Question on branch cuts and branch pointsUpdating Wagon's FindAllCrossings2D[] functionSqrt — how to get negative branch?Differential Equation in Complex Plane and Parametric PlotContour Integration along a contour containing two branch pointsDoes not evaluate the Integral and a plane plotHow to plot real roots of complex polynomials avoiding branch cuts?Branch cuts of sqrtHow can I find a list of points that satisfy constraints?ContourPlot problem with Sinc funtionplotting functions containing branch cuts and crossingsHow would one go about plotting this parameterized curve using numerical resources (analitically it's too hard)?

What do you call a Matrix-like slowdown and camera movement effect?

Why are electrically insulating heatsinks so rare? Is it just cost?

How is it possible to have an ability score that is less than 3?

Why do falling prices hurt debtors?

What does "Puller Prush Person" mean?

"You are your self first supporter", a more proper way to say it

How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?

Show that if two triangles built on parallel lines, with equal bases have the same perimeter only if they are congruent.

Do I have a twin with permutated remainders?

strToHex ( string to its hex representation as string)

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?

Why can't I see bouncing of a switch on an oscilloscope?

Service Entrance Breakers Rain Shield

Is it legal for company to use my work email to pretend I still work there?

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

What would happen to a modern skyscraper if it rains micro blackholes?

Smoothness of finite-dimensional functional calculus

How to format long polynomial?

Problem of parity - Can we draw a closed path made up of 20 line segments...

Approximately how much travel time was saved by the opening of the Suez Canal in 1869?

Is it important to consider tone, melody, and musical form while writing a song?

Risk of getting Chronic Wasting Disease (CWD) in the United States?

What's the output of a record cartridge playing an out-of-speed record

How can bays and straits be determined in a procedurally generated map?



Question on branch cuts and branch points


Updating Wagon's FindAllCrossings2D[] functionSqrt — how to get negative branch?Differential Equation in Complex Plane and Parametric PlotContour Integration along a contour containing two branch pointsDoes not evaluate the Integral and a plane plotHow to plot real roots of complex polynomials avoiding branch cuts?Branch cuts of sqrtHow can I find a list of points that satisfy constraints?ContourPlot problem with Sinc funtionplotting functions containing branch cuts and crossingsHow would one go about plotting this parameterized curve using numerical resources (analitically it's too hard)?













7












$begingroup$


Is it possible to determine branch cuts and branch points for complicated functions using mathematica



Iam trying to determine the brnach cuts and branch points of this complicated function



$$sqrt(tanh(z) -tanh(2z))^2 +(tanh(z)*tanh(2z)+1)^2-1-2tanh(z)^2 tanh(2z)^2$$



I have tried in mathematica but it's not obvious for me where are the branch cuts ?



ContourPlot[Im[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y] 
Tanh[2 x + I*2 y] + 1)^2-1 - 2 ((Tanh[x + I*2 y])^2)((Tanh[x + I*y])^2) ]],
x, -10, 10, y, -10, 10, AxesLabel -> Automatic,ContourShading -> Automatic,
ColorFunction -> "Rainbow", Contours -> 20]


enter image description here



ContourPlot[Re[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]Tanh[2 x + I*2 y] + 1)^2 - 1 - 2 ((Tanh[x + I*2 y])^2) ((Tanh[x + I*y])^2) ]],
x, -10, 10, y, -10, 10, AxesLabel -> Automatic,
ContourShading -> Automatic, ColorFunction -> "Rainbow", Contours -> 20]


enter image description here










share|improve this question









New contributor




topspin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    The first step might be to find all the zeros of the function under the square root. Perhaps this might help.
    $endgroup$
    – Hugh
    yesterday






  • 1




    $begingroup$
    Please can you put the equation in a form that can be copied to a mathematica notebook? (Edit your post please.) This is helpful for those of us who might try out approaches.
    $endgroup$
    – Hugh
    yesterday










  • $begingroup$
    Ok, Thank you . I have just edited my post .
    $endgroup$
    – topspin
    yesterday






  • 1




    $begingroup$
    I think I should find the zeros of the Imaginary part of the function under the square root , and finding when is the real part is non negative if I am talking about the principal branch excluding the negative real axis . I have tried to find all the zeros of the function under the square root using mathematica but the output was not clear to me
    $endgroup$
    – topspin
    yesterday
















7












$begingroup$


Is it possible to determine branch cuts and branch points for complicated functions using mathematica



Iam trying to determine the brnach cuts and branch points of this complicated function



$$sqrt(tanh(z) -tanh(2z))^2 +(tanh(z)*tanh(2z)+1)^2-1-2tanh(z)^2 tanh(2z)^2$$



I have tried in mathematica but it's not obvious for me where are the branch cuts ?



