Definition of observer and time measured by different observers in general relativityWhy do clocks measure arc-length?Do observers at rest at different positions in a gravitational field see the Universe expand at different ratesHow to determine the three-velocity measured by a single observer?Variation of products of Riemann tensor $delta (sqrt-g RR epsilon epsilon)$How a reference frame relates to observers and charts?When the $x^0$ coordinate represents time in GR?How to make sense of this definition of a reference frame?What is the “reference frame of a particle” in General Relativity?How one uses the definition of observers in General Relativity?Expanding a summation of covariant derivatives
Did Shadowfax go to Valinor?
How to find program name(s) of an installed package?
Mathematical cryptic clues
What is the word for reserving something for yourself before others do?
Risk of getting Chronic Wasting Disease (CWD) in the United States?
Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)
Is this a crack on the carbon frame?
Is it possible to do 50 km distance without any previous training?
What defenses are there against being summoned by the Gate spell?
Python: next in for loop
Fully-Firstable Anagram Sets
How to format long polynomial?
TGV timetables / schedules?
Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)
In Japanese, what’s the difference between “Tonari ni” (となりに) and “Tsugi” (つぎ)? When would you use one over the other?
Email Account under attack (really) - anything I can do?
Why "Having chlorophyll without photosynthesis is actually very dangerous" and "like living with a bomb"?
LaTeX closing $ signs makes cursor jump
Do VLANs within a subnet need to have their own subnet for router on a stick?
Is it legal for company to use my work email to pretend I still work there?
Can I make popcorn with any corn?
Can divisibility rules for digits be generalized to sum of digits
Why not use SQL instead of GraphQL?
Fencing style for blades that can attack from a distance
Definition of observer and time measured by different observers in general relativity
Why do clocks measure arc-length?Do observers at rest at different positions in a gravitational field see the Universe expand at different ratesHow to determine the three-velocity measured by a single observer?Variation of products of Riemann tensor $delta (sqrt-g RR epsilon epsilon)$How a reference frame relates to observers and charts?When the $x^0$ coordinate represents time in GR?How to make sense of this definition of a reference frame?What is the “reference frame of a particle” in General Relativity?How one uses the definition of observers in General Relativity?Expanding a summation of covariant derivatives
$begingroup$
An observer in general relativity is defined as a future directed timelike worldline
beginalign*
gamma:I subset mathbb R &to M \
lambda &mapsto gamma(lambda)
endalign*
together with an orthonormal basis $e_a(lambda) in T_gamma(lambda)M$ where $e_0(lambda)= v_gamma, gamma(lambda)$ and
beginalign
g_gamma(lambda)(e_a(lambda),e_b(lambda))=eta_ab~. qquad (1)
endalign
Here, $v_gamma, gamma(lambda)$ is the velocity of the worldline $gamma$ at the point $gamma(lambda)in M$ and $g$ is the metric tensor field on $M$. The time measured by the clock carried by this observer between events $lambda_0, lambda_1$ is defined as
beginalign
tau_gamma = int_lambda_0^lambda_1 dlambda sqrtg_gamma(lambda)(v_gamma, gamma(lambda),v_gamma, gamma(lambda))~.
endalign
However,
beginalign
g_gamma(lambda)(v_gamma, gamma(lambda),v_gamma, gamma(lambda)) = g_gamma(lambda)(e_0(lambda),e_0(lambda))=1 qquad (2)
endalign
which follows from the requirement of eq.(1). We are using signature $(+,-,-,-)$.
This is all standard definition. Suppose, we have another observer $delta$:
beginalign*
delta:I subset mathbb R &to M \
lambda &mapsto delta(lambda)
endalign*
and the time measured by his clock between the same two events $lambda_0, lambda_1$ is
beginalign
tau_delta = int_lambda_0^lambda_1 dlambda sqrtg_delta(lambda)(v_delta, delta(lambda),v_delta, delta(lambda))~.
endalign
From equations (1) and (2), we get $tau_gamma = tau_delta$ and this will be true for all observers measuring time between $lambda_0, lambda_1$.
However, I know that my conclusion is wrong. Can you point out where I went astray?
Edit: I am trying to make the situation I am referring to clearer.
$gamma(lambda)$ and $delta(lambda)$ meeting at points $p,q in M$">
(Sorry for this huge picture. I wanted to make it smaller, but couldn't figure out how to go about it.)
