'd like to create something similar for a presentation that I'm working on, but I feel a bit lost when it comes to figuring out a systematic/scalable way to this.
Own attempt. For small diagrams, it's possible to do this in a very ad hoc way, by just playing around with coordinates and the bend right
and bend left
attributes in TikZ. A quick example of what this might look like:
documentclassarticle
usepackagetikz
usetikzlibraryarrows.meta
begindocument
begintikzpicture[scale=1.5, bend left=15, bend right=15]
node (B) at (0,0) $B$;
node (B') at (0,-1) $B'$;
node (C) at (1,0) $C$;
node (C') at (1,-1) $C'$;
draw[->,gray] (B) -- (B');
draw[->,gray,shorten >= -1pt] (B') -- (C');
draw[->,gray,shorten >= -1pt] (B) -- (C);
draw[->,gray] (C) -- (C');
node (b) at (-0.3,0.2) footnotesize $b$;
node (bprime) at (-0.3,-1.2) footnotesize $b'$;
node (cbar) at (0.7,0.2) footnotesize $barc$;
node (cdiff) at (0.7,-1.3) footnotesize $c'-c''$;
path (b) edge [[scale=0.7]->[scale=0.7],bend left] node [left] (cbar);
path (b) edge [[scale=0.7]->[scale=0.7],bend right] node [left] (bprime);
path (bprime) edge [[scale=0.7]->[scale=0.7],bend right] node [left] (cdiff);
path (cbar) edge [[scale=0.7]->[scale=0.7],bend right, shorten >= -2pt, shorten <= -1pt] node [left] (cdiff);
endtikzpicture
enddocument
I think this gives a decent end result. But for larger diagrams, it would be an absolute nightmare to work with a code that is so messy and so heavily dependent on coordinates and tweaked parameters.
Thus, if anyone has suggestions (big or small) for a more clever way to do this (with or without TikZ) and/or a way to make my own approach a bit cleaner or more systematic somehow, that would be greatly appreciated!
tikz-pgf diagrams tikz-cd commutative-diagrams
Any other tools that you think could be useful? I'm definitely willing to try out other tools than TikZ if need be!
– Oskar Henriksson
yesterday
add a comment |
Background. I recently came across a Youtube video with a bunch of really nicely typeset 'diagram chases' that seem to have been made in TeX (perhaps TikZ?):
I'd like to create something similar for a presentation that I'm working on, but I feel a bit lost when it comes to figuring out a systematic/scalable way to this.
Own attempt. For small diagrams, it's possible to do this in a very ad hoc way, by just playing around with coordinates and the bend right
and bend left
attributes in TikZ. A quick example of what this might look like:
documentclassarticle
usepackagetikz
usetikzlibraryarrows.meta
begindocument
begintikzpicture[scale=1.5, bend left=15, bend right=15]
node (B) at (0,0) $B$;
node (B') at (0,-1) $B'$;
node (C) at (1,0) $C$;
node (C') at (1,-1) $C'$;
draw[->,gray] (B) -- (B');
draw[->,gray,shorten >= -1pt] (B') -- (C');
draw[->,gray,shorten >= -1pt] (B) -- (C);
draw[->,gray] (C) -- (C');
node (b) at (-0.3,0.2) footnotesize $b$;
node (bprime) at (-0.3,-1.2) footnotesize $b'$;
node (cbar) at (0.7,0.2) footnotesize $barc$;
node (cdiff) at (0.7,-1.3) footnotesize $c'-c''$;
path (b) edge [[scale=0.7]->[scale=0.7],bend left] node [left] (cbar);
path (b) edge [[scale=0.7]->[scale=0.7],bend right] node [left] (bprime);
path (bprime) edge [[scale=0.7]->[scale=0.7],bend right] node [left] (cdiff);
path (cbar) edge [[scale=0.7]->[scale=0.7],bend right, shorten >= -2pt, shorten <= -1pt] node [left] (cdiff);
endtikzpicture
enddocument
I think this gives a decent end result. But for larger diagrams, it would be an absolute nightmare to work with a code that is so messy and so heavily dependent on coordinates and tweaked parameters.
