Question on branch cuts and branch pointsUpdating Wagon's FindAllCrossings2D[] functionSqrt — how to get negative branch?Differential Equation in Complex Plane and Parametric PlotContour Integration along a contour containing two branch pointsDoes not evaluate the Integral and a plane plotHow to plot real roots of complex polynomials avoiding branch cuts?Branch cuts of sqrtHow can I find a list of points that satisfy constraints?ContourPlot problem with Sinc funtionplotting functions containing branch cuts and crossingsHow would one go about plotting this parameterized curve using numerical resources (analitically it's too hard)?
What do you call a Matrix-like slowdown and camera movement effect?
Why are electrically insulating heatsinks so rare? Is it just cost?
How is it possible to have an ability score that is less than 3?
Why do falling prices hurt debtors?
What does "Puller Prush Person" mean?
"You are your self first supporter", a more proper way to say it
How do we improve the relationship with a client software team that performs poorly and is becoming less collaborative?
Show that if two triangles built on parallel lines, with equal bases have the same perimeter only if they are congruent.
Do I have a twin with permutated remainders?
strToHex ( string to its hex representation as string)
Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?
Why can't I see bouncing of a switch on an oscilloscope?
Service Entrance Breakers Rain Shield
Is it legal for company to use my work email to pretend I still work there?
Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?
What would happen to a modern skyscraper if it rains micro blackholes?
Smoothness of finite-dimensional functional calculus
How to format long polynomial?
Problem of parity - Can we draw a closed path made up of 20 line segments...
Approximately how much travel time was saved by the opening of the Suez Canal in 1869?
Is it important to consider tone, melody, and musical form while writing a song?
Risk of getting Chronic Wasting Disease (CWD) in the United States?
What's the output of a record cartridge playing an out-of-speed record
How can bays and straits be determined in a procedurally generated map?
Question on branch cuts and branch points
Updating Wagon's FindAllCrossings2D[] functionSqrt — how to get negative branch?Differential Equation in Complex Plane and Parametric PlotContour Integration along a contour containing two branch pointsDoes not evaluate the Integral and a plane plotHow to plot real roots of complex polynomials avoiding branch cuts?Branch cuts of sqrtHow can I find a list of points that satisfy constraints?ContourPlot problem with Sinc funtionplotting functions containing branch cuts and crossingsHow would one go about plotting this parameterized curve using numerical resources (analitically it's too hard)?
$begingroup$
Is it possible to determine branch cuts and branch points for complicated functions using mathematica
Iam trying to determine the brnach cuts and branch points of this complicated function
$$sqrt(tanh(z) -tanh(2z))^2 +(tanh(z)*tanh(2z)+1)^2-1-2tanh(z)^2 tanh(2z)^2$$
I have tried in mathematica but it's not obvious for me where are the branch cuts ?
ContourPlot[Im[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]
Tanh[2 x + I*2 y] + 1)^2-1 - 2 ((Tanh[x + I*2 y])^2)((Tanh[x + I*y])^2) ]],
x, -10, 10, y, -10, 10, AxesLabel -> Automatic,ContourShading -> Automatic,
ColorFunction -> "Rainbow", Contours -> 20]
ContourPlot[Re[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]Tanh[2 x + I*2 y] + 1)^2 - 1 - 2 ((Tanh[x + I*2 y])^2) ((Tanh[x + I*y])^2) ]],
x, -10, 10, y, -10, 10, AxesLabel -> Automatic,
ContourShading -> Automatic, ColorFunction -> "Rainbow", Contours -> 20]
plotting functions complex
New contributor
$endgroup$
add a comment |
$begingroup$
Is it possible to determine branch cuts and branch points for complicated functions using mathematica
Iam trying to determine the brnach cuts and branch points of this complicated function
$$sqrt(tanh(z) -tanh(2z))^2 +(tanh(z)*tanh(2z)+1)^2-1-2tanh(z)^2 tanh(2z)^2$$
I have tried in mathematica but it's not obvious for me where are the branch cuts ?
ContourPlot[Im[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]
Tanh[2 x + I*2 y] + 1)^2-1 - 2 ((Tanh[x + I*2 y])^2)((Tanh[x + I*y])^2) ]],
x, -10, 10, y, -10, 10, AxesLabel -> Automatic,ContourShading -> Automatic,
ColorFunction -> "Rainbow", Contours -> 20]
ContourPlot[Re[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]Tanh[2 x + I*2 y] + 1)^2 - 1 - 2 ((Tanh[x + I*2 y])^2) ((Tanh[x + I*y])^2) ]],
x, -10, 10, y, -10, 10, AxesLabel -> Automatic,
ContourShading -> Automatic, ColorFunction -> "Rainbow", Contours -> 20]
plotting functions complex
New contributor
$endgroup$
$begingroup$
The first step might be to find all the zeros of the function under the square root. Perhaps this might help.