This picture shows the two observers $gamma$ and $delta$ defined above. Both worldlines are parameterised by the same parameter $lambda$. This need not be the case but I choose it to convey my point. I wish to determine the proper time measured by observers $gamma$ and $delta$ between events $p$ and $q$ in the spacetime manifold $M$.
beginalign
p =& gamma(lambda_1) = delta(lambda_1) \
q =& gamma(lambda_2) = delta(lambda2)
endalign
This scenario is possible, isn't it? I do not see why $tau_gamma$ and $tau_delta$ need to be the same. (In fact, in the twin paradox, for example, we see this explicitly.) However, from equation (1) and the deduction above, it follows that $tau_gamma = tau_delta$. This is my confusion.
Note From the definition of an observer in general relativity, the observer worldline seems to be always parameterised by its propertime. But the propertime measured by two observers between the same two events need not be the same, isn't it?
general-relativity differential-geometry observers
$endgroup$
add a comment |
$begingroup$
An observer in general relativity is defined as a future directed timelike worldline
beginalign*
gamma:I subset mathbb R &to M \
lambda &mapsto gamma(lambda)
endalign*
together with an orthonormal basis $e_a(lambda) in T_gamma(lambda)M$ where $e_0(lambda)= v_gamma, gamma(lambda)$ and
beginalign
g_gamma(lambda)(e_a(lambda),e_b(lambda))=eta_ab~. qquad (1)
endalign
Here, $v_gamma, gamma(lambda)$ is the velocity of the worldline $gamma$ at the point $gamma(lambda)in M$ and $g$ is the metric tensor field on $M$. The time measured by the clock carried by this observer between events $lambda_0, lambda_1$ is defined as
beginalign
tau_gamma = int_lambda_0^lambda_1 dlambda sqrtg_gamma(lambda)(v_gamma, gamma(lambda),v_gamma, gamma(lambda))~.
endalign
However,
beginalign
g_gamma(lambda)(v_gamma, gamma(lambda),v_gamma, gamma(lambda)) = g_gamma(lambda)(e_0(lambda),e_0(lambda))=1 qquad (2)
endalign
which follows from the requirement of eq.(1). We are using signature $(+,-,-,-)$.
This is all standard definition. Suppose, we have another observer $delta$:
beginalign*
delta:I subset mathbb R &to M \
lambda &mapsto delta(lambda)
endalign*
and the time measured by his clock between the same two events $lambda_0, lambda_1$ is
beginalign
tau_delta = int_lambda_0^lambda_1 dlambda sqrtg_delta(lambda)(v_delta, delta(lambda),v_delta, delta(lambda))~.
endalign
From equations (1) and (2), we get $tau_gamma = tau_delta$ and this will be true for all observers measuring time between $lambda_0, lambda_1$.
However, I know that my conclusion is wrong. Can you point out where I went astray?
Edit: I am trying to make the situation I am referring to clearer.
$gamma(lambda)$ and $delta(lambda)$ meeting at points $p,q in M$">
(Sorry for this huge picture. I wanted to make it smaller, but couldn't figure out how to go about it.)
This picture shows the two observers $gamma$ and $delta$ defined above. Both worldlines are parameterised by the same parameter $lambda$. This need not be the case but I choose it to convey my point. I wish to determine the proper time measured by observers $gamma$ and $delta$ between events $p$ and $q$ in the spacetime manifold $M$.
beginalign
p =& gamma(lambda_1) = delta(lambda_1) \
q =& gamma(lambda_2) = delta(lambda2)
endalign
This scenario is possible, isn't it? I do not see why $tau_gamma$ and $tau_delta$ need to be the same. (In fact, in the twin paradox, for example, we see this explicitly.) However, from equation (1) and the deduction above, it follows that $tau_gamma = tau_delta$. This is my confusion.
Note From the definition of an observer in general relativity, the observer worldline seems to be always parameterised by its propertime. But the propertime measured by two observers between the same two events need not be the same, isn't it?
general-relativity differential-geometry observers
$endgroup$
$begingroup$
It doesn't make sense to say that two worldlines have the same parameter. You can have the values of the parameter coincide at one crossing point if you want, but nothing guarantees that this will happen when the curves cross again (which is the only place where it makes sense to say the the proper times are the same).
$endgroup$
– Javier
14 hours ago
$begingroup$
@Javier Then what is your opinion on the twin paradox? Let us work in some chart $(U,x)$. The worldline $gamma: (0,1) to M$ such that $gamma_(x)^i=(lambda,0,0,0)^i$ and $delta:(0,1) to M$ such that $delta_(x)^i=(lambda, alpha lambda, 0,0)^i$ for $lambda leq 1/2$ while $delta_(x)^i=(lambda, (1-lambda)alpha, 0,0)^i$ for $lambda > 1/2$. Here, $alpha in (0,1)$. Both the worldlines lie in $U subset M$. So, these two curves have the same parameter $lambda$ but the maps $gamma$ and $delta$ are defined differently. The parameters coincide in the beginning and end.
