History of the kernel of a homomorphism?Whence “homomorphism” and “homomorphic”?Homomorphism more than 3/4 the inverseHistory of the Lagrange Inversion TheoremHistory of Gauss' LawHistory of the notation $mathbb Z_n$History of the high-dimensional volume paradoxProperties of the Burnside kernelWhence “homomorphism” and “homomorphic”?Who first used the word “Homomorphism”?History of the classification of mathematical subjectsOrigin of the concept of “homomorphism”?

History of the kernel of a homomorphism?


Whence “homomorphism” and “homomorphic”?Homomorphism more than 3/4 the inverseHistory of the Lagrange Inversion TheoremHistory of Gauss' LawHistory of the notation $mathbb Z_n$History of the high-dimensional volume paradoxProperties of the Burnside kernelWhence “homomorphism” and “homomorphic”?Who first used the word “Homomorphism”?History of the classification of mathematical subjectsOrigin of the concept of “homomorphism”?













8












$begingroup$


This previous question traces the notion of group homomorphism to Jordan (1870) and the term "homomorphic" to Fricke and Klein (1897) and to earlier lectures of Klein:



Whence “homomorphism” and “homomorphic”?



What about the concept of the kernel of a homomorphism?



This webpage traces it to Fredholm's (1903) use of the french "noyau" for the nullspace of a system of integer linear equations. Then Hilbert put this into German as "Kern" (1904).



http://jeff560.tripod.com/k.html



But the concept of a kernel is structural, equivalent to the concept of normal subgroup. I guess that this insight is due to Emmy Noether but I can't find a reference.



Probably what I am looking for is the first enunciation of the theorem $$G/kervarphicongmathrmim,varphi$$.










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    Maybe this question should be migrated to hsm.stackexchange.com.
    $endgroup$
    – Torsten Schoeneberg
    May 3 at 17:16















8












$begingroup$


This previous question traces the notion of group homomorphism to Jordan (1870) and the term "homomorphic" to Fricke and Klein (1897) and to earlier lectures of Klein:



Whence “homomorphism” and “homomorphic”?



What about the concept of the kernel of a homomorphism?



This webpage traces it to Fredholm's (1903) use of the french "noyau" for the nullspace of a system of integer linear equations. Then Hilbert put this into German as "Kern" (1904).



http://jeff560.tripod.com/k.html



But the concept of a kernel is structural, equivalent to the concept of normal subgroup. I guess that this insight is due to Emmy Noether but I can't find a reference.



Probably what I am looking for is the first enunciation of the theorem $$G/kervarphicongmathrmim,varphi$$.










share|cite|improve this question









$endgroup$







  • 3




    $begingroup$
    Maybe this question should be migrated to hsm.stackexchange.com.
    $endgroup$
    – Torsten Schoeneberg
    May 3 at 17:16













8












8








8





$begingroup$


This previous question traces the notion of group homomorphism to Jordan (1870) and the term "homomorphic" to Fricke and Klein (1897) and to earlier lectures of Klein:



Whence “homomorphism” and “homomorphic”?



What about the concept of the kernel of a homomorphism?



This webpage traces it to Fredholm's (1903) use of the french "noyau" for the nullspace of a system of integer linear equations. Then Hilbert put this into German as "Kern" (1904).



http://jeff560.tripod.com/k.html



But the concept of a kernel is structural, equivalent to the concept of normal subgroup. I guess that this insight is due to Emmy Noether but I can't find a reference.



Probably what I am looking for is the first enunciation of the theorem $$G/kervarphicongmathrmim,varphi$$.










share|cite|improve this question









$endgroup$




This previous question traces the notion of group homomorphism to Jordan (1870) and the term "homomorphic" to Fricke and Klein (1897) and to earlier lectures of Klein:



Whence “homomorphism” and “homomorphic”?



What about the concept of the kernel of a homomorphism?