$endgroup$
– Hugh
yesterday
1
$begingroup$
Please can you put the equation in a form that can be copied to a mathematica notebook? (Edit your post please.) This is helpful for those of us who might try out approaches.
$endgroup$
– Hugh
yesterday
$begingroup$
Ok, Thank you . I have just edited my post .
$endgroup$
– topspin
yesterday
1
$begingroup$
I think I should find the zeros of the Imaginary part of the function under the square root , and finding when is the real part is non negative if I am talking about the principal branch excluding the negative real axis . I have tried to find all the zeros of the function under the square root using mathematica but the output was not clear to me
$endgroup$
– topspin
yesterday
add a comment |
$begingroup$
Is it possible to determine branch cuts and branch points for complicated functions using mathematica
Iam trying to determine the brnach cuts and branch points of this complicated function
$$sqrt(tanh(z) -tanh(2z))^2 +(tanh(z)*tanh(2z)+1)^2-1-2tanh(z)^2 tanh(2z)^2$$
I have tried in mathematica but it's not obvious for me where are the branch cuts ?
ContourPlot[Im[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]
Tanh[2 x + I*2 y] + 1)^2-1 - 2 ((Tanh[x + I*2 y])^2)((Tanh[x + I*y])^2) ]],
x, -10, 10, y, -10, 10, AxesLabel -> Automatic,ContourShading -> Automatic,
ColorFunction -> "Rainbow", Contours -> 20]
ContourPlot[Re[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]Tanh[2 x + I*2 y] + 1)^2 - 1 - 2 ((Tanh[x + I*2 y])^2) ((Tanh[x + I*y])^2) ]],
x, -10, 10, y, -10, 10, AxesLabel -> Automatic,
ContourShading -> Automatic, ColorFunction -> "Rainbow", Contours -> 20]
plotting functions complex
New contributor
$endgroup$
Is it possible to determine branch cuts and branch points for complicated functions using mathematica
Iam trying to determine the brnach cuts and branch points of this complicated function
$$sqrt(tanh(z) -tanh(2z))^2 +(tanh(z)*tanh(2z)+1)^2-1-2tanh(z)^2 tanh(2z)^2$$
I have tried in mathematica but it's not obvious for me where are the branch cuts ?
ContourPlot[Im[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]
Tanh[2 x + I*2 y] + 1)^2-1 - 2 ((Tanh[x + I*2 y])^2)((Tanh[x + I*y])^2) ]],
x, -10, 10, y, -10, 10, AxesLabel -> Automatic,ContourShading -> Automatic,
ColorFunction -> "Rainbow", Contours -> 20]
ContourPlot[Re[Sqrt[(Tanh[x + I*y] - Tanh[2 x + I*2 y])^2 + (Tanh[x + I*y]Tanh[2 x + I*2 y] + 1)^2 - 1 - 2 ((Tanh[x + I*2 y])^2) ((Tanh[x + I*y])^2) ]],
x, -10, 10, y, -10, 10, AxesLabel -> Automatic,
ContourShading -> Automatic, ColorFunction -> "Rainbow", Contours -> 20]
plotting functions complex
plotting functions complex
New contributor
New contributor
edited 17 hours ago
topspin
New contributor
asked yesterday
topspintopspin
1363
1363
New contributor
New contributor
$begingroup$
The first step might be to find all the zeros of the function under the square root. Perhaps this might help.
$endgroup$
– Hugh
yesterday
1
$begingroup$
Please can you put the equation in a form that can be copied to a mathematica notebook? (Edit your post please.) This is helpful for those of us who might try out approaches.
$endgroup$
– Hugh
yesterday
$begingroup$
Ok, Thank you . I have just edited my post .
$endgroup$
– topspin
yesterday
1
$begingroup$
I think I should find the zeros of the Imaginary part of the function under the square root , and finding when is the real part is non negative if I am talking about the principal branch excluding the negative real axis . I have tried to find all the zeros of the function under the square root using mathematica but the output was not clear to me
$endgroup$
– topspin
yesterday
add a comment |
$begingroup$
The first step might be to find all the zeros of the function under the square root. Perhaps this might help.
$endgroup$
– Hugh
yesterday
1
$begingroup$
Please can you put the equation in a form that can be copied to a mathematica notebook? (Edit your post please.) This is helpful for those of us who might try out approaches.
$endgroup$
– Hugh
yesterday
$begingroup$
Ok, Thank you . I have just edited my post .