$endgroup$
– damaihati
11 hours ago
$begingroup$
That is a perfectly good parameterization and it will let you calculate the time difference of the twin paradox, but the second curve is not parametrized by proper time. That's not a problem.
$endgroup$
– Javier
10 hours ago
add a comment |
$begingroup$
An observer in general relativity is defined as a future directed timelike worldline
beginalign*
gamma:I subset mathbb R &to M \
lambda &mapsto gamma(lambda)
endalign*
together with an orthonormal basis $e_a(lambda) in T_gamma(lambda)M$ where $e_0(lambda)= v_gamma, gamma(lambda)$ and
beginalign
g_gamma(lambda)(e_a(lambda),e_b(lambda))=eta_ab~. qquad (1)
endalign
Here, $v_gamma, gamma(lambda)$ is the velocity of the worldline $gamma$ at the point $gamma(lambda)in M$ and $g$ is the metric tensor field on $M$. The time measured by the clock carried by this observer between events $lambda_0, lambda_1$ is defined as
beginalign
tau_gamma = int_lambda_0^lambda_1 dlambda sqrtg_gamma(lambda)(v_gamma, gamma(lambda),v_gamma, gamma(lambda))~.
endalign
However,
beginalign
g_gamma(lambda)(v_gamma, gamma(lambda),v_gamma, gamma(lambda)) = g_gamma(lambda)(e_0(lambda),e_0(lambda))=1 qquad (2)
endalign
which follows from the requirement of eq.(1). We are using signature $(+,-,-,-)$.
This is all standard definition. Suppose, we have another observer $delta$:
beginalign*
delta:I subset mathbb R &to M \
lambda &mapsto delta(lambda)
endalign*
and the time measured by his clock between the same two events $lambda_0, lambda_1$ is
beginalign
tau_delta = int_lambda_0^lambda_1 dlambda sqrtg_delta(lambda)(v_delta, delta(lambda),v_delta, delta(lambda))~.
endalign
From equations (1) and (2), we get $tau_gamma = tau_delta$ and this will be true for all observers measuring time between $lambda_0, lambda_1$.
However, I know that my conclusion is wrong. Can you point out where I went astray?
Edit: I am trying to make the situation I am referring to clearer.
$gamma(lambda)$ and $delta(lambda)$ meeting at points $p,q in M$">
(Sorry for this huge picture. I wanted to make it smaller, but couldn't figure out how to go about it.)
This picture shows the two observers $gamma$ and $delta$ defined above. Both worldlines are parameterised by the same parameter $lambda$. This need not be the case but I choose it to convey my point. I wish to determine the proper time measured by observers $gamma$ and $delta$ between events $p$ and $q$ in the spacetime manifold $M$.
beginalign
p =& gamma(lambda_1) = delta(lambda_1) \
q =& gamma(lambda_2) = delta(lambda2)
endalign
This scenario is possible, isn't it? I do not see why $tau_gamma$ and $tau_delta$ need to be the same. (In fact, in the twin paradox, for example, we see this explicitly.) However, from equation (1) and the deduction above, it follows that $tau_gamma = tau_delta$. This is my confusion.
Note From the definition of an observer in general relativity, the observer worldline seems to be always parameterised by its propertime. But the propertime measured by two observers between the same two events need not be the same, isn't it?
general-relativity differential-geometry observers
$endgroup$
An observer in general relativity is defined as a future directed timelike worldline
beginalign*
gamma:I subset mathbb R &to M \
lambda &mapsto gamma(lambda)
endalign*
together with an orthonormal basis $e_a(lambda) in T_gamma(lambda)M$ where $e_0(lambda)= v_gamma, gamma(lambda)$ and
beginalign
g_gamma(lambda)(e_a(lambda),e_b(lambda))=eta_ab~. qquad (1)
endalign
Here, $v_gamma, gamma(lambda)$ is the velocity of the worldline $gamma$ at the point $gamma(lambda)in M$ and $g$ is the metric tensor field on $M$. The time measured by the clock carried by this observer between events $lambda_0, lambda_1$ is defined as
beginalign
tau_gamma = int_lambda_0^lambda_1 dlambda sqrtg_gamma(lambda)(v_gamma, gamma(lambda),v_gamma, gamma(lambda))~.
endalign
However,
beginalign
g_gamma(lambda)(v_gamma, gamma(lambda),v_gamma, gamma(lambda)) = g_gamma(lambda)(e_0(lambda),e_0(lambda))=1 qquad (2)
endalign
which follows from the requirement of eq.(1). We are using signature $(+,-,-,-)$.