Thus, if anyone has suggestions (big or small) for a more clever way to do this (with or without TikZ) and/or a way to make my own approach a bit cleaner or more systematic somehow, that would be greatly appreciated!
tikz-pgf diagrams tikz-cd commutative-diagrams
Background. I recently came across a Youtube video with a bunch of really nicely typeset 'diagram chases' that seem to have been made in TeX (perhaps TikZ?):
I'd like to create something similar for a presentation that I'm working on, but I feel a bit lost when it comes to figuring out a systematic/scalable way to this.
Own attempt. For small diagrams, it's possible to do this in a very ad hoc way, by just playing around with coordinates and the bend right
and bend left
attributes in TikZ. A quick example of what this might look like:
documentclassarticle
usepackagetikz
usetikzlibraryarrows.meta
begindocument
begintikzpicture[scale=1.5, bend left=15, bend right=15]
node (B) at (0,0) $B$;
node (B') at (0,-1) $B'$;
node (C) at (1,0) $C$;
node (C') at (1,-1) $C'$;
draw[->,gray] (B) -- (B');
draw[->,gray,shorten >= -1pt] (B') -- (C');
draw[->,gray,shorten >= -1pt] (B) -- (C);
draw[->,gray] (C) -- (C');
node (b) at (-0.3,0.2) footnotesize $b$;
node (bprime) at (-0.3,-1.2) footnotesize $b'$;
node (cbar) at (0.7,0.2) footnotesize $barc$;
node (cdiff) at (0.7,-1.3) footnotesize $c'-c''$;
path (b) edge [[scale=0.7]->[scale=0.7],bend left] node [left] (cbar);
path (b) edge [[scale=0.7]->[scale=0.7],bend right] node [left] (bprime);
path (bprime) edge [[scale=0.7]->[scale=0.7],bend right] node [left] (cdiff);
path (cbar) edge [[scale=0.7]->[scale=0.7],bend right, shorten >= -2pt, shorten <= -1pt] node [left] (cdiff);
endtikzpicture
enddocument
I think this gives a decent end result. But for larger diagrams, it would be an absolute nightmare to work with a code that is so messy and so heavily dependent on coordinates and tweaked parameters.
Thus, if anyone has suggestions (big or small) for a more clever way to do this (with or without TikZ) and/or a way to make my own approach a bit cleaner or more systematic somehow, that would be greatly appreciated!
tikz-pgf diagrams tikz-cd commutative-diagrams
tikz-pgf diagrams tikz-cd commutative-diagrams
edited yesterday
JouleV
14k22664
14k22664
asked yesterday
Oskar HenrikssonOskar Henriksson
1406
1406
Any other tools that you think could be useful? I'm definitely willing to try out other tools than TikZ if need be!
– Oskar Henriksson
yesterday
add a comment |
Any other tools that you think could be useful? I'm definitely willing to try out other tools than TikZ if need be!
– Oskar Henriksson
yesterday
Any other tools that you think could be useful? I'm definitely willing to try out other tools than TikZ if need be!
– Oskar Henriksson
yesterday
Any other tools that you think could be useful? I'm definitely willing to try out other tools than TikZ if need be!
– Oskar Henriksson
yesterday
add a comment |
1 Answer
1
active
oldest
votes
We clearly can't avoid difficulties and complexity when dealing with such a complicated graph when using any kinds of tool, but by using matrices it has saved a lot of work.