This webpage traces it to Fredholm's (1903) use of the french "noyau" for the nullspace of a system of integer linear equations. Then Hilbert put this into German as "Kern" (1904).



http://jeff560.tripod.com/k.html



But the concept of a kernel is structural, equivalent to the concept of normal subgroup. I guess that this insight is due to Emmy Noether but I can't find a reference.



Probably what I am looking for is the first enunciation of the theorem $$G/kervarphicongmathrmim,varphi$$.







gr.group-theory ho.history-overview






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked May 3 at 13:52









Drew ArmstrongDrew Armstrong

1,595930




1,595930







  • 3




    $begingroup$
    Maybe this question should be migrated to hsm.stackexchange.com.
    $endgroup$
    – Torsten Schoeneberg
    May 3 at 17:16












  • 3




    $begingroup$
    Maybe this question should be migrated to hsm.stackexchange.com.
    $endgroup$
    – Torsten Schoeneberg
    May 3 at 17:16







3




3




$begingroup$
Maybe this question should be migrated to hsm.stackexchange.com.
$endgroup$
– Torsten Schoeneberg
May 3 at 17:16




$begingroup$
Maybe this question should be migrated to hsm.stackexchange.com.
$endgroup$
– Torsten Schoeneberg
May 3 at 17:16










2 Answers
2






active

oldest

votes


















11












$begingroup$

The word at least, seems to originate with Pontryagin (1931, p. 186):




28) Wenn eine Gruppe $A$ auf eine Gruppe $B$ homomorph abgebildet ist, so heißt die Untergruppe von $A$, die aus allen Elementen besteht, welche auf das Einheits- (Null-) element von $B$ abgebildet werden, der Kern der homomorphen Abbildung.




E.g. van der Waerden (1930, p. 35) still states the isomorphism $G/kervarphicongmathrmim,varphi$ without $“ker”$, as $mathfrakG/econgoverlineG$ with $mathfrak e$: derjenige Normalteiler von $mathfrak G$, dessen Elementen das Einselement in $overlinemathfrak G$ entspricht.




Added: Noether wrote things like $G/varphi^-1(H')cong G'/H'$, but I’m not sure she ever spelled out the case $H'=e$. Anyway, the theorems whose “wording and proof” van der Waerden (1975, p. 34) attributes to Noether are those for “groups with operators” (1930, p. 136). For groups, he says he followed Speiser, who has indeed (1923, p. 19):




Satz 14: Ist $mathfrak G'$ mit $mathfrak G$ isomorph, so entspricht dem Einheitselement von $mathfrak G'$ ein Normalteiler $mathfrak N$ von $mathfrak G$, und $mathfrak G'$ ist homomorph mit der Faktorgruppe $mathfrakG/N$.




and Burnside, who has (1897, pp. 36, 38):




Theorem VII. If a group $G$ is multiply isomorphic with a group $G'$, then (i) the operations of $G$, which correspond to the identical operation of $G'$, form a self-conjugate sub-group of $G$;



(...)



a group $G'$ with which a group $G$ is multiply isomorphic, in such a way that to the identical operation of $G'$ there corresponds a given self-conjugate sub-group $Gamma$ of $G$, is completely defined (as an abstract group) when $G$ and $Gamma$ are given. (...) Herr Hölder (1889, p. 31) has introduced the symbol
$
smashfrac GGamma
$

to represent this group; he calls it the quotient of $G$ by $Gamma$, and a factor-group of $G$.