This is all standard definition. Suppose, we have another observer $delta$:
beginalign*
delta:I subset mathbb R &to M \
lambda &mapsto delta(lambda)
endalign*
and the time measured by his clock between the same two events $lambda_0, lambda_1$ is
beginalign
tau_delta = int_lambda_0^lambda_1 dlambda sqrtg_delta(lambda)(v_delta, delta(lambda),v_delta, delta(lambda))~.
endalign
From equations (1) and (2), we get $tau_gamma = tau_delta$ and this will be true for all observers measuring time between $lambda_0, lambda_1$.
However, I know that my conclusion is wrong. Can you point out where I went astray?
Edit: I am trying to make the situation I am referring to clearer.
$gamma(lambda)$ and $delta(lambda)$ meeting at points $p,q in M$">
(Sorry for this huge picture. I wanted to make it smaller, but couldn't figure out how to go about it.)
This picture shows the two observers $gamma$ and $delta$ defined above. Both worldlines are parameterised by the same parameter $lambda$. This need not be the case but I choose it to convey my point. I wish to determine the proper time measured by observers $gamma$ and $delta$ between events $p$ and $q$ in the spacetime manifold $M$.
beginalign
p =& gamma(lambda_1) = delta(lambda_1) \
q =& gamma(lambda_2) = delta(lambda2)
endalign
This scenario is possible, isn't it? I do not see why $tau_gamma$ and $tau_delta$ need to be the same. (In fact, in the twin paradox, for example, we see this explicitly.) However, from equation (1) and the deduction above, it follows that $tau_gamma = tau_delta$. This is my confusion.
Note From the definition of an observer in general relativity, the observer worldline seems to be always parameterised by its propertime. But the propertime measured by two observers between the same two events need not be the same, isn't it?
general-relativity differential-geometry observers
general-relativity differential-geometry observers
edited 12 hours ago
Qmechanic♦
107k121991239
107k121991239
asked yesterday
damaihatidamaihati
684
684
$begingroup$
It doesn't make sense to say that two worldlines have the same parameter. You can have the values of the parameter coincide at one crossing point if you want, but nothing guarantees that this will happen when the curves cross again (which is the only place where it makes sense to say the the proper times are the same).
$endgroup$
– Javier
14 hours ago
$begingroup$
@Javier Then what is your opinion on the twin paradox? Let us work in some chart $(U,x)$. The worldline $gamma: (0,1) to M$ such that $gamma_(x)^i=(lambda,0,0,0)^i$ and $delta:(0,1) to M$ such that $delta_(x)^i=(lambda, alpha lambda, 0,0)^i$ for $lambda leq 1/2$ while $delta_(x)^i=(lambda, (1-lambda)alpha, 0,0)^i$ for $lambda > 1/2$. Here, $alpha in (0,1)$. Both the worldlines lie in $U subset M$. So, these two curves have the same parameter $lambda$ but the maps $gamma$ and $delta$ are defined differently. The parameters coincide in the beginning and end.
$endgroup$
– damaihati
11 hours ago
$begingroup$
That is a perfectly good parameterization and it will let you calculate the time difference of the twin paradox, but the second curve is not parametrized by proper time. That's not a problem.
$endgroup$
– Javier
10 hours ago
add a comment |
$begingroup$
It doesn't make sense to say that two worldlines have the same parameter. You can have the values of the parameter coincide at one crossing point if you want, but nothing guarantees that this will happen when the curves cross again (which is the only place where it makes sense to say the the proper times are the same).
$endgroup$
– Javier
14 hours ago
$begingroup$
@Javier Then what is your opinion on the twin paradox? Let us work in some chart $(U,x)$. The worldline $gamma: (0,1) to M$ such that $gamma_(x)^i=(lambda,0,0,0)^i$ and $delta:(0,1) to M$ such that $delta_(x)^i=(lambda, alpha lambda, 0,0)^i$ for $lambda leq 1/2$ while $delta_(x)^i=(lambda, (1-lambda)alpha, 0,0)^i$ for $lambda > 1/2$. Here, $alpha in (0,1)$. Both the worldlines lie in $U subset M$. So, these two curves have the same parameter $lambda$ but the maps $gamma$ and $delta$ are defined differently. The parameters coincide in the beginning and end.