$endgroup$
– topspin
yesterday
1
$begingroup$
I think I should find the zeros of the Imaginary part of the function under the square root , and finding when is the real part is non negative if I am talking about the principal branch excluding the negative real axis . I have tried to find all the zeros of the function under the square root using mathematica but the output was not clear to me
$endgroup$
– topspin
yesterday
$begingroup$
The first step might be to find all the zeros of the function under the square root. Perhaps this might help.
$endgroup$
– Hugh
yesterday
$begingroup$
The first step might be to find all the zeros of the function under the square root. Perhaps this might help.
$endgroup$
– Hugh
yesterday
1
1
$begingroup$
Please can you put the equation in a form that can be copied to a mathematica notebook? (Edit your post please.) This is helpful for those of us who might try out approaches.
$endgroup$
– Hugh
yesterday
$begingroup$
Please can you put the equation in a form that can be copied to a mathematica notebook? (Edit your post please.) This is helpful for those of us who might try out approaches.
$endgroup$
– Hugh
yesterday
$begingroup$
Ok, Thank you . I have just edited my post .
$endgroup$
– topspin
yesterday
$begingroup$
Ok, Thank you . I have just edited my post .
$endgroup$
– topspin
yesterday
1
1
$begingroup$
I think I should find the zeros of the Imaginary part of the function under the square root , and finding when is the real part is non negative if I am talking about the principal branch excluding the negative real axis . I have tried to find all the zeros of the function under the square root using mathematica but the output was not clear to me
$endgroup$
– topspin
yesterday
$begingroup$
I think I should find the zeros of the Imaginary part of the function under the square root , and finding when is the real part is non negative if I am talking about the principal branch excluding the negative real axis . I have tried to find all the zeros of the function under the square root using mathematica but the output was not clear to me
$endgroup$
– topspin
yesterday
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Perhaps you can make use of the internal functions ComplexAnalysis`BranchCuts
and ComplexAnalysis`BranchPoints
. First, use a complex variable z
instead of x + I y
:
expr = Sqrt[(Tanh[z]-Tanh[2z])^2+(Tanh[z] Tanh[2z]+1)^2-1-2 Tanh[z]^2Tanh[2z]^2];
Then, for example, the branch points are:
pts = ComplexAnalysis`BranchPoints[expr, z]
ConditionalExpression[-(I/(2 π C[1])), C[1] ∈ Integers],
ConditionalExpression[2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/2) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/2) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/2 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/2 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((3 I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((3 I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((3 I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(3 I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(I π + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[I π + 2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers]
The above can be simplified a bit with:
Simplify[pts, C[1] ∈ Integers]
-(I/(2 π C[1])), 2 I π C[1], (4 I)/(π - 8 π C[1]),
1/4 I π (-1 + 8 C[1]), -((4 I)/(π + 8 π C[1])),
1/4 I (π + 8 π C[1]), (2 I)/(π - 4 π C[1]),
1/2 I π (-1 + 4 C[1]), -((2 I)/(π + 4 π C[1])),
1/2 I (π + 4 π C[1]), (4 I)/(3 π - 8 π C[1]),
1/4 I π (-3 + 8 C[1]), -((4 I)/(3 π + 8 π C[1])),
1/4 I π (3 + 8 C[1]), -(I/(π + 2 π C[1])),
I (π + 2 π C[1]), 1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]
Similarly, the branch cuts can be found with:
ComplexAnalysis`BranchCuts[expr, z]
C[1] ∈
Integers && ((1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 1]] <
Re[z] < 0 && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])) || (Re[z] ==
0 && (1/2 (-π + 2 π C[1]) < Im[z] <
1/4 (-π + 4 π C[1]) ||
1/4 (-π + 4 π C[1]) < Im[z] < π C[1] || π C[1] <
Im[z] < 1/4 (π + 4 π C[1]) ||
1/4 (π + 4 π C[1]) < Im[z] <
1/2 (π + 2 π C[1]))) || (0 < Re[z] <
1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 2]] && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])))
$endgroup$
$begingroup$
Thank you very much .
$endgroup$
– topspin
yesterday
$begingroup$
Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
$endgroup$
– topspin
yesterday
$begingroup$
Or visualizing the branch points and the branch cuts using ContourPlot .
$endgroup$
– topspin
yesterday
$begingroup$
Just to compare: the Maple's result dropbox.com/s/zh7mq932rlvb1uk/branch_cuts.pdf?dl=0 seems to be different.
$endgroup$
– user64494
yesterday
add a comment |
$begingroup$
First start with the branch points: these are the values of z where the root is not single-valued.