documentclass[tikz]standalone
usetikzlibrarymatrix,positioning,arrows.meta
usepackagemathptmx
tikzsettoarrow/.style=[scale=0.7]->[scale=0.7],
backarrow/.style=<[scale=0.7]-[scale=0.7]
begindocument
begintikzpicture
matrix[matrix of math nodes,row sep=2cm,column sep=2cm] (m) %
A & B & C & D & E\
A' & B' & C' & D' & E'\;
path (m-1-2) node[above left=1.5ex and 1.5ex] (b) $b$
(m-1-3) node[above left=1.5ex and 1.5ex] (c) $c$
(m-1-4) node[above left=1.5ex and 1.5ex] (d) $d$
(m-1-5) node[above left=1.5ex and 1.5ex] (e) $e$
(m-2-2) node[below left=1.5ex and 1.5ex] (b2) $b'$
(m-2-3) node[below left=1.5ex and 1.5ex] (c2) $c'$
(m-2-4) node[below left=1.5ex and 1.5ex] (d2) $d'$
(m-2-5) node[below left=1.5ex and 1.5ex] (e2) $0$
(m-2-3) node[above left=1.5ex and 1.5ex] (c3) $c''$
(c) node[above left=1.5ex and -1.5ex] (cp) $overlinec+c$
(c2) node[below=1.5ex] (cm) $c'-c''$
(d2) node[below=1.5ex] (db) $0$
(e.base east) node[above right=-.3333em and -1ex] $=0$
(c.base west) node[above left=-.3333em and 1.5ex] (co) $overlinec$;
% Delete the following part to see what happens
foreach i [count=j from 2] in 1,2,3,4
draw[dotted,->] (m-1-i) -- (m-2-i);
draw[dotted,->] (m-1-i) -- (m-1-j);
draw[dotted,->] (m-2-i) -- (m-2-j);
draw[dotted,->] (m-1-5) -- (m-2-5);
draw[toarrow] (b) edge[bend right] (b2) edge[bend left] (co);
draw[toarrow] (b2) to[bend right] (cm);
draw[toarrow] (cm) to[bend right] (db);
draw[toarrow] (co) to[bend right] (cm);
draw[toarrow] (cp) to[bend right] (c2);
draw[toarrow] (c) edge[bend right] (c3) edge[bend left] (d);
draw[backarrow] (d2) edge[bend left] (c2) edge[bend right=20] (c3) edge[bend left] (d);
draw[backarrow] (e2) edge[bend left] (d2) edge[bend left] (e);
draw[toarrow] (d) edge[bend left] (e);
endtikzpicture
enddocument
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "85"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f484877%2ftypsetting-diagram-chases-with-tikz%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
We clearly can't avoid difficulties and complexity when dealing with such a complicated graph when using any kinds of tool, but by using matrices it has saved a lot of work.
documentclass[tikz]standalone
usetikzlibrarymatrix,positioning,arrows.meta
usepackagemathptmx
tikzsettoarrow/.style=[scale=0.7]->[scale=0.7],
backarrow/.style=<[scale=0.7]-[scale=0.7]
begindocument
begintikzpicture
matrix[matrix of math nodes,row sep=2cm,column sep=2cm] (m) %
A & B & C & D & E\
A' & B' & C' & D' & E'\;
path (m-1-2) node[above left=1.5ex and 1.5ex] (b) $b$
(m-1-3) node[above left=1.5ex and 1.5ex] (c) $c$
(m-1-4) node[above left=1.5ex and 1.5ex] (d) $d$
(m-1-5) node[above left=1.5ex and 1.5ex] (e) $e$
(m-2-2) node[below left=1.5ex and 1.5ex] (b2) $b'$
(m-2-3) node[below left=1.5ex and 1.5ex] (c2) $c'$
(m-2-4) node[below left=1.5ex and 1.5ex] (d2) $d'$
(m-2-5) node[below left=1.5ex and 1.5ex] (e2) $0$
(m-2-3) node[above left=1.5ex and 1.5ex] (c3) $c''$
(c) node[above left=1.5ex and -1.5ex] (cp) $overlinec+c$
(c2) node[below=1.5ex] (cm) $c'-c''$
(d2) node[below=1.5ex] (db) $0$
(e.base east) node[above right=-.3333em and -1ex] $=0$
(c.base west) node[above left=-.3333em and 1.5ex] (co) $overlinec$;
% Delete the following part to see what happens
foreach i [count=j from 2] in 1,2,3,4
draw[dotted,->] (m-1-i) -- (m-2-i);
draw[dotted,->] (m-1-i) -- (m-1-j);
draw[dotted,->] (m-2-i) -- (m-2-j);
draw[dotted,->] (m-1-5) -- (m-2-5);
draw[toarrow] (b) edge[bend right] (b2) edge[bend left] (co);
draw[toarrow] (b2) to[bend right] (cm);
draw[toarrow] (cm) to[bend right] (db);
draw[toarrow] (co) to[bend right] (cm);
draw[toarrow] (cp) to[bend right] (c2);
draw[toarrow] (c) edge[bend right] (c3) edge[bend left] (d);
draw[backarrow] (d2) edge[bend left] (c2) edge[bend right=20] (c3) edge[bend left] (d);
draw[backarrow] (e2) edge[bend left] (d2) edge[bend left] (e);
draw[toarrow] (d) edge[bend left] (e);
endtikzpicture
enddocument
add a comment |
We clearly can't avoid difficulties and complexity when dealing with such a complicated graph when using any kinds of tool, but by using matrices it has saved a lot of work.