$endgroup$
– damaihati
11 hours ago
$begingroup$
That is a perfectly good parameterization and it will let you calculate the time difference of the twin paradox, but the second curve is not parametrized by proper time. That's not a problem.
$endgroup$
– Javier
10 hours ago
$begingroup$
It doesn't make sense to say that two worldlines have the same parameter. You can have the values of the parameter coincide at one crossing point if you want, but nothing guarantees that this will happen when the curves cross again (which is the only place where it makes sense to say the the proper times are the same).
$endgroup$
– Javier
14 hours ago
$begingroup$
It doesn't make sense to say that two worldlines have the same parameter. You can have the values of the parameter coincide at one crossing point if you want, but nothing guarantees that this will happen when the curves cross again (which is the only place where it makes sense to say the the proper times are the same).
$endgroup$
– Javier
14 hours ago
$begingroup$
@Javier Then what is your opinion on the twin paradox? Let us work in some chart $(U,x)$. The worldline $gamma: (0,1) to M$ such that $gamma_(x)^i=(lambda,0,0,0)^i$ and $delta:(0,1) to M$ such that $delta_(x)^i=(lambda, alpha lambda, 0,0)^i$ for $lambda leq 1/2$ while $delta_(x)^i=(lambda, (1-lambda)alpha, 0,0)^i$ for $lambda > 1/2$. Here, $alpha in (0,1)$. Both the worldlines lie in $U subset M$. So, these two curves have the same parameter $lambda$ but the maps $gamma$ and $delta$ are defined differently. The parameters coincide in the beginning and end.
$endgroup$
– damaihati
11 hours ago
$begingroup$
@Javier Then what is your opinion on the twin paradox? Let us work in some chart $(U,x)$. The worldline $gamma: (0,1) to M$ such that $gamma_(x)^i=(lambda,0,0,0)^i$ and $delta:(0,1) to M$ such that $delta_(x)^i=(lambda, alpha lambda, 0,0)^i$ for $lambda leq 1/2$ while $delta_(x)^i=(lambda, (1-lambda)alpha, 0,0)^i$ for $lambda > 1/2$. Here, $alpha in (0,1)$. Both the worldlines lie in $U subset M$. So, these two curves have the same parameter $lambda$ but the maps $gamma$ and $delta$ are defined differently. The parameters coincide in the beginning and end.
$endgroup$
– damaihati
11 hours ago
$begingroup$
That is a perfectly good parameterization and it will let you calculate the time difference of the twin paradox, but the second curve is not parametrized by proper time. That's not a problem.
$endgroup$
– Javier
10 hours ago
$begingroup$
That is a perfectly good parameterization and it will let you calculate the time difference of the twin paradox, but the second curve is not parametrized by proper time. That's not a problem.
$endgroup$
– Javier
10 hours ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Your conclusion is correct, because what you are doing by saying that $g(v_gamma,gamma(lambda),v_gamma,gamma(lambda)) = 1$ is that the parameter $lambda$ is exactly equal to proper time. You can have different parametrizations $tildelambda$ of the curve $gamma$ that have $g(v_gamma,gamma(tildelambda),v_gamma,gamma(tildelambda)) neq 1$ and then, of course, they do not correspond to proper time of the observer on the curve.
Your conclusion from the OP just states that if you have two curves parametrized by proper time, then when they are evolved for the same amount of proper time, the same amount of proper time passes on them. A quite tautological statement!
As concerns your edit:
When you state
$$p = gamma(lambda_1) = delta(lambda_1)$$
$$q = gamma(lambda_2) = delta(lambda_2)$$
and impose the normalisation of the tangents $g(v_gamma,gamma(lambda),v_gamma,gamma(lambda)) = g(v_delta,delta(lambda),v_delta,delta(lambda)) = 1$, you are NOT choosing two general curves (worldlines) passing through $p,q$. Instead, you are choosing two curves for which the same amount of proper time passes between $p,q$.
Perhaps you should consider a concrete example. Choose a space-time such as Minkowski and two randomly chosen curves $gamma, delta$ on it that have an arbitrary parametrization $gamma(tildelambda_gamma), delta(tildelambda_delta)$ and that meet at some events $p,q$. Now find the proper-time parametrisation $lambda$ along the entire curves $g(v_gamma,gamma(lambda),v_gamma,gamma(lambda)) = g(v_delta,delta(lambda),v_delta,delta(lambda)) = 1$, this can be recast as two first-order differential equations for the functions $lambda(tildelambda_gamma,delta)$. Each of the two differential equations have a unique solution up to a single integration constant. By setting $p = gamma(lambda_1) = delta(lambda_1)$, you specify both of these integration constants. So, you do not have any freedom to set the same condition for $lambda_2$ at $q$ because there is no freedom in the solution left and the value of $lambda$ at $q$ will be generally different for each of the curves. $blacksquare$
$endgroup$
$begingroup$
I think maybe the answer could be phrased differently: there is a mistake in the OP's math, which is that the limits of integration have no particular reason to be the same. I think the point is made more clearly, but that may just be me.