ContourPlot[Im[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y] 
Tanh[2 x + I*2 y] + 1)^2-1 - 2 ((Tanh[x + I*2 y])^2)((Tanh[x + I*y])^2) ]],
x, -10, 10, y, -10, 10, AxesLabel -> Automatic,ContourShading -> Automatic,
ColorFunction -> "Rainbow", Contours -> 20]


enter image description here



ContourPlot[Re[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]Tanh[2 x + I*2 y] + 1)^2 - 1 - 2 ((Tanh[x + I*2 y])^2) ((Tanh[x + I*y])^2) ]],
x, -10, 10, y, -10, 10, AxesLabel -> Automatic,
ContourShading -> Automatic, ColorFunction -> "Rainbow", Contours -> 20]


enter image description here










share|improve this question









New contributor




topspin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    The first step might be to find all the zeros of the function under the square root. Perhaps this might help.
    $endgroup$
    – Hugh
    yesterday






  • 1




    $begingroup$
    Please can you put the equation in a form that can be copied to a mathematica notebook? (Edit your post please.) This is helpful for those of us who might try out approaches.
    $endgroup$
    – Hugh
    yesterday










  • $begingroup$
    Ok, Thank you . I have just edited my post .
    $endgroup$
    – topspin
    yesterday






  • 1




    $begingroup$
    I think I should find the zeros of the Imaginary part of the function under the square root , and finding when is the real part is non negative if I am talking about the principal branch excluding the negative real axis . I have tried to find all the zeros of the function under the square root using mathematica but the output was not clear to me
    $endgroup$
    – topspin
    yesterday














7












7








7


2



$begingroup$


Is it possible to determine branch cuts and branch points for complicated functions using mathematica



Iam trying to determine the brnach cuts and branch points of this complicated function



$$sqrt(tanh(z) -tanh(2z))^2 +(tanh(z)*tanh(2z)+1)^2-1-2tanh(z)^2 tanh(2z)^2$$



I have tried in mathematica but it's not obvious for me where are the branch cuts ?



ContourPlot[Im[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y] 
Tanh[2 x + I*2 y] + 1)^2-1 - 2 ((Tanh[x + I*2 y])^2)((Tanh[x + I*y])^2) ]],
x, -10, 10, y, -10, 10, AxesLabel -> Automatic,ContourShading -> Automatic,
ColorFunction -> "Rainbow", Contours -> 20]


enter image description here



ContourPlot[Re[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]Tanh[2 x + I*2 y] + 1)^2 - 1 - 2 ((Tanh[x + I*2 y])^2) ((Tanh[x + I*y])^2) ]],
x, -10, 10, y, -10, 10, AxesLabel -> Automatic,
ContourShading -> Automatic, ColorFunction -> "Rainbow", Contours -> 20]


enter image description here










share|improve this question









New contributor




topspin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Is it possible to determine branch cuts and branch points for complicated functions using mathematica



Iam trying to determine the brnach cuts and branch points of this complicated function



$$sqrt(tanh(z) -tanh(2z))^2 +(tanh(z)*tanh(2z)+1)^2-1-2tanh(z)^2 tanh(2z)^2$$



I have tried in mathematica but it's not obvious for me where are the branch cuts ?



ContourPlot[Im[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y] 
Tanh[2 x + I*2 y] + 1)^2-1 - 2 ((Tanh[x + I*2 y])^2)((Tanh[x + I*y])^2) ]],
x, -10, 10, y, -10, 10, AxesLabel -> Automatic,ContourShading -> Automatic,
ColorFunction -> "Rainbow", Contours -> 20]


enter image description here



ContourPlot[Re[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]Tanh[2 x + I*2 y] + 1)^2 - 1 - 2 ((Tanh[x + I*2 y])^2) ((Tanh[x + I*y])^2) ]],
x, -10, 10, y, -10, 10, AxesLabel -> Automatic,
ContourShading -> Automatic, ColorFunction -> "Rainbow", Contours -> 20]


enter image description here







plotting functions complex






share|improve this question









New contributor




topspin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




topspin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 17 hours ago







topspin













New contributor




topspin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked yesterday









topspintopspin

1363




1363




New contributor




topspin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





topspin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






topspin is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    The first step might be to find all the zeros of the function under the square root. Perhaps this might help.
    $endgroup$
    – Hugh
    yesterday






  • 1




    $begingroup$
    Please can you put the equation in a form that can be copied to a mathematica notebook? (Edit your post please.) This is helpful for those of us who might try out approaches.
    $endgroup$
    – Hugh
    yesterday










  • $begingroup$
    Ok, Thank you . I have just edited my post .
    $endgroup$
    – topspin
    yesterday






  • 1




    $begingroup$
    I think I should find the zeros of the Imaginary part of the function under the square root , and finding when is the real part is non negative if I am talking about the principal branch excluding the negative real axis . I have tried to find all the zeros of the function under the square root using mathematica but the output was not clear to me
    $endgroup$
    – topspin
    yesterday

















  • $begingroup$
    The first step might be to find all the zeros of the function under the square root. Perhaps this might help.
    $endgroup$
    – Hugh
    yesterday






  • 1




    $begingroup$
    Please can you put the equation in a form that can be copied to a mathematica notebook? (Edit your post please.) This is helpful for those of us who might try out approaches.
    $endgroup$
    – Hugh
    yesterday










  • $begingroup$
    Ok, Thank you . I have just edited my post .
    $endgroup$
    – topspin
    yesterday






  • 1




    $begingroup$
    I think I should find the zeros of the Imaginary part of the function under the square root , and finding when is the real part is non negative if I am talking about the principal branch excluding the negative real axis . I have tried to find all the zeros of the function under the square root using mathematica but the output was not clear to me
    $endgroup$
    – topspin
    yesterday
