First:
myexp = Together[
TrigToExp[
FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] + 1)^2 -
1 - 2 Tanh[z]^2 Tanh[2 z]^2]
]]
$$fracleft(e^2 z-1right)^2 left(4 e^2 z+10 e^4 z+4 e^6 z+e^8 z+1right)left(e^2 z+1right)^2 left(e^4 z+1right)^2$$
Now solve for the zeros of the denominator and numerator. I'll do the numerator: First obtain a polynomial in e^z and then solve the polynomial in terms of a polynomial in just z:
Expand[Numerator[
Together[TrigToExp[
FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] +
1)^2 - 1 - 2 Tanh[z]^2 Tanh[2 z]^2]
]]]]
mySol = z /.
Solve[1 + 2 z^2 + 3 z^4 - 12 z^6 + 3 z^8 + 2 z^10 + z^12 == 0, z];
Now make the substitution Log[z] and keep in mind Log[z]=Log[Abs[z]]+i (Arg(z)+2k pi) so that we have a set of branch points for all integer k. I will do k=0,1,-1 and then plot the results:
p1 = Show[
Graphics[Red,
Point @@ Re[#], Im[#] & /@ (N[Log[#]] & /@ mySol)],
Axes -> True, PlotRange -> 5];
p2 = Show[
Graphics[Blue,
Point @@ Re[#], Im[#] & /@ (N[(Log[#] + 2 [Pi] I)] & /@
mySol)], Axes -> True, PlotRange -> 15];
p3 = Show[
Graphics[Green // Darker,
Point @@ Re[#], Im[#] & /@ (N[(Log[#] - 2 [Pi] I)] & /@
mySol)], Axes -> True, PlotRange -> 15];
Show[p1, p2, p3, PlotRange -> 15]
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
topspin is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194668%2fquestion-on-branch-cuts-and-branch-points%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Perhaps you can make use of the internal functions ComplexAnalysis`BranchCuts
and ComplexAnalysis`BranchPoints
. First, use a complex variable z
instead of x + I y
:
expr = Sqrt[(Tanh[z]-Tanh[2z])^2+(Tanh[z] Tanh[2z]+1)^2-1-2 Tanh[z]^2Tanh[2z]^2];
Then, for example, the branch points are:
pts = ComplexAnalysis`BranchPoints[expr, z]
ConditionalExpression[-(I/(2 π C[1])), C[1] ∈ Integers],
ConditionalExpression[2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/2) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/2) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/2 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/2 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((3 I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((3 I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((3 I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(3 I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(I π + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[I π + 2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers]
The above can be simplified a bit with:
Simplify[pts, C[1] ∈ Integers]
-(I/(2 π C[1])), 2 I π C[1], (4 I)/(π - 8 π C[1]),
1/4 I π (-1 + 8 C[1]), -((4 I)/(π + 8 π C[1])),
1/4 I (π + 8 π C[1]), (2 I)/(π - 4 π C[1]),
1/2 I π (-1 + 4 C[1]), -((2 I)/(π + 4 π C[1])),
1/2 I (π + 4 π C[1]), (4 I)/(3 π - 8 π C[1]),
1/4 I π (-3 + 8 C[1]), -((4 I)/(3 π + 8 π C[1])),
1/4 I π (3 + 8 C[1]), -(I/(π + 2 π C[1])),
I (π + 2 π C[1]), 1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]
Similarly, the branch cuts can be found with:
ComplexAnalysis`BranchCuts[expr, z]
C[1] ∈
Integers && ((1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 1]] <
Re[z] < 0 && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])) || (Re[z] ==
0 && (1/2 (-π + 2 π C[1]) < Im[z] <
1/4 (-π + 4 π C[1]) ||
1/4 (-π + 4 π C[1]) < Im[z] < π C[1] || π C[1] <
Im[z] < 1/4 (π + 4 π C[1]) ||
1/4 (π + 4 π C[1]) < Im[z] <
1/2 (π + 2 π C[1]))) || (0 < Re[z] <
1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 2]] && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])))
$endgroup$
$begingroup$
Thank you very much .
$endgroup$
– topspin
yesterday
$begingroup$
Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
$endgroup$
– topspin
yesterday
$begingroup$
Or visualizing the branch points and the branch cuts using ContourPlot .
$endgroup$
– topspin
yesterday
$begingroup$
Just to compare: the Maple's result dropbox.com/s/zh7mq932rlvb1uk/branch_cuts.pdf?dl=0 seems to be different.