$endgroup$
– Javier
yesterday
$begingroup$
@Javier Yes, the limits need not be the same but I have made this choice. If they were different, $tau_gamma$ and $tau_delta$ would be different even if the two worldlines had the same parameterisation.
$endgroup$
– damaihati
16 hours ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "151"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470705%2fdefinition-of-observer-and-time-measured-by-different-observers-in-general-relat%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Your conclusion is correct, because what you are doing by saying that $g(v_gamma,gamma(lambda),v_gamma,gamma(lambda)) = 1$ is that the parameter $lambda$ is exactly equal to proper time. You can have different parametrizations $tildelambda$ of the curve $gamma$ that have $g(v_gamma,gamma(tildelambda),v_gamma,gamma(tildelambda)) neq 1$ and then, of course, they do not correspond to proper time of the observer on the curve.
Your conclusion from the OP just states that if you have two curves parametrized by proper time, then when they are evolved for the same amount of proper time, the same amount of proper time passes on them. A quite tautological statement!
As concerns your edit:
When you state
$$p = gamma(lambda_1) = delta(lambda_1)$$
$$q = gamma(lambda_2) = delta(lambda_2)$$
and impose the normalisation of the tangents $g(v_gamma,gamma(lambda),v_gamma,gamma(lambda)) = g(v_delta,delta(lambda),v_delta,delta(lambda)) = 1$, you are NOT choosing two general curves (worldlines) passing through $p,q$. Instead, you are choosing two curves for which the same amount of proper time passes between $p,q$.
Perhaps you should consider a concrete example. Choose a space-time such as Minkowski and two randomly chosen curves $gamma, delta$ on it that have an arbitrary parametrization $gamma(tildelambda_gamma), delta(tildelambda_delta)$ and that meet at some events $p,q$. Now find the proper-time parametrisation $lambda$ along the entire curves $g(v_gamma,gamma(lambda),v_gamma,gamma(lambda)) = g(v_delta,delta(lambda),v_delta,delta(lambda)) = 1$, this can be recast as two first-order differential equations for the functions $lambda(tildelambda_gamma,delta)$. Each of the two differential equations have a unique solution up to a single integration constant. By setting $p = gamma(lambda_1) = delta(lambda_1)$, you specify both of these integration constants. So, you do not have any freedom to set the same condition for $lambda_2$ at $q$ because there is no freedom in the solution left and the value of $lambda$ at $q$ will be generally different for each of the curves. $blacksquare$
$endgroup$
$begingroup$
I think maybe the answer could be phrased differently: there is a mistake in the OP's math, which is that the limits of integration have no particular reason to be the same. I think the point is made more clearly, but that may just be me.
$endgroup$
– Javier
yesterday
$begingroup$
@Javier Yes, the limits need not be the same but I have made this choice. If they were different, $tau_gamma$ and $tau_delta$ would be different even if the two worldlines had the same parameterisation.
$endgroup$
– damaihati
16 hours ago
add a comment |
$begingroup$
Your conclusion is correct, because what you are doing by saying that $g(v_gamma,gamma(lambda),v_gamma,gamma(lambda)) = 1$ is that the parameter $lambda$ is exactly equal to proper time. You can have different parametrizations $tildelambda$ of the curve $gamma$ that have $g(v_gamma,gamma(tildelambda),v_gamma,gamma(tildelambda)) neq 1$ and then, of course, they do not correspond to proper time of the observer on the curve.
Your conclusion from the OP just states that if you have two curves parametrized by proper time, then when they are evolved for the same amount of proper time, the same amount of proper time passes on them. A quite tautological statement!
As concerns your edit:
When you state
$$p = gamma(lambda_1) = delta(lambda_1)$$
$$q = gamma(lambda_2) = delta(lambda_2)$$
and impose the normalisation of the tangents $g(v_gamma,gamma(lambda),v_gamma,gamma(lambda)) = g(v_delta,delta(lambda),v_delta,delta(lambda)) = 1$, you are NOT choosing two general curves (worldlines) passing through $p,q$. Instead, you are choosing two curves for which the same amount of proper time passes between $p,q$.