$begingroup$
The first step might be to find all the zeros of the function under the square root. Perhaps this might help.
$endgroup$
– Hugh
yesterday




$begingroup$
The first step might be to find all the zeros of the function under the square root. Perhaps this might help.
$endgroup$
– Hugh
yesterday




1




1




$begingroup$
Please can you put the equation in a form that can be copied to a mathematica notebook? (Edit your post please.) This is helpful for those of us who might try out approaches.
$endgroup$
– Hugh
yesterday




$begingroup$
Please can you put the equation in a form that can be copied to a mathematica notebook? (Edit your post please.) This is helpful for those of us who might try out approaches.
$endgroup$
– Hugh
yesterday












$begingroup$
Ok, Thank you . I have just edited my post .
$endgroup$
– topspin
yesterday




$begingroup$
Ok, Thank you . I have just edited my post .
$endgroup$
– topspin
yesterday




1




1




$begingroup$
I think I should find the zeros of the Imaginary part of the function under the square root , and finding when is the real part is non negative if I am talking about the principal branch excluding the negative real axis . I have tried to find all the zeros of the function under the square root using mathematica but the output was not clear to me
$endgroup$
– topspin
yesterday





$begingroup$
I think I should find the zeros of the Imaginary part of the function under the square root , and finding when is the real part is non negative if I am talking about the principal branch excluding the negative real axis . I have tried to find all the zeros of the function under the square root using mathematica but the output was not clear to me
$endgroup$
– topspin
yesterday











2 Answers
2






active

oldest

votes


















9












$begingroup$

Perhaps you can make use of the internal functions ComplexAnalysis`BranchCuts and ComplexAnalysis`BranchPoints. First, use a complex variable z instead of x + I y:



expr = Sqrt[(Tanh[z]-Tanh[2z])^2+(Tanh[z] Tanh[2z]+1)^2-1-2 Tanh[z]^2Tanh[2z]^2];


Then, for example, the branch points are:



pts = ComplexAnalysis`BranchPoints[expr, z]



ConditionalExpression[-(I/(2 π C[1])), C[1] ∈ Integers],
ConditionalExpression[2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/2) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/2) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/2 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/2 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((3 I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((3 I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((3 I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(3 I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(I π + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[I π + 2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers]




The above can be simplified a bit with:



Simplify[pts, C[1] ∈ Integers]



-(I/(2 π C[1])), 2 I π C[1], (4 I)/(π - 8 π C[1]),
1/4 I π (-1 + 8 C[1]), -((4 I)/(π + 8 π C[1])),
1/4 I (π + 8 π C[1]), (2 I)/(π - 4 π C[1]),
1/2 I π (-1 + 4 C[1]), -((2 I)/(π + 4 π C[1])),
1/2 I (π + 4 π C[1]), (4 I)/(3 π - 8 π C[1]),
1/4 I π (-3 + 8 C[1]), -((4 I)/(3 π + 8 π C[1])),
1/4 I π (3 + 8 C[1]), -(I/(π + 2 π C[1])),
I (π + 2 π C[1]), 1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]




Similarly, the branch cuts can be found with:



ComplexAnalysis`BranchCuts[expr, z]



C[1] ∈
Integers && ((1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 1]] <
Re[z] < 0 && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])) || (Re[z] ==
0 && (1/2 (-π + 2 π C[1]) < Im[z] <
1/4 (-π + 4 π C[1]) ||
1/4 (-π + 4 π C[1]) < Im[z] < π C[1] || π C[1] <
Im[z] < 1/4 (π + 4 π C[1]) ||
1/4 (π + 4 π C[1]) < Im[z] <
1/2 (π + 2 π C[1]))) || (0 < Re[z] <
1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 2]] && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])))







share|improve this answer









$endgroup$












  • $begingroup$
    Thank you very much .
    $endgroup$
    – topspin
    yesterday










  • $begingroup$
    Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
    $endgroup$
    – topspin
    yesterday











  • $begingroup$
    Or visualizing the branch points and the branch cuts using ContourPlot .
    $endgroup$
    – topspin
    yesterday










  • $begingroup$
    Just to compare: the Maple's result dropbox.com/s/zh7mq932rlvb1uk/branch_cuts.pdf?dl=0 seems to be different.
    $endgroup$
    – user64494
    yesterday


















0












$begingroup$

First start with the branch points: these are the values of z where the root is not single-valued.
First:



myexp = Together[
TrigToExp[
FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] + 1)^2 -
1 - 2 Tanh[z]^2 Tanh[2 z]^2]
]]


$$fracleft(e^2 z-1right)^2 left(4 e^2 z+10 e^4 z+4 e^6 z+e^8 z+1right)left(e^2 z+1right)^2 left(e^4 z+1right)^2$$



Now solve for the zeros of the denominator and numerator. I'll do the numerator: First obtain a polynomial in e^z and then solve the polynomial in terms of a polynomial in just z:



 Expand[Numerator[
Together[TrigToExp[
FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] +
1)^2 - 1 - 2 Tanh[z]^2 Tanh[2 z]^2]
]]]]
mySol = z /.
Solve[1 + 2 z^2 + 3 z^4 - 12 z^6 + 3 z^8 + 2 z^10 + z^12 == 0, z];