I think it’s fair to say that Hölder (pp. 32–33) already has all of the above, except the word kernel. (E. g. he writes that normal subgroups of $G|mathsf H$ make normal subgroups of $G$, with the identity making $mathsf H$ itself, and that one could start from a morphism rather than a normal $mathsf H$.) But it goes further: kernels are already in Dyck (1882, p. 12, cited by Hölder):




Operationen der Gruppe $G$, welche sonach der Identität in $overline G$ entsprechen, bilden eine Gruppe $H$ und diese ist (...) in $G$ ausgezeichnet enthalten.




in Capelli (1878, p. 36), who calls them primi periodi (denoted $mathrm O_0$) and shows:




Affinchè un gruppo $mathrm O$ contenuto in $mathrm G$ possa esser preso come primo periodo, à necessario che esso si permutabile a tutte le sostituzioni di $mathrm G$. Vedremo più tardi (III, 3) che questa condizione à anche sufficiente, vale a dire, che si può sempre costruire un gruppo $Gamma$ isomorfo a $mathrm G$, il quale ad $mathrm O$ faccia corrispondere l’unità.




in Jordan (1870, §67, cited by Capelli):




Le groupe $Gamma$ contient la substitution $ı$. Soient $h_1,dots,h_m$ les substitutions correspondantes de $mathrm G$ : elles forment un groupe auquel toutes les substitutions de $mathrm G$ sont permutables.




and finally(?), as per Noether’s “Es steht alles schon bei Dedekind”, in Dedekind (1855–58, p. 440), for a morphism $Mto M_1$:




Der Komplex aller der $n$ in $M$ enthaltenen Objekte $varphi$, denen das Objekt $1$ entspricht, bildet eine Gruppe, und zwar einen eigentlichen Divisor von $M$; dann ist $m = m_1n$.







share|cite|improve this answer











$endgroup$




















    8












    $begingroup$

    Two original references are:



    E. Noether, Hyperkomplexe Größen und Darstellungstheorien (1929): see page 648.



    E. Noether, Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern (1927): see page 40.



    Noether phrases the isomorphism theorems in terms of "Normalteiler" (normal subgroups) rather than "Kerne" (kernels). Van der Waerden recalls that the 1929 paper was based on a course with the same title that Noether taught at Göttingen in 1926/1927.






    share|cite|improve this answer









    $endgroup$













      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "504"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f330638%2fhistory-of-the-kernel-of-a-homomorphism%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      11












      $begingroup$

      The word at least, seems to originate with Pontryagin (1931, p. 186):




      28) Wenn eine Gruppe $A$ auf eine Gruppe $B$ homomorph abgebildet ist, so heißt die Untergruppe von $A$, die aus allen Elementen besteht, welche auf das Einheits- (Null-) element von $B$ abgebildet werden, der Kern der homomorphen Abbildung.




      E.g. van der Waerden (1930, p. 35) still states the isomorphism $G/kervarphicongmathrmim,varphi$ without $“ker”$, as $mathfrakG/econgoverlineG$ with $mathfrak e$: derjenige Normalteiler von $mathfrak G$, dessen Elementen das Einselement in $overlinemathfrak G$ entspricht.




      Added: Noether wrote things like $G/varphi^-1(H')cong G'/H'$, but I’m not sure she ever spelled out the case $H'=e$. Anyway, the theorems whose “wording and proof” van der Waerden (1975, p. 34) attributes to Noether are those for “groups with operators” (1930, p. 136). For groups, he says he followed Speiser, who has indeed (1923, p. 19):




      Satz 14: Ist $mathfrak G'$ mit $mathfrak G$ isomorph, so entspricht dem Einheitselement von $mathfrak G'$ ein Normalteiler $mathfrak N$ von $mathfrak G$, und $mathfrak G'$ ist homomorph mit der Faktorgruppe $mathfrakG/N$.




      and Burnside, who has (1897, pp. 36, 38):




      Theorem VII. If a group $G$ is multiply isomorphic with a group $G'$, then (i) the operations of $G$, which correspond to the identical operation of $G'$, form a self-conjugate sub-group of $G$;



      (...)



      a group $G'$ with which a group $G$ is multiply isomorphic, in such a way that to the identical operation of $G'$ there corresponds a given self-conjugate sub-group $Gamma$ of $G$, is completely defined (as an abstract group) when $G$ and $Gamma$ are given. (...) Herr Hölder (1889, p. 31) has introduced the symbol
      $
      smashfrac GGamma
      $

      to represent this group; he calls it the quotient of $G$ by $Gamma$, and a factor-group of $G$.