$endgroup$
– user64494
yesterday
add a comment |
$begingroup$
Perhaps you can make use of the internal functions ComplexAnalysis`BranchCuts
and ComplexAnalysis`BranchPoints
. First, use a complex variable z
instead of x + I y
:
expr = Sqrt[(Tanh[z]-Tanh[2z])^2+(Tanh[z] Tanh[2z]+1)^2-1-2 Tanh[z]^2Tanh[2z]^2];
Then, for example, the branch points are:
pts = ComplexAnalysis`BranchPoints[expr, z]
ConditionalExpression[-(I/(2 π C[1])), C[1] ∈ Integers],
ConditionalExpression[2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/2) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/2) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/2 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/2 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((3 I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((3 I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((3 I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(3 I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(I π + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[I π + 2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers]
The above can be simplified a bit with:
Simplify[pts, C[1] ∈ Integers]
-(I/(2 π C[1])), 2 I π C[1], (4 I)/(π - 8 π C[1]),
1/4 I π (-1 + 8 C[1]), -((4 I)/(π + 8 π C[1])),
1/4 I (π + 8 π C[1]), (2 I)/(π - 4 π C[1]),
1/2 I π (-1 + 4 C[1]), -((2 I)/(π + 4 π C[1])),
1/2 I (π + 4 π C[1]), (4 I)/(3 π - 8 π C[1]),
1/4 I π (-3 + 8 C[1]), -((4 I)/(3 π + 8 π C[1])),
1/4 I π (3 + 8 C[1]), -(I/(π + 2 π C[1])),
I (π + 2 π C[1]), 1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]
Similarly, the branch cuts can be found with:
ComplexAnalysis`BranchCuts[expr, z]
C[1] ∈
Integers && ((1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 1]] <
Re[z] < 0 && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])) || (Re[z] ==
0 && (1/2 (-π + 2 π C[1]) < Im[z] <
1/4 (-π + 4 π C[1]) ||
1/4 (-π + 4 π C[1]) < Im[z] < π C[1] || π C[1] <
Im[z] < 1/4 (π + 4 π C[1]) ||
1/4 (π + 4 π C[1]) < Im[z] <
1/2 (π + 2 π C[1]))) || (0 < Re[z] <
1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 2]] && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])))
$endgroup$
$begingroup$
Thank you very much .
$endgroup$
– topspin
yesterday
$begingroup$
Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
$endgroup$
– topspin
yesterday
$begingroup$
Or visualizing the branch points and the branch cuts using ContourPlot .
$endgroup$
– topspin
yesterday
$begingroup$
Just to compare: the Maple's result dropbox.com/s/zh7mq932rlvb1uk/branch_cuts.pdf?dl=0 seems to be different.
$endgroup$
– user64494
yesterday
add a comment |
$begingroup$
Perhaps you can make use of the internal functions ComplexAnalysis`BranchCuts
and ComplexAnalysis`BranchPoints
. First, use a complex variable z
instead of x + I y
:
expr = Sqrt[(Tanh[z]-Tanh[2z])^2+(Tanh[z] Tanh[2z]+1)^2-1-2 Tanh[z]^2Tanh[2z]^2];
Then, for example, the branch points are:
pts = ComplexAnalysis`BranchPoints[expr, z]
ConditionalExpression[-(I/(2 π C[1])), C[1] ∈ Integers],
ConditionalExpression[2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/2) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/2) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/2 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/2 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((3 I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((3 I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((3 I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(3 I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(I π + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[I π + 2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers]
The above can be simplified a bit with:
Simplify[pts, C[1] ∈ Integers]
-(I/(2 π C[1])), 2 I π C[1], (4 I)/(π - 8 π C[1]),
1/4 I π (-1 + 8 C[1]), -((4 I)/(π + 8 π C[1])),
1/4 I (π + 8 π C[1]), (2 I)/(π - 4 π C[1]),
1/2 I π (-1 + 4 C[1]), -((2 I)/(π + 4 π C[1])),
1/2 I (π + 4 π C[1]), (4 I)/(3 π - 8 π C[1]),
1/4 I π (-3 + 8 C[1]), -((4 I)/(3 π + 8 π C[1])),
1/4 I π (3 + 8 C[1]), -(I/(π + 2 π C[1])),
I (π + 2 π C[1]), 1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]
Similarly, the branch cuts can be found with:
ComplexAnalysis`BranchCuts[expr, z]
C[1] ∈
Integers && ((1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 1]] <
Re[z] < 0 && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])) || (Re[z] ==
0 && (1/2 (-π + 2 π C[1]) < Im[z] <
1/4 (-π + 4 π C[1]) ||