documentclass[tikz]standalone
usetikzlibrarymatrix,positioning,arrows.meta
usepackagemathptmx
tikzsettoarrow/.style=[scale=0.7]->[scale=0.7],
backarrow/.style=<[scale=0.7]-[scale=0.7]
begindocument
begintikzpicture
matrix[matrix of math nodes,row sep=2cm,column sep=2cm] (m) %
A & B & C & D & E\
A' & B' & C' & D' & E'\;
path (m-1-2) node[above left=1.5ex and 1.5ex] (b) $b$
(m-1-3) node[above left=1.5ex and 1.5ex] (c) $c$
(m-1-4) node[above left=1.5ex and 1.5ex] (d) $d$
(m-1-5) node[above left=1.5ex and 1.5ex] (e) $e$
(m-2-2) node[below left=1.5ex and 1.5ex] (b2) $b'$
(m-2-3) node[below left=1.5ex and 1.5ex] (c2) $c'$
(m-2-4) node[below left=1.5ex and 1.5ex] (d2) $d'$
(m-2-5) node[below left=1.5ex and 1.5ex] (e2) $0$
(m-2-3) node[above left=1.5ex and 1.5ex] (c3) $c''$
(c) node[above left=1.5ex and -1.5ex] (cp) $overlinec+c$
(c2) node[below=1.5ex] (cm) $c'-c''$
(d2) node[below=1.5ex] (db) $0$
(e.base east) node[above right=-.3333em and -1ex] $=0$
(c.base west) node[above left=-.3333em and 1.5ex] (co) $overlinec$;
% Delete the following part to see what happens
foreach i [count=j from 2] in 1,2,3,4
draw[dotted,->] (m-1-i) -- (m-2-i);
draw[dotted,->] (m-1-i) -- (m-1-j);
draw[dotted,->] (m-2-i) -- (m-2-j);
draw[dotted,->] (m-1-5) -- (m-2-5);
draw[toarrow] (b) edge[bend right] (b2) edge[bend left] (co);
draw[toarrow] (b2) to[bend right] (cm);
draw[toarrow] (cm) to[bend right] (db);
draw[toarrow] (co) to[bend right] (cm);
draw[toarrow] (cp) to[bend right] (c2);
draw[toarrow] (c) edge[bend right] (c3) edge[bend left] (d);
draw[backarrow] (d2) edge[bend left] (c2) edge[bend right=20] (c3) edge[bend left] (d);
draw[backarrow] (e2) edge[bend left] (d2) edge[bend left] (e);
draw[toarrow] (d) edge[bend left] (e);
endtikzpicture
enddocument
add a comment |
We clearly can't avoid difficulties and complexity when dealing with such a complicated graph when using any kinds of tool, but by using matrices it has saved a lot of work.
documentclass[tikz]standalone
usetikzlibrarymatrix,positioning,arrows.meta
usepackagemathptmx
tikzsettoarrow/.style=[scale=0.7]->[scale=0.7],
backarrow/.style=<[scale=0.7]-[scale=0.7]
begindocument
begintikzpicture
matrix[matrix of math nodes,row sep=2cm,column sep=2cm] (m) %
A & B & C & D & E\
A' & B' & C' & D' & E'\;
path (m-1-2) node[above left=1.5ex and 1.5ex] (b) $b$
(m-1-3) node[above left=1.5ex and 1.5ex] (c) $c$
(m-1-4) node[above left=1.5ex and 1.5ex] (d) $d$
(m-1-5) node[above left=1.5ex and 1.5ex] (e) $e$
(m-2-2) node[below left=1.5ex and 1.5ex] (b2) $b'$
(m-2-3) node[below left=1.5ex and 1.5ex] (c2) $c'$
(m-2-4) node[below left=1.5ex and 1.5ex] (d2) $d'$
(m-2-5) node[below left=1.5ex and 1.5ex] (e2) $0$
(m-2-3) node[above left=1.5ex and 1.5ex] (c3) $c''$
(c) node[above left=1.5ex and -1.5ex] (cp) $overlinec+c$
(c2) node[below=1.5ex] (cm) $c'-c''$
(d2) node[below=1.5ex] (db) $0$
(e.base east) node[above right=-.3333em and -1ex] $=0$
(c.base west) node[above left=-.3333em and 1.5ex] (co) $overlinec$;
% Delete the following part to see what happens