Now make the substitution Log[z] and keep in mind Log[z]=Log[Abs[z]]+i (Arg(z)+2k pi) so that we have a set of branch points for all integer k. I will do k=0,1,-1 and then plot the results:enter image description here



p1 = Show[
Graphics[Red,
Point @@ Re[#], Im[#] & /@ (N[Log[#]] & /@ mySol)],
Axes -> True, PlotRange -> 5];
p2 = Show[
Graphics[Blue,
Point @@ Re[#], Im[#] & /@ (N[(Log[#] + 2 [Pi] I)] & /@
mySol)], Axes -> True, PlotRange -> 15];
p3 = Show[
Graphics[Green // Darker,
Point @@ Re[#], Im[#] & /@ (N[(Log[#] - 2 [Pi] I)] & /@
mySol)], Axes -> True, PlotRange -> 15];
Show[p1, p2, p3, PlotRange -> 15]





share|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "387"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    topspin is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194668%2fquestion-on-branch-cuts-and-branch-points%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    9












    $begingroup$

    Perhaps you can make use of the internal functions ComplexAnalysis`BranchCuts and ComplexAnalysis`BranchPoints. First, use a complex variable z instead of x + I y:



    expr = Sqrt[(Tanh[z]-Tanh[2z])^2+(Tanh[z] Tanh[2z]+1)^2-1-2 Tanh[z]^2Tanh[2z]^2];


    Then, for example, the branch points are:



    pts = ComplexAnalysis`BranchPoints[expr, z]



    ConditionalExpression[-(I/(2 π C[1])), C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1], C[1] ∈ Integers],
    ConditionalExpression[1/(-((I π)/4) + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[-((I π)/4) + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/((I π)/4 + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[(I π)/4 + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/(-((I π)/2) + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[-((I π)/2) + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/((I π)/2 + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[(I π)/2 + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/(-((3 I π)/4) + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[-((3 I π)/4) + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/((3 I π)/4 + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[(3 I π)/4 + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/(I π + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[I π + 2 I π C[1], C[1] ∈ Integers],
    ConditionalExpression[1/(
    2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(
    2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(
    2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(
    2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]],
    C[1] ∈ Integers]




    The above can be simplified a bit with:



    Simplify[pts, C[1] ∈ Integers]



    -(I/(2 π C[1])), 2 I π C[1], (4 I)/(π - 8 π C[1]),
    1/4 I π (-1 + 8 C[1]), -((4 I)/(π + 8 π C[1])),
    1/4 I (π + 8 π C[1]), (2 I)/(π - 4 π C[1]),
    1/2 I π (-1 + 4 C[1]), -((2 I)/(π + 4 π C[1])),
    1/2 I (π + 4 π C[1]), (4 I)/(3 π - 8 π C[1]),
    1/4 I π (-3 + 8 C[1]), -((4 I)/(3 π + 8 π C[1])),
    1/4 I π (3 + 8 C[1]), -(I/(π + 2 π C[1])),
    I (π + 2 π C[1]), 1/(
    2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
    2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]], 1/(
    2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
    2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]], 1/(
    2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
    2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]], 1/(
    2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
    2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]], 1/(
    2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
    2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]], 1/(
    2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
    2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]], 1/(
    2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
    2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]], 1/(
    2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
    2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]




    Similarly, the branch cuts can be found with:



    ComplexAnalysis`BranchCuts[expr, z]



    C[1] ∈
    Integers && ((1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 1]] <
    Re[z] < 0 && (Im[
    z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
    1 + E^(4 Re[z]))]] + π C[1] ||
    Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
    1 + E^(4 Re[z]))]] + π C[1])) || (Re[z] ==
    0 && (1/2 (-π + 2 π C[1]) < Im[z] <
    1/4 (-π + 4 π C[1]) ||
    1/4 (-π + 4 π C[1]) < Im[z] < π C[1] || π C[1] <
    Im[z] < 1/4 (π + 4 π C[1]) ||
    1/4 (π + 4 π C[1]) < Im[z] <
    1/2 (π + 2 π C[1]))) || (0 < Re[z] <
    1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 2]] && (Im[
    z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
    1 + E^(4 Re[z]))]] + π C[1] ||
    Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
    1 + E^(4 Re[z]))]] + π C[1])))







    share|improve this answer









    $endgroup$












    • $begingroup$
      Thank you very much .
      $endgroup$
      – topspin
      yesterday










    • $begingroup$
      Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
      $endgroup$
      – topspin
      yesterday











    • $begingroup$
      Or visualizing the branch points and the branch cuts using ContourPlot .
      $endgroup$
      – topspin
      yesterday










    • $begingroup$
      Just to compare: the Maple's result dropbox.com/s/zh7mq932rlvb1uk/branch_cuts.pdf?dl=0 seems to be different.
      $endgroup$
      – user64494
      yesterday















    9












    $begingroup$

    Perhaps you can make use of the internal functions ComplexAnalysis`BranchCuts and ComplexAnalysis`BranchPoints. First, use a complex variable z instead of x + I y:



    expr = Sqrt[(Tanh[z]-Tanh[2z])^2+(Tanh[z] Tanh[2z]+1)^2-1-2 Tanh[z]^2Tanh[2z]^2];


    Then, for example, the branch points are:



    pts = ComplexAnalysis`BranchPoints[expr, z]