      I think it’s fair to say that Hölder (pp. 32–33) already has all of the above, except the word kernel. (E. g. he writes that normal subgroups of $G|mathsf H$ make normal subgroups of $G$, with the identity making $mathsf H$ itself, and that one could start from a morphism rather than a normal $mathsf H$.) But it goes further: kernels are already in Dyck (1882, p. 12, cited by Hölder):




      Operationen der Gruppe $G$, welche sonach der Identität in $overline G$ entsprechen, bilden eine Gruppe $H$ und diese ist (...) in $G$ ausgezeichnet enthalten.




      in Capelli (1878, p. 36), who calls them primi periodi (denoted $mathrm O_0$) and shows:




      Affinchè un gruppo $mathrm O$ contenuto in $mathrm G$ possa esser preso come primo periodo, à necessario che esso si permutabile a tutte le sostituzioni di $mathrm G$. Vedremo più tardi (III, 3) che questa condizione à anche sufficiente, vale a dire, che si può sempre costruire un gruppo $Gamma$ isomorfo a $mathrm G$, il quale ad $mathrm O$ faccia corrispondere l’unità.




      in Jordan (1870, §67, cited by Capelli):




      Le groupe $Gamma$ contient la substitution $ı$. Soient $h_1,dots,h_m$ les substitutions correspondantes de $mathrm G$ : elles forment un groupe auquel toutes les substitutions de $mathrm G$ sont permutables.




      and finally(?), as per Noether’s “Es steht alles schon bei Dedekind”, in Dedekind (1855–58, p. 440), for a morphism $Mto M_1$:




      Der Komplex aller der $n$ in $M$ enthaltenen Objekte $varphi$, denen das Objekt $1$ entspricht, bildet eine Gruppe, und zwar einen eigentlichen Divisor von $M$; dann ist $m = m_1n$.







      share|cite|improve this answer











      $endgroup$

















        11












        $begingroup$

        The word at least, seems to originate with Pontryagin (1931, p. 186):




        28) Wenn eine Gruppe $A$ auf eine Gruppe $B$ homomorph abgebildet ist, so heißt die Untergruppe von $A$, die aus allen Elementen besteht, welche auf das Einheits- (Null-) element von $B$ abgebildet werden, der Kern der homomorphen Abbildung.




        E.g. van der Waerden (1930, p. 35) still states the isomorphism $G/kervarphicongmathrmim,varphi$ without $“ker”$, as $mathfrakG/econgoverlineG$ with $mathfrak e$: derjenige Normalteiler von $mathfrak G$, dessen Elementen das Einselement in $overlinemathfrak G$ entspricht.




        Added: Noether wrote things like $G/varphi^-1(H')cong G'/H'$, but I’m not sure she ever spelled out the case $H'=e$. Anyway, the theorems whose “wording and proof” van der Waerden (1975, p. 34) attributes to Noether are those for “groups with operators” (1930, p. 136). For groups, he says he followed Speiser, who has indeed (1923, p. 19):




        Satz 14: Ist $mathfrak G'$ mit $mathfrak G$ isomorph, so entspricht dem Einheitselement von $mathfrak G'$ ein Normalteiler $mathfrak N$ von $mathfrak G$, und $mathfrak G'$ ist homomorph mit der Faktorgruppe $mathfrakG/N$.




        and Burnside, who has (1897, pp. 36, 38):




        Theorem VII. If a group $G$ is multiply isomorphic with a group $G'$, then (i) the operations of $G$, which correspond to the identical operation of $G'$, form a self-conjugate sub-group of $G$;



        (...)



        a group $G'$ with which a group $G$ is multiply isomorphic, in such a way that to the identical operation of $G'$ there corresponds a given self-conjugate sub-group $Gamma$ of $G$, is completely defined (as an abstract group) when $G$ and $Gamma$ are given. (...) Herr Hölder (1889, p. 31) has introduced the symbol
        $
        smashfrac GGamma
        $

        to represent this group; he calls it the quotient of $G$ by $Gamma$, and a factor-group of $G$.