1/4 (-π + 4 π C[1]) < Im[z] < π C[1] || π C[1] <
Im[z] < 1/4 (π + 4 π C[1]) ||
1/4 (π + 4 π C[1]) < Im[z] <
1/2 (π + 2 π C[1]))) || (0 < Re[z] <
1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 2]] && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])))
$endgroup$
Perhaps you can make use of the internal functions ComplexAnalysis`BranchCuts
and ComplexAnalysis`BranchPoints
. First, use a complex variable z
instead of x + I y
:
expr = Sqrt[(Tanh[z]-Tanh[2z])^2+(Tanh[z] Tanh[2z]+1)^2-1-2 Tanh[z]^2Tanh[2z]^2];
Then, for example, the branch points are:
pts = ComplexAnalysis`BranchPoints[expr, z]
ConditionalExpression[-(I/(2 π C[1])), C[1] ∈ Integers],
ConditionalExpression[2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((I π)/2) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((I π)/2) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((I π)/2 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(I π)/2 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(-((3 I π)/4) + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[-((3 I π)/4) + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/((3 I π)/4 + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[(3 I π)/4 + 2 I π C[1],
C[1] ∈ Integers],
ConditionalExpression[1/(I π + 2 I π C[1]),
C[1] ∈ Integers],
ConditionalExpression[I π + 2 I π C[1], C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers],
ConditionalExpression[1/(2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
C[1] ∈ Integers],
ConditionalExpression[2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]],
C[1] ∈ Integers]
The above can be simplified a bit with:
Simplify[pts, C[1] ∈ Integers]
-(I/(2 π C[1])), 2 I π C[1], (4 I)/(π - 8 π C[1]),
1/4 I π (-1 + 8 C[1]), -((4 I)/(π + 8 π C[1])),
1/4 I (π + 8 π C[1]), (2 I)/(π - 4 π C[1]),
1/2 I π (-1 + 4 C[1]), -((2 I)/(π + 4 π C[1])),
1/2 I (π + 4 π C[1]), (4 I)/(3 π - 8 π C[1]),
1/4 I π (-3 + 8 C[1]), -((4 I)/(3 π + 8 π C[1])),
1/4 I π (3 + 8 C[1]), -(I/(π + 2 π C[1])),
I (π + 2 π C[1]), 1/(
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) - Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(-(1/2) + I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]]),
2 I π C[1] + Log[(1/2 - I/2) + Sqrt[-1 - I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) - Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(-(1/2) - I/2) + Sqrt[-1 + I/2]], 1/(
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]),
2 I π C[1] + Log[(1/2 + I/2) + Sqrt[-1 + I/2]]
Similarly, the branch cuts can be found with:
ComplexAnalysis`BranchCuts[expr, z]
C[1] ∈
Integers && ((1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 1]] <
Re[z] < 0 && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])) || (Re[z] ==
0 && (1/2 (-π + 2 π C[1]) < Im[z] <
1/4 (-π + 4 π C[1]) ||
1/4 (-π + 4 π C[1]) < Im[z] < π C[1] || π C[1] <
Im[z] < 1/4 (π + 4 π C[1]) ||
1/4 (π + 4 π C[1]) < Im[z] <
1/2 (π + 2 π C[1]))) || (0 < Re[z] <
1/2 Log[Root[1 - 2 #1 - 2 #1^2 - 2 #1^3 + #1^4 &, 2]] && (Im[
z] == -ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1] ||
Im[z] == ArcTan[Sqrt[(3 + 4 E^(2 Re[z]) + 3 E^(4 Re[z]))/(
1 + E^(4 Re[z]))]] + π C[1])))
answered yesterday
Carl WollCarl Woll
72.9k396188
72.9k396188
$begingroup$
Thank you very much .
$endgroup$
– topspin
yesterday
$begingroup$
Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
$endgroup$
– topspin
yesterday
$begingroup$
Or visualizing the branch points and the branch cuts using ContourPlot .
$endgroup$
– topspin
yesterday
$begingroup$
Just to compare: the Maple's result dropbox.com/s/zh7mq932rlvb1uk/branch_cuts.pdf?dl=0 seems to be different.
$endgroup$
– user64494
yesterday
add a comment |
$begingroup$
Thank you very much .
$endgroup$
– topspin
yesterday
$begingroup$
Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
$endgroup$
– topspin
yesterday
$begingroup$
Or visualizing the branch points and the branch cuts using ContourPlot .
$endgroup$
– topspin
yesterday
$begingroup$
Just to compare: the Maple's result dropbox.com/s/zh7mq932rlvb1uk/branch_cuts.pdf?dl=0 seems to be different.
$endgroup$
– user64494
yesterday
$begingroup$
Thank you very much .
$endgroup$
– topspin
yesterday
$begingroup$
Thank you very much .
$endgroup$
– topspin
yesterday
$begingroup$
Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
$endgroup$
– topspin
yesterday
$begingroup$
Is there any way to visualize those branch points and the branch cuts in Mathematica Instead of ContourPlot ?