    ConditionalExpression[-(I/(2 π C[1])), C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1], C[1] ∈ Integers],
    ConditionalExpression[1/(-((I π)/4) + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[-((I π)/4) + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/((I π)/4 + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[(I π)/4 + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/(-((I π)/2) + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[-((I π)/2) + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/((I π)/2 + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[(I π)/2 + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/(-((3 I π)/4) + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[-((3 I π)/4) + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/((3 I π)/4 + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[(3 I π)/4 + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/(I π + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[I π + 2 I π C[1], C[1] ∈ Integers],
    ConditionalExpression[1/(
    2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(
    2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(
    2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(
    2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]],
    C[1] ∈ Integers]




    The above can be simplified a bit with:



    Simplify[pts, C[1] ∈ Integers]



    -(I/(2 π C[1])), 2 I π C[1], (4 I)/(π - 8 π C[1]),
    1/4 I π (-1 + 8 C[1]), -((4 I)/(π + 8 π C[1])),
    1/4 I (π + 8 π C[1]), (2 I)/(π - 4 π C[1]),
    1/2 I π (-1 + 4 C[1]), -((2 I)/(π + 4 π C[1])),
    1/2 I (π + 4 π C[1]), (4 I)/(3 π - 8 π C[1]),
    1/4 I π (-3 + 8 C[1]), -((4 I)/(3 π + 8 π C[1])),
    1/4 I π (3 + 8 C[1]), -(I/(π + 2 π C[1])),
    I (π + 2 π C[1]), 1/(
    2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
    2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]], 1/(
    2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
    2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]], 1/(
    2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
    2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]], 1/(
    2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
    2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]], 1/(
    2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
    2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]], 1/(
    2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
    2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]], 1/(
    2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
    2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]], 1/(
    2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
    2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]




    Similarly, the branch cuts can be found with:



    ComplexAnalysis`BranchCuts[expr, z]



    C[1] ∈
    Integers && ((1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 1]] <
    Re[z] < 0 && (Im[
    z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
    1 + E^(4 Re[z]))]] + π C[1] ||
    Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
    1 + E^(4 Re[z]))]] + π C[1])) || (Re[z] ==
    0 && (1/2 (-π + 2 π C[1]) < Im[z] <
    1/4 (-π + 4 π C[1]) ||
    1/4 (-π + 4 π C[1]) < Im[z] < π C[1] || π C[1] <
    Im[z] < 1/4 (π + 4 π C[1]) ||
    1/4 (π + 4 π C[1]) < Im[z] <
    1/2 (π + 2 π C[1]))) || (0 < Re[z] <
    1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 2]] && (Im[
    z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
    1 + E^(4 Re[z]))]] + π C[1] ||
    Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
    1 + E^(4 Re[z]))]] + π C[1])))







    share|improve this answer









    $endgroup$












    • $begingroup$
      Thank you very much .
      $endgroup$
      – topspin
      yesterday










    • $begingroup$
      Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
      $endgroup$
      – topspin
      yesterday











    • $begingroup$
      Or visualizing the branch points and the branch cuts using ContourPlot .
      $endgroup$
      – topspin
      yesterday










    • $begingroup$
      Just to compare: the Maple's result dropbox.com/s/zh7mq932rlvb1uk/branch_cuts.pdf?dl=0 seems to be different.
      $endgroup$
      – user64494
      yesterday













    9












    9








    9





    $begingroup$

    Perhaps you can make use of the internal functions ComplexAnalysis`BranchCuts and ComplexAnalysis`BranchPoints. First, use a complex variable z instead of x + I y:



    expr = Sqrt[(Tanh[z]-Tanh[2z])^2+(Tanh[z] Tanh[2z]+1)^2-1-2 Tanh[z]^2Tanh[2z]^2];


    Then, for example, the branch points are:



    pts = ComplexAnalysis`BranchPoints[expr, z]



    ConditionalExpression[-(I/(2 π C[1])), C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1], C[1] ∈ Integers],
    ConditionalExpression[1/(-((I π)/4) + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[-((I π)/4) + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/((I π)/4 + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[(I π)/4 + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/(-((I π)/2) + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[-((I π)/2) + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/((I π)/2 + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[(I π)/2 + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/(-((3 I π)/4) + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[-((3 I π)/4) + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/((3 I π)/4 + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[(3 I π)/4 + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/(I π + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[I π + 2 I π C[1], C[1] ∈ Integers],
    ConditionalExpression[1/(
    2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(
    2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(
    2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(
    2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]],
    C[1] ∈ Integers]




    The above can be simplified a bit with:



    Simplify[pts, C[1] ∈ Integers]



    -(I/(2 π C[1])), 2 I π C[1], (4 I)/(π - 8 π C[1]),
    1/4 I π (-1 + 8 C[1]), -((4 I)/(π + 8 π C[1])),
    1/4 I (π + 8 π C[1]), (2 I)/(π - 4 π C[1]),
    1/2 I π (-1 + 4 C[1]), -((2 I)/(π + 4 π C[1])),
    1/2 I (π + 4 π C[1]), (4 I)/(3 π - 8 π C[1]),
    1/4 I π (-3 + 8 C[1]), -((4 I)/(3 π + 8 π C[1])),
    1/4 I π (3 + 8 C[1]), -(I/(π + 2 π C[1])),
    I (π + 2 π C[1]), 1/(
    2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
    2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]], 1/(
    2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
    2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]], 1/(
    2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
    2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]], 1/(
    2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
    2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]], 1/(
    2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
    2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]], 1/(
    2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
    2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]], 1/(
    2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
    2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]], 1/(
    2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
    2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]