        I think it’s fair to say that Hölder (pp. 32–33) already has all of the above, except the word kernel. (E. g. he writes that normal subgroups of $G|mathsf H$ make normal subgroups of $G$, with the identity making $mathsf H$ itself, and that one could start from a morphism rather than a normal $mathsf H$.) But it goes further: kernels are already in Dyck (1882, p. 12, cited by Hölder):




        Operationen der Gruppe $G$, welche sonach der Identität in $overline G$ entsprechen, bilden eine Gruppe $H$ und diese ist (...) in $G$ ausgezeichnet enthalten.




        in Capelli (1878, p. 36), who calls them primi periodi (denoted $mathrm O_0$) and shows:




        Affinchè un gruppo $mathrm O$ contenuto in $mathrm G$ possa esser preso come primo periodo, à necessario che esso si permutabile a tutte le sostituzioni di $mathrm G$. Vedremo più tardi (III, 3) che questa condizione à anche sufficiente, vale a dire, che si può sempre costruire un gruppo $Gamma$ isomorfo a $mathrm G$, il quale ad $mathrm O$ faccia corrispondere l’unità.




        in Jordan (1870, §67, cited by Capelli):




        Le groupe $Gamma$ contient la substitution $ı$. Soient $h_1,dots,h_m$ les substitutions correspondantes de $mathrm G$ : elles forment un groupe auquel toutes les substitutions de $mathrm G$ sont permutables.




        and finally(?), as per Noether’s “Es steht alles schon bei Dedekind”, in Dedekind (1855–58, p. 440), for a morphism $Mto M_1$:




        Der Komplex aller der $n$ in $M$ enthaltenen Objekte $varphi$, denen das Objekt $1$ entspricht, bildet eine Gruppe, und zwar einen eigentlichen Divisor von $M$; dann ist $m = m_1n$.







        share|cite|improve this answer











        $endgroup$















          11












          11








          11





          $begingroup$

          The word at least, seems to originate with Pontryagin (1931, p. 186):




          28) Wenn eine Gruppe $A$ auf eine Gruppe $B$ homomorph abgebildet ist, so heißt die Untergruppe von $A$, die aus allen Elementen besteht, welche auf das Einheits- (Null-) element von $B$ abgebildet werden, der Kern der homomorphen Abbildung.




          E.g. van der Waerden (1930, p. 35) still states the isomorphism $G/kervarphicongmathrmim,varphi$ without $“ker”$, as $mathfrakG/econgoverlineG$ with $mathfrak e$: derjenige Normalteiler von $mathfrak G$, dessen Elementen das Einselement in $overlinemathfrak G$ entspricht.




          Added: Noether wrote things like $G/varphi^-1(H')cong G'/H'$, but I’m not sure she ever spelled out the case $H'=e$. Anyway, the theorems whose “wording and proof” van der Waerden (1975, p. 34) attributes to Noether are those for “groups with operators” (1930, p. 136). For groups, he says he followed Speiser, who has indeed (1923, p. 19):




          Satz 14: Ist $mathfrak G'$ mit $mathfrak G$ isomorph, so entspricht dem Einheitselement von $mathfrak G'$ ein Normalteiler $mathfrak N$ von $mathfrak G$, und $mathfrak G'$ ist homomorph mit der Faktorgruppe $mathfrakG/N$.




          and Burnside, who has (1897, pp. 36, 38):




          Theorem VII. If a group $G$ is multiply isomorphic with a group $G'$, then (i) the operations of $G$, which correspond to the identical operation of $G'$, form a self-conjugate sub-group of $G$;



          (...)



          a group $G'$ with which a group $G$ is multiply isomorphic, in such a way that to the identical operation of $G'$ there corresponds a given self-conjugate sub-group $Gamma$ of $G$, is completely defined (as an abstract group) when $G$ and $Gamma$ are given. (...) Herr Hölder (1889, p. 31) has introduced the symbol
          $
          smashfrac GGamma
          $

          to represent this group; he calls it the quotient of $G$ by $Gamma$, and a factor-group of $G$.