Perhaps you should consider a concrete example. Choose a space-time such as Minkowski and two randomly chosen curves $gamma, delta$ on it that have an arbitrary parametrization $gamma(tildelambda_gamma), delta(tildelambda_delta)$ and that meet at some events $p,q$. Now find the proper-time parametrisation $lambda$ along the entire curves $g(v_gamma,gamma(lambda),v_gamma,gamma(lambda)) = g(v_delta,delta(lambda),v_delta,delta(lambda)) = 1$, this can be recast as two first-order differential equations for the functions $lambda(tildelambda_gamma,delta)$. Each of the two differential equations have a unique solution up to a single integration constant. By setting $p = gamma(lambda_1) = delta(lambda_1)$, you specify both of these integration constants. So, you do not have any freedom to set the same condition for $lambda_2$ at $q$ because there is no freedom in the solution left and the value of $lambda$ at $q$ will be generally different for each of the curves. $blacksquare$
$endgroup$
$begingroup$
I think maybe the answer could be phrased differently: there is a mistake in the OP's math, which is that the limits of integration have no particular reason to be the same. I think the point is made more clearly, but that may just be me.
$endgroup$
– Javier
yesterday
$begingroup$
@Javier Yes, the limits need not be the same but I have made this choice. If they were different, $tau_gamma$ and $tau_delta$ would be different even if the two worldlines had the same parameterisation.
$endgroup$
– damaihati
16 hours ago
add a comment |
$begingroup$
Your conclusion is correct, because what you are doing by saying that $g(v_gamma,gamma(lambda),v_gamma,gamma(lambda)) = 1$ is that the parameter $lambda$ is exactly equal to proper time. You can have different parametrizations $tildelambda$ of the curve $gamma$ that have $g(v_gamma,gamma(tildelambda),v_gamma,gamma(tildelambda)) neq 1$ and then, of course, they do not correspond to proper time of the observer on the curve.
Your conclusion from the OP just states that if you have two curves parametrized by proper time, then when they are evolved for the same amount of proper time, the same amount of proper time passes on them. A quite tautological statement!
As concerns your edit:
When you state
$$p = gamma(lambda_1) = delta(lambda_1)$$
$$q = gamma(lambda_2) = delta(lambda_2)$$
and impose the normalisation of the tangents $g(v_gamma,gamma(lambda),v_gamma,gamma(lambda)) = g(v_delta,delta(lambda),v_delta,delta(lambda)) = 1$, you are NOT choosing two general curves (worldlines) passing through $p,q$. Instead, you are choosing two curves for which the same amount of proper time passes between $p,q$.
Perhaps you should consider a concrete example. Choose a space-time such as Minkowski and two randomly chosen curves $gamma, delta$ on it that have an arbitrary parametrization $gamma(tildelambda_gamma), delta(tildelambda_delta)$ and that meet at some events $p,q$. Now find the proper-time parametrisation $lambda$ along the entire curves $g(v_gamma,gamma(lambda),v_gamma,gamma(lambda)) = g(v_delta,delta(lambda),v_delta,delta(lambda)) = 1$, this can be recast as two first-order differential equations for the functions $lambda(tildelambda_gamma,delta)$. Each of the two differential equations have a unique solution up to a single integration constant. By setting $p = gamma(lambda_1) = delta(lambda_1)$, you specify both of these integration constants. So, you do not have any freedom to set the same condition for $lambda_2$ at $q$ because there is no freedom in the solution left and the value of $lambda$ at $q$ will be generally different for each of the curves. $blacksquare$
$endgroup$
Your conclusion is correct, because what you are doing by saying that $g(v_gamma,gamma(lambda),v_gamma,gamma(lambda)) = 1$ is that the parameter $lambda$ is exactly equal to proper time. You can have different parametrizations $tildelambda$ of the curve $gamma$ that have $g(v_gamma,gamma(tildelambda),v_gamma,gamma(tildelambda)) neq 1$ and then, of course, they do not correspond to proper time of the observer on the curve.
Your conclusion from the OP just states that if you have two curves parametrized by proper time, then when they are evolved for the same amount of proper time, the same amount of proper time passes on them. A quite tautological statement!
As concerns your edit:
When you state
$$p = gamma(lambda_1) = delta(lambda_1)$$
$$q = gamma(lambda_2) = delta(lambda_2)$$
and impose the normalisation of the tangents $g(v_gamma,gamma(lambda),v_gamma,gamma(lambda)) = g(v_delta,delta(lambda),v_delta,delta(lambda)) = 1$, you are NOT choosing two general curves (worldlines) passing through $p,q$. Instead, you are choosing two curves for which the same amount of proper time passes between $p,q$.