    Similarly, the branch cuts can be found with:



    ComplexAnalysis`BranchCuts[expr, z]



    C[1] ∈
    Integers && ((1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 1]] <
    Re[z] < 0 && (Im[
    z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
    1 + E^(4 Re[z]))]] + π C[1] ||
    Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
    1 + E^(4 Re[z]))]] + π C[1])) || (Re[z] ==
    0 && (1/2 (-π + 2 π C[1]) < Im[z] <
    1/4 (-π + 4 π C[1]) ||
    1/4 (-π + 4 π C[1]) < Im[z] < π C[1] || π C[1] <
    Im[z] < 1/4 (π + 4 π C[1]) ||
    1/4 (π + 4 π C[1]) < Im[z] <
    1/2 (π + 2 π C[1]))) || (0 < Re[z] <
    1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 2]] && (Im[
    z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
    1 + E^(4 Re[z]))]] + π C[1] ||
    Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
    1 + E^(4 Re[z]))]] + π C[1])))







    share|improve this answer









    $endgroup$



    Perhaps you can make use of the internal functions ComplexAnalysis`BranchCuts and ComplexAnalysis`BranchPoints. First, use a complex variable z instead of x + I y:



    expr = Sqrt[(Tanh[z]-Tanh[2z])^2+(Tanh[z] Tanh[2z]+1)^2-1-2 Tanh[z]^2Tanh[2z]^2];


    Then, for example, the branch points are:



    pts = ComplexAnalysis`BranchPoints[expr, z]



    ConditionalExpression[-(I/(2 π C[1])), C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1], C[1] ∈ Integers],
    ConditionalExpression[1/(-((I π)/4) + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[-((I π)/4) + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/((I π)/4 + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[(I π)/4 + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/(-((I π)/2) + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[-((I π)/2) + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/((I π)/2 + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[(I π)/2 + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/(-((3 I π)/4) + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[-((3 I π)/4) + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/((3 I π)/4 + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[(3 I π)/4 + 2 I π C[1],
    C[1] ∈ Integers],
    ConditionalExpression[1/(I π + 2 I π C[1]),
    C[1] ∈ Integers],
    ConditionalExpression[I π + 2 I π C[1], C[1] ∈ Integers],
    ConditionalExpression[1/(
    2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(
    2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(
    2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(
    2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]],
    C[1] ∈ Integers],
    ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
    C[1] ∈ Integers],
    ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]],
    C[1] ∈ Integers]




    The above can be simplified a bit with:



    Simplify[pts, C[1] ∈ Integers]



    -(I/(2 π C[1])), 2 I π C[1], (4 I)/(π - 8 π C[1]),
    1/4 I π (-1 + 8 C[1]), -((4 I)/(π + 8 π C[1])),
    1/4 I (π + 8 π C[1]), (2 I)/(π - 4 π C[1]),
    1/2 I π (-1 + 4 C[1]), -((2 I)/(π + 4 π C[1])),
    1/2 I (π + 4 π C[1]), (4 I)/(3 π - 8 π C[1]),
    1/4 I π (-3 + 8 C[1]), -((4 I)/(3 π + 8 π C[1])),
    1/4 I π (3 + 8 C[1]), -(I/(π + 2 π C[1])),
    I (π + 2 π C[1]), 1/(
    2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
    2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]], 1/(
    2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
    2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]], 1/(
    2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
    2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]], 1/(
    2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
    2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]], 1/(
    2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
    2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]], 1/(
    2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
    2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]], 1/(
    2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
    2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]], 1/(
    2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
    2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]




    Similarly, the branch cuts can be found with:



    ComplexAnalysis`BranchCuts[expr, z]



    C[1] ∈
    Integers && ((1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 1]] <
    Re[z] < 0 && (Im[
    z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
    1 + E^(4 Re[z]))]] + π C[1] ||
    Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
    1 + E^(4 Re[z]))]] + π C[1])) || (Re[z] ==
    0 && (1/2 (-π + 2 π C[1]) < Im[z] <
    1/4 (-π + 4 π C[1]) ||
    1/4 (-π + 4 π C[1]) < Im[z] < π C[1] || π C[1] <
    Im[z] < 1/4 (π + 4 π C[1]) ||
    1/4 (π + 4 π C[1]) < Im[z] <
    1/2 (π + 2 π C[1]))) || (0 < Re[z] <
    1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 2]] && (Im[
    z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
    1 + E^(4 Re[z]))]] + π C[1] ||
    Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
    1 + E^(4 Re[z]))]] + π C[1])))








    share|improve this answer












    share|improve this answer



    share|improve this answer










    answered yesterday









    Carl WollCarl Woll

    72.9k396188




    72.9k396188











    • $begingroup$
      Thank you very much .
      $endgroup$
      – topspin
      yesterday










    • $begingroup$
      Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
      $endgroup$
      – topspin
      yesterday











    • $begingroup$
      Or visualizing the branch points and the branch cuts using ContourPlot .
      $endgroup$
      – topspin
      yesterday