          I think it’s fair to say that Hölder (pp. 32–33) already has all of the above, except the word kernel. (E. g. he writes that normal subgroups of $G|mathsf H$ make normal subgroups of $G$, with the identity making $mathsf H$ itself, and that one could start from a morphism rather than a normal $mathsf H$.) But it goes further: kernels are already in Dyck (1882, p. 12, cited by Hölder):




          Operationen der Gruppe $G$, welche sonach der Identität in $overline G$ entsprechen, bilden eine Gruppe $H$ und diese ist (...) in $G$ ausgezeichnet enthalten.




          in Capelli (1878, p. 36), who calls them primi periodi (denoted $mathrm O_0$) and shows:




          Affinchè un gruppo $mathrm O$ contenuto in $mathrm G$ possa esser preso come primo periodo, à necessario che esso si permutabile a tutte le sostituzioni di $mathrm G$. Vedremo più tardi (III, 3) che questa condizione à anche sufficiente, vale a dire, che si può sempre costruire un gruppo $Gamma$ isomorfo a $mathrm G$, il quale ad $mathrm O$ faccia corrispondere l’unità.




          in Jordan (1870, §67, cited by Capelli):




          Le groupe $Gamma$ contient la substitution $ı$. Soient $h_1,dots,h_m$ les substitutions correspondantes de $mathrm G$ : elles forment un groupe auquel toutes les substitutions de $mathrm G$ sont permutables.




          and finally(?), as per Noether’s “Es steht alles schon bei Dedekind”, in Dedekind (1855–58, p. 440), for a morphism $Mto M_1$:




          Der Komplex aller der $n$ in $M$ enthaltenen Objekte $varphi$, denen das Objekt $1$ entspricht, bildet eine Gruppe, und zwar einen eigentlichen Divisor von $M$; dann ist $m = m_1n$.







          share|cite|improve this answer











          $endgroup$



          The word at least, seems to originate with Pontryagin (1931, p. 186):




          28) Wenn eine Gruppe $A$ auf eine Gruppe $B$ homomorph abgebildet ist, so heißt die Untergruppe von $A$, die aus allen Elementen besteht, welche auf das Einheits- (Null-) element von $B$ abgebildet werden, der Kern der homomorphen Abbildung.




          E.g. van der Waerden (1930, p. 35) still states the isomorphism $G/kervarphicongmathrmim,varphi$ without $“ker”$, as $mathfrakG/econgoverlineG$ with $mathfrak e$: derjenige Normalteiler von $mathfrak G$, dessen Elementen das Einselement in $overlinemathfrak G$ entspricht.




          Added: Noether wrote things like $G/varphi^-1(H')cong G'/H'$, but I’m not sure she ever spelled out the case $H'=e$. Anyway, the theorems whose “wording and proof” van der Waerden (1975, p. 34) attributes to Noether are those for “groups with operators” (1930, p. 136). For groups, he says he followed Speiser, who has indeed (1923, p. 19):




          Satz 14: Ist $mathfrak G'$ mit $mathfrak G$ isomorph, so entspricht dem Einheitselement von $mathfrak G'$ ein Normalteiler $mathfrak N$ von $mathfrak G$, und $mathfrak G'$ ist homomorph mit der Faktorgruppe $mathfrakG/N$.




          and Burnside, who has (1897, pp. 36, 38):




          Theorem VII. If a group $G$ is multiply isomorphic with a group $G'$, then (i) the operations of $G$, which correspond to the identical operation of $G'$, form a self-conjugate sub-group of $G$;



          (...)



          a group $G'$ with which a group $G$ is multiply isomorphic, in such a way that to the identical operation of $G'$ there corresponds a given self-conjugate sub-group $Gamma$ of $G$, is completely defined (as an abstract group) when $G$ and $Gamma$ are given. (...) Herr Hölder (1889, p. 31) has introduced the symbol
          $
          smashfrac GGamma
          $

          to represent this group; he calls it the quotient of $G$ by $Gamma$, and a factor-group of $G$.