$endgroup$
– topspin
yesterday
$begingroup$
Or visualizing the branch points and the branch cuts using ContourPlot .
$endgroup$
– topspin
yesterday
$begingroup$
Or visualizing the branch points and the branch cuts using ContourPlot .
$endgroup$
– topspin
yesterday
$begingroup$
Just to compare: the Maple's result dropbox.com/s/zh7mq932rlvb1uk/branch_cuts.pdf?dl=0 seems to be different.
$endgroup$
– user64494
yesterday
$begingroup$
Just to compare: the Maple's result dropbox.com/s/zh7mq932rlvb1uk/branch_cuts.pdf?dl=0 seems to be different.
$endgroup$
– user64494
yesterday
add a comment |
$begingroup$
First start with the branch points: these are the values of z where the root is not single-valued.
First:
myexp = Together[
TrigToExp[
FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] + 1)^2 -
1 - 2 Tanh[z]^2 Tanh[2 z]^2]
]]
$$fracleft(e^2 z-1right)^2 left(4 e^2 z+10 e^4 z+4 e^6 z+e^8 z+1right)left(e^2 z+1right)^2 left(e^4 z+1right)^2$$
Now solve for the zeros of the denominator and numerator. I'll do the numerator: First obtain a polynomial in e^z and then solve the polynomial in terms of a polynomial in just z:
Expand[Numerator[
Together[TrigToExp[
FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] +
1)^2 - 1 - 2 Tanh[z]^2 Tanh[2 z]^2]
]]]]
mySol = z /.
Solve[1 + 2 z^2 + 3 z^4 - 12 z^6 + 3 z^8 + 2 z^10 + z^12 == 0, z];
Now make the substitution Log[z] and keep in mind Log[z]=Log[Abs[z]]+i (Arg(z)+2k pi) so that we have a set of branch points for all integer k. I will do k=0,1,-1 and then plot the results:
p1 = Show[
Graphics[Red,
Point @@ Re[#], Im[#] & /@ (N[Log[#]] & /@ mySol)],
Axes -> True, PlotRange -> 5];
p2 = Show[
Graphics[Blue,
Point @@ Re[#], Im[#] & /@ (N[(Log[#] + 2 [Pi] I)] & /@
mySol)], Axes -> True, PlotRange -> 15];
p3 = Show[
Graphics[Green // Darker,
Point @@ Re[#], Im[#] & /@ (N[(Log[#] - 2 [Pi] I)] & /@
mySol)], Axes -> True, PlotRange -> 15];
Show[p1, p2, p3, PlotRange -> 15]
$endgroup$
add a comment |
$begingroup$
First start with the branch points: these are the values of z where the root is not single-valued.
First:
myexp = Together[
TrigToExp[
FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] + 1)^2 -
1 - 2 Tanh[z]^2 Tanh[2 z]^2]
]]
$$fracleft(e^2 z-1right)^2 left(4 e^2 z+10 e^4 z+4 e^6 z+e^8 z+1right)left(e^2 z+1right)^2 left(e^4 z+1right)^2$$
Now solve for the zeros of the denominator and numerator. I'll do the numerator: First obtain a polynomial in e^z and then solve the polynomial in terms of a polynomial in just z:
Expand[Numerator[
Together[TrigToExp[
FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] +
1)^2 - 1 - 2 Tanh[z]^2 Tanh[2 z]^2]
]]]]
mySol = z /.
Solve[1 + 2 z^2 + 3 z^4 - 12 z^6 + 3 z^8 + 2 z^10 + z^12 == 0, z];
Now make the substitution Log[z] and keep in mind Log[z]=Log[Abs[z]]+i (Arg(z)+2k pi) so that we have a set of branch points for all integer k. I will do k=0,1,-1 and then plot the results:
p1 = Show[
Graphics[Red,
Point @@ Re[#], Im[#] & /@ (N[Log[#]] & /@ mySol)],
Axes -> True, PlotRange -> 5];
p2 = Show[
Graphics[Blue,
Point @@ Re[#], Im[#] & /@ (N[(Log[#] + 2 [Pi] I)] & /@
mySol)], Axes -> True, PlotRange -> 15];
p3 = Show[
Graphics[Green // Darker,
Point @@ Re[#], Im[#] & /@ (N[(Log[#] - 2 [Pi] I)] & /@
mySol)], Axes -> True, PlotRange -> 15];
Show[p1, p2, p3, PlotRange -> 15]
$endgroup$
add a comment |
$begingroup$
First start with the branch points: these are the values of z where the root is not single-valued.