Perhaps you should consider a concrete example. Choose a space-time such as Minkowski and two randomly chosen curves $gamma, delta$ on it that have an arbitrary parametrization $gamma(tildelambda_gamma), delta(tildelambda_delta)$ and that meet at some events $p,q$. Now find the proper-time parametrisation $lambda$ along the entire curves $g(v_gamma,gamma(lambda),v_gamma,gamma(lambda)) = g(v_delta,delta(lambda),v_delta,delta(lambda)) = 1$, this can be recast as two first-order differential equations for the functions $lambda(tildelambda_gamma,delta)$. Each of the two differential equations have a unique solution up to a single integration constant. By setting $p = gamma(lambda_1) = delta(lambda_1)$, you specify both of these integration constants. So, you do not have any freedom to set the same condition for $lambda_2$ at $q$ because there is no freedom in the solution left and the value of $lambda$ at $q$ will be generally different for each of the curves. $blacksquare$
edited 12 hours ago
answered yesterday
VoidVoid
10.7k1757
10.7k1757
$begingroup$
I think maybe the answer could be phrased differently: there is a mistake in the OP's math, which is that the limits of integration have no particular reason to be the same. I think the point is made more clearly, but that may just be me.
$endgroup$
– Javier
yesterday
$begingroup$
@Javier Yes, the limits need not be the same but I have made this choice. If they were different, $tau_gamma$ and $tau_delta$ would be different even if the two worldlines had the same parameterisation.
$endgroup$
– damaihati
16 hours ago
add a comment |
$begingroup$
I think maybe the answer could be phrased differently: there is a mistake in the OP's math, which is that the limits of integration have no particular reason to be the same. I think the point is made more clearly, but that may just be me.
$endgroup$
– Javier
yesterday
$begingroup$
@Javier Yes, the limits need not be the same but I have made this choice. If they were different, $tau_gamma$ and $tau_delta$ would be different even if the two worldlines had the same parameterisation.
$endgroup$
– damaihati
16 hours ago
$begingroup$
I think maybe the answer could be phrased differently: there is a mistake in the OP's math, which is that the limits of integration have no particular reason to be the same. I think the point is made more clearly, but that may just be me.
$endgroup$
– Javier
yesterday
$begingroup$
I think maybe the answer could be phrased differently: there is a mistake in the OP's math, which is that the limits of integration have no particular reason to be the same. I think the point is made more clearly, but that may just be me.
$endgroup$
– Javier
yesterday
$begingroup$
@Javier Yes, the limits need not be the same but I have made this choice. If they were different, $tau_gamma$ and $tau_delta$ would be different even if the two worldlines had the same parameterisation.
$endgroup$
– damaihati
16 hours ago
$begingroup$
@Javier Yes, the limits need not be the same but I have made this choice. If they were different, $tau_gamma$ and $tau_delta$ would be different even if the two worldlines had the same parameterisation.
$endgroup$
– damaihati
16 hours ago
add a comment |
Thanks for contributing an answer to Physics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f470705%2fdefinition-of-observer-and-time-measured-by-different-observers-in-general-relat%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
It doesn't make sense to say that two worldlines have the same parameter. You can have the values of the parameter coincide at one crossing point if you want, but nothing guarantees that this will happen when the curves cross again (which is the only place where it makes sense to say the the proper times are the same).
$endgroup$
– Javier
14 hours ago
$begingroup$
@Javier Then what is your opinion on the twin paradox? Let us work in some chart $(U,x)$. The worldline $gamma: (0,1) to M$ such that $gamma_(x)^i=(lambda,0,0,0)^i$ and $delta:(0,1) to M$ such that $delta_(x)^i=(lambda, alpha lambda, 0,0)^i$ for $lambda leq 1/2$ while $delta_(x)^i=(lambda, (1-lambda)alpha, 0,0)^i$ for $lambda > 1/2$. Here, $alpha in (0,1)$. Both the worldlines lie in $U subset M$. So, these two curves have the same parameter $lambda$ but the maps $gamma$ and $delta$ are defined differently. The parameters coincide in the beginning and end.
$endgroup$
– damaihati
11 hours ago
$begingroup$
That is a perfectly good parameterization and it will let you calculate the time difference of the twin paradox, but the second curve is not parametrized by proper time. That's not a problem.
$endgroup$
– Javier
10 hours ago