    • $begingroup$
      Just to compare: the Maple's result dropbox.com/s/zh7mq932rlvb1uk/branch_cuts.pdf?dl=0 seems to be different.
      $endgroup$
      – user64494
      yesterday
















    • $begingroup$
      Thank you very much .
      $endgroup$
      – topspin
      yesterday










    • $begingroup$
      Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
      $endgroup$
      – topspin
      yesterday











    • $begingroup$
      Or visualizing the branch points and the branch cuts using ContourPlot .
      $endgroup$
      – topspin
      yesterday










    • $begingroup$
      Just to compare: the Maple's result dropbox.com/s/zh7mq932rlvb1uk/branch_cuts.pdf?dl=0 seems to be different.
      $endgroup$
      – user64494
      yesterday















    $begingroup$
    Thank you very much .
    $endgroup$
    – topspin
    yesterday




    $begingroup$
    Thank you very much .
    $endgroup$
    – topspin
    yesterday












    $begingroup$
    Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
    $endgroup$
    – topspin
    yesterday





    $begingroup$
    Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
    $endgroup$
    – topspin
    yesterday













    $begingroup$
    Or visualizing the branch points and the branch cuts using ContourPlot .
    $endgroup$
    – topspin
    yesterday




    $begingroup$
    Or visualizing the branch points and the branch cuts using ContourPlot .
    $endgroup$
    – topspin
    yesterday












    $begingroup$
    Just to compare: the Maple's result dropbox.com/s/zh7mq932rlvb1uk/branch_cuts.pdf?dl=0 seems to be different.
    $endgroup$
    – user64494
    yesterday




    $begingroup$
    Just to compare: the Maple's result dropbox.com/s/zh7mq932rlvb1uk/branch_cuts.pdf?dl=0 seems to be different.
    $endgroup$
    – user64494
    yesterday











    0












    $begingroup$

    First start with the branch points: these are the values of z where the root is not single-valued.
    First:



    myexp = Together[
    TrigToExp[
    FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] + 1)^2 -
    1 - 2 Tanh[z]^2 Tanh[2 z]^2]
    ]]


    $$fracleft(e^2 z-1right)^2 left(4 e^2 z+10 e^4 z+4 e^6 z+e^8 z+1right)left(e^2 z+1right)^2 left(e^4 z+1right)^2$$



    Now solve for the zeros of the denominator and numerator. I'll do the numerator: First obtain a polynomial in e^z and then solve the polynomial in terms of a polynomial in just z:



     Expand[Numerator[
    Together[TrigToExp[
    FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] +
    1)^2 - 1 - 2 Tanh[z]^2 Tanh[2 z]^2]
    ]]]]
    mySol = z /.
    Solve[1 + 2 z^2 + 3 z^4 - 12 z^6 + 3 z^8 + 2 z^10 + z^12 == 0, z];


    Now make the substitution Log[z] and keep in mind Log[z]=Log[Abs[z]]+i (Arg(z)+2k pi) so that we have a set of branch points for all integer k. I will do k=0,1,-1 and then plot the results:enter image description here



    p1 = Show[
    Graphics[Red,
    Point @@ Re[#], Im[#] & /@ (N[Log[#]] & /@ mySol)],
    Axes -> True, PlotRange -> 5];
    p2 = Show[
    Graphics[Blue,
    Point @@ Re[#], Im[#] & /@ (N[(Log[#] + 2 [Pi] I)] & /@
    mySol)], Axes -> True, PlotRange -> 15];
    p3 = Show[
    Graphics[Green // Darker,
    Point @@ Re[#], Im[#] & /@ (N[(Log[#] - 2 [Pi] I)] & /@
    mySol)], Axes -> True, PlotRange -> 15];
    Show[p1, p2, p3, PlotRange -> 15]





    share|improve this answer









    $endgroup$

















      0












      $begingroup$

      First start with the branch points: these are the values of z where the root is not single-valued.
      First:



      myexp = Together[
      TrigToExp[
      FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] + 1)^2 -
      1 - 2 Tanh[z]^2 Tanh[2 z]^2]
      ]]


      $$fracleft(e^2 z-1right)^2 left(4 e^2 z+10 e^4 z+4 e^6 z+e^8 z+1right)left(e^2 z+1right)^2 left(e^4 z+1right)^2$$



      Now solve for the zeros of the denominator and numerator. I'll do the numerator: First obtain a polynomial in e^z and then solve the polynomial in terms of a polynomial in just z:



       Expand[Numerator[
      Together[TrigToExp[
      FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] +
      1)^2 - 1 - 2 Tanh[z]^2 Tanh[2 z]^2]
      ]]]]
      mySol = z /.
      Solve[1 + 2 z^2 + 3 z^4 - 12 z^6 + 3 z^8 + 2 z^10 + z^12 == 0, z];