foreach i [count=j from 2] in 1,2,3,4
draw[dotted,->] (m-1-i) -- (m-2-i);
draw[dotted,->] (m-1-i) -- (m-1-j);
draw[dotted,->] (m-2-i) -- (m-2-j);
draw[dotted,->] (m-1-5) -- (m-2-5);
draw[toarrow] (b) edge[bend right] (b2) edge[bend left] (co);
draw[toarrow] (b2) to[bend right] (cm);
draw[toarrow] (cm) to[bend right] (db);
draw[toarrow] (co) to[bend right] (cm);
draw[toarrow] (cp) to[bend right] (c2);
draw[toarrow] (c) edge[bend right] (c3) edge[bend left] (d);
draw[backarrow] (d2) edge[bend left] (c2) edge[bend right=20] (c3) edge[bend left] (d);
draw[backarrow] (e2) edge[bend left] (d2) edge[bend left] (e);
draw[toarrow] (d) edge[bend left] (e);
endtikzpicture
enddocument
We clearly can't avoid difficulties and complexity when dealing with such a complicated graph when using any kinds of tool, but by using matrices it has saved a lot of work.
documentclass[tikz]standalone
usetikzlibrarymatrix,positioning,arrows.meta
usepackagemathptmx
tikzsettoarrow/.style=[scale=0.7]->[scale=0.7],
backarrow/.style=<[scale=0.7]-[scale=0.7]
begindocument
begintikzpicture
matrix[matrix of math nodes,row sep=2cm,column sep=2cm] (m) %
A & B & C & D & E\
A' & B' & C' & D' & E'\;
path (m-1-2) node[above left=1.5ex and 1.5ex] (b) $b$
(m-1-3) node[above left=1.5ex and 1.5ex] (c) $c$
(m-1-4) node[above left=1.5ex and 1.5ex] (d) $d$
(m-1-5) node[above left=1.5ex and 1.5ex] (e) $e$
(m-2-2) node[below left=1.5ex and 1.5ex] (b2) $b'$
(m-2-3) node[below left=1.5ex and 1.5ex] (c2) $c'$
(m-2-4) node[below left=1.5ex and 1.5ex] (d2) $d'$
(m-2-5) node[below left=1.5ex and 1.5ex] (e2) $0$
(m-2-3) node[above left=1.5ex and 1.5ex] (c3) $c''$
(c) node[above left=1.5ex and -1.5ex] (cp) $overlinec+c$
(c2) node[below=1.5ex] (cm) $c'-c''$
(d2) node[below=1.5ex] (db) $0$
(e.base east) node[above right=-.3333em and -1ex] $=0$
(c.base west) node[above left=-.3333em and 1.5ex] (co) $overlinec$;
% Delete the following part to see what happens
foreach i [count=j from 2] in 1,2,3,4
draw[dotted,->] (m-1-i) -- (m-2-i);
draw[dotted,->] (m-1-i) -- (m-1-j);
draw[dotted,->] (m-2-i) -- (m-2-j);
draw[dotted,->] (m-1-5) -- (m-2-5);
draw[toarrow] (b) edge[bend right] (b2) edge[bend left] (co);
draw[toarrow] (b2) to[bend right] (cm);
draw[toarrow] (cm) to[bend right] (db);
draw[toarrow] (co) to[bend right] (cm);
draw[toarrow] (cp) to[bend right] (c2);
draw[toarrow] (c) edge[bend right] (c3) edge[bend left] (d);
draw[backarrow] (d2) edge[bend left] (c2) edge[bend right=20] (c3) edge[bend left] (d);
draw[backarrow] (e2) edge[bend left] (d2) edge[bend left] (e);
draw[toarrow] (d) edge[bend left] (e);
endtikzpicture
enddocument
edited yesterday
answered yesterday
JouleVJouleV
14k22664
14k22664
add a comment |
add a comment |
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f484877%2ftypsetting-diagram-chases-with-tikz%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Any other tools that you think could be useful? I'm definitely willing to try out other tools than TikZ if need be!
– Oskar Henriksson
yesterday