First:
myexp = Together[
TrigToExp[
FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] + 1)^2 -
1 - 2 Tanh[z]^2 Tanh[2 z]^2]
]]
$$fracleft(e^2 z-1right)^2 left(4 e^2 z+10 e^4 z+4 e^6 z+e^8 z+1right)left(e^2 z+1right)^2 left(e^4 z+1right)^2$$
Now solve for the zeros of the denominator and numerator. I'll do the numerator: First obtain a polynomial in e^z and then solve the polynomial in terms of a polynomial in just z:
Expand[Numerator[
Together[TrigToExp[
FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] +
1)^2 - 1 - 2 Tanh[z]^2 Tanh[2 z]^2]
]]]]
mySol = z /.
Solve[1 + 2 z^2 + 3 z^4 - 12 z^6 + 3 z^8 + 2 z^10 + z^12 == 0, z];
Now make the substitution Log[z] and keep in mind Log[z]=Log[Abs[z]]+i (Arg(z)+2k pi) so that we have a set of branch points for all integer k. I will do k=0,1,-1 and then plot the results:
p1 = Show[
Graphics[Red,
Point @@ Re[#], Im[#] & /@ (N[Log[#]] & /@ mySol)],
Axes -> True, PlotRange -> 5];
p2 = Show[
Graphics[Blue,
Point @@ Re[#], Im[#] & /@ (N[(Log[#] + 2 [Pi] I)] & /@
mySol)], Axes -> True, PlotRange -> 15];
p3 = Show[
Graphics[Green // Darker,
Point @@ Re[#], Im[#] & /@ (N[(Log[#] - 2 [Pi] I)] & /@
mySol)], Axes -> True, PlotRange -> 15];
Show[p1, p2, p3, PlotRange -> 15]
$endgroup$
First start with the branch points: these are the values of z where the root is not single-valued.
First:
myexp = Together[
TrigToExp[
FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] + 1)^2 -
1 - 2 Tanh[z]^2 Tanh[2 z]^2]
]]
$$fracleft(e^2 z-1right)^2 left(4 e^2 z+10 e^4 z+4 e^6 z+e^8 z+1right)left(e^2 z+1right)^2 left(e^4 z+1right)^2$$
Now solve for the zeros of the denominator and numerator. I'll do the numerator: First obtain a polynomial in e^z and then solve the polynomial in terms of a polynomial in just z:
Expand[Numerator[
Together[TrigToExp[
FullSimplify[(Tanh[z] - Tanh[2 z])^2 + (Tanh[z] Tanh[2 z] +
1)^2 - 1 - 2 Tanh[z]^2 Tanh[2 z]^2]
]]]]
mySol = z /.
Solve[1 + 2 z^2 + 3 z^4 - 12 z^6 + 3 z^8 + 2 z^10 + z^12 == 0, z];
Now make the substitution Log[z] and keep in mind Log[z]=Log[Abs[z]]+i (Arg(z)+2k pi) so that we have a set of branch points for all integer k. I will do k=0,1,-1 and then plot the results:
p1 = Show[
Graphics[Red,
Point @@ Re[#], Im[#] & /@ (N[Log[#]] & /@ mySol)],
Axes -> True, PlotRange -> 5];
p2 = Show[
Graphics[Blue,
Point @@ Re[#], Im[#] & /@ (N[(Log[#] + 2 [Pi] I)] & /@
mySol)], Axes -> True, PlotRange -> 15];
p3 = Show[
Graphics[Green // Darker,
Point @@ Re[#], Im[#] & /@ (N[(Log[#] - 2 [Pi] I)] & /@
mySol)], Axes -> True, PlotRange -> 15];
Show[p1, p2, p3, PlotRange -> 15]
answered 15 hours ago
DominicDominic
876
876
add a comment |
add a comment |
topspin is a new contributor. Be nice, and check out our Code of Conduct.
topspin is a new contributor. Be nice, and check out our Code of Conduct.
topspin is a new contributor. Be nice, and check out our Code of Conduct.
topspin is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194668%2fquestion-on-branch-cuts-and-branch-points%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
The first step might be to find all the zeros of the function under the square root. Perhaps this might help.
$endgroup$
– Hugh
yesterday
1
$begingroup$
Please can you put the equation in a form that can be copied to a mathematica notebook? (Edit your post please.) This is helpful for those of us who might try out approaches.
$endgroup$
– Hugh
yesterday
$begingroup$
Ok, Thank you . I have just edited my post .
$endgroup$
– topspin
yesterday
1
$begingroup$
I think I should find the zeros of the Imaginary part of the function under the square root , and finding when is the real part is non negative if I am talking about the principal branch excluding the negative real axis . I have tried to find all the zeros of the function under the square root using mathematica but the output was not clear to me
$endgroup$
– topspin
yesterday