      Now make the substitution Log[z] and keep in mind Log[z]=Log[Abs[z]]+i (Arg(z)+2k pi) so that we have a set of branch points for all integer k. I will do k=0,1,-1 and then plot the results:enter image description here



      p1 = Show[
      Graphics[Red,
      Point @@ Re[#], Im[#] & /@ (N[Log[#]] & /@ mySol)],
      Axes -> True, PlotRange -> 5];
      p2 = Show[
      Graphics[Blue,
      Point @@ Re[#], Im[#] & /@ (N[(Log[#] + 2 [Pi] I)] & /@
      mySol)], Axes -> True, PlotRange -> 15];
      p3 = Show[
      Graphics[Green // Darker,
      Point @@ Re[#], Im[#] & /@ (N[(Log[#] - 2 [Pi] I)] & /@
      mySol)], Axes -> True, PlotRange -> 15];
      Show[p1, p2, p3, PlotRange -> 15]





      share|improve this answer









      $endgroup$















        0












        0








        0





        $begingroup$

        First start with the branch points: these are the values of z where the root is not single-valued.
        First:



        myexp = Together[
        TrigToExp[
        FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] + 1)^2 -
        1 - 2 Tanh[z]^2 Tanh[2 z]^2]
        ]]


        $$fracleft(e^2 z-1right)^2 left(4 e^2 z+10 e^4 z+4 e^6 z+e^8 z+1right)left(e^2 z+1right)^2 left(e^4 z+1right)^2$$



        Now solve for the zeros of the denominator and numerator. I'll do the numerator: First obtain a polynomial in e^z and then solve the polynomial in terms of a polynomial in just z:



         Expand[Numerator[
        Together[TrigToExp[
        FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] +
        1)^2 - 1 - 2 Tanh[z]^2 Tanh[2 z]^2]
        ]]]]
        mySol = z /.
        Solve[1 + 2 z^2 + 3 z^4 - 12 z^6 + 3 z^8 + 2 z^10 + z^12 == 0, z];


        Now make the substitution Log[z] and keep in mind Log[z]=Log[Abs[z]]+i (Arg(z)+2k pi) so that we have a set of branch points for all integer k. I will do k=0,1,-1 and then plot the results:enter image description here



        p1 = Show[
        Graphics[Red,
        Point @@ Re[#], Im[#] & /@ (N[Log[#]] & /@ mySol)],
        Axes -> True, PlotRange -> 5];
        p2 = Show[
        Graphics[Blue,
        Point @@ Re[#], Im[#] & /@ (N[(Log[#] + 2 [Pi] I)] & /@
        mySol)], Axes -> True, PlotRange -> 15];
        p3 = Show[
        Graphics[Green // Darker,
        Point @@ Re[#], Im[#] & /@ (N[(Log[#] - 2 [Pi] I)] & /@
        mySol)], Axes -> True, PlotRange -> 15];
        Show[p1, p2, p3, PlotRange -> 15]





        share|improve this answer









        $endgroup$



        First start with the branch points: these are the values of z where the root is not single-valued.
        First:



        myexp = Together[
        TrigToExp[
        FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] + 1)^2 -
        1 - 2 Tanh[z]^2 Tanh[2 z]^2]
        ]]


        $$fracleft(e^2 z-1right)^2 left(4 e^2 z+10 e^4 z+4 e^6 z+e^8 z+1right)left(e^2 z+1right)^2 left(e^4 z+1right)^2$$



        Now solve for the zeros of the denominator and numerator. I'll do the numerator: First obtain a polynomial in e^z and then solve the polynomial in terms of a polynomial in just z:



         Expand[Numerator[
        Together[TrigToExp[
        FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] +
        1)^2 - 1 - 2 Tanh[z]^2 Tanh[2 z]^2]
        ]]]]
        mySol = z /.
        Solve[1 + 2 z^2 + 3 z^4 - 12 z^6 + 3 z^8 + 2 z^10 + z^12 == 0, z];


        Now make the substitution Log[z] and keep in mind Log[z]=Log[Abs[z]]+i (Arg(z)+2k pi) so that we have a set of branch points for all integer k. I will do k=0,1,-1 and then plot the results:enter image description here



        p1 = Show[
        Graphics[Red,
        Point @@ Re[#], Im[#] & /@ (N[Log[#]] & /@ mySol)],
        Axes -> True, PlotRange -> 5];
        p2 = Show[
        Graphics[Blue,
        Point @@ Re[#], Im[#] & /@ (N[(Log[#] + 2 [Pi] I)] & /@
        mySol)], Axes -> True, PlotRange -> 15];
        p3 = Show[
        Graphics[Green // Darker,
        Point @@ Re[#], Im[#] & /@ (N[(Log[#] - 2 [Pi] I)] & /@
        mySol)], Axes -> True, PlotRange -> 15];
        Show[p1, p2, p3, PlotRange -> 15]






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered 15 hours ago









        DominicDominic

        876




        876




















            topspin is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            topspin is a new contributor. Be nice, and check out our Code of Conduct.












            topspin is a new contributor. Be nice, and check out our Code of Conduct.











            topspin is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Mathematica Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194668%2fquestion-on-branch-cuts-and-branch-points%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

            Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation

            Magento 2 “No Payment Methods” in Admin New OrderHow to integrate Paypal Express Checkout with the Magento APIMagento 1.5 - Sales > Order > edit order and shipping methods disappearAuto Invoice Check/Money Order Payment methodAdd more simple payment methods?Shipping methods not showingWhat should I do to change payment methods if changing the configuration has no effects?1.9 - No Payment Methods showing upMy Payment Methods not Showing for downloadable/virtual product when checkout?Magento2 API to access internal payment methodHow to call an existing payment methods in the registration form?