          I think it’s fair to say that Hölder (pp. 32–33) already has all of the above, except the word kernel. (E. g. he writes that normal subgroups of $G|mathsf H$ make normal subgroups of $G$, with the identity making $mathsf H$ itself, and that one could start from a morphism rather than a normal $mathsf H$.) But it goes further: kernels are already in Dyck (1882, p. 12, cited by Hölder):




          Operationen der Gruppe $G$, welche sonach der Identität in $overline G$ entsprechen, bilden eine Gruppe $H$ und diese ist (...) in $G$ ausgezeichnet enthalten.




          in Capelli (1878, p. 36), who calls them primi periodi (denoted $mathrm O_0$) and shows:




          Affinchè un gruppo $mathrm O$ contenuto in $mathrm G$ possa esser preso come primo periodo, à necessario che esso si permutabile a tutte le sostituzioni di $mathrm G$. Vedremo più tardi (III, 3) che questa condizione à anche sufficiente, vale a dire, che si può sempre costruire un gruppo $Gamma$ isomorfo a $mathrm G$, il quale ad $mathrm O$ faccia corrispondere l’unità.




          in Jordan (1870, §67, cited by Capelli):




          Le groupe $Gamma$ contient la substitution $ı$. Soient $h_1,dots,h_m$ les substitutions correspondantes de $mathrm G$ : elles forment un groupe auquel toutes les substitutions de $mathrm G$ sont permutables.




          and finally(?), as per Noether’s “Es steht alles schon bei Dedekind”, in Dedekind (1855–58, p. 440), for a morphism $Mto M_1$:




          Der Komplex aller der $n$ in $M$ enthaltenen Objekte $varphi$, denen das Objekt $1$ entspricht, bildet eine Gruppe, und zwar einen eigentlichen Divisor von $M$; dann ist $m = m_1n$.








          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited yesterday

























          answered May 3 at 15:22









          Francois ZieglerFrancois Ziegler

          20.3k375119




          20.3k375119





















              8












              $begingroup$

              Two original references are:



              E. Noether, Hyperkomplexe Größen und Darstellungstheorien (1929): see page 648.



              E. Noether, Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern (1927): see page 40.



              Noether phrases the isomorphism theorems in terms of "Normalteiler" (normal subgroups) rather than "Kerne" (kernels). Van der Waerden recalls that the 1929 paper was based on a course with the same title that Noether taught at Göttingen in 1926/1927.






              share|cite|improve this answer









              $endgroup$

















                8












                $begingroup$

                Two original references are:



                E. Noether, Hyperkomplexe Größen und Darstellungstheorien (1929): see page 648.



                E. Noether, Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern (1927): see page 40.



                Noether phrases the isomorphism theorems in terms of "Normalteiler" (normal subgroups) rather than "Kerne" (kernels). Van der Waerden recalls that the 1929 paper was based on a course with the same title that Noether taught at Göttingen in 1926/1927.






                share|cite|improve this answer









                $endgroup$















                  8












                  8








                  8





                  $begingroup$

                  Two original references are:



                  E. Noether, Hyperkomplexe Größen und Darstellungstheorien (1929): see page 648.



                  E. Noether, Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern (1927): see page 40.



                  Noether phrases the isomorphism theorems in terms of "Normalteiler" (normal subgroups) rather than "Kerne" (kernels). Van der Waerden recalls that the 1929 paper was based on a course with the same title that Noether taught at Göttingen in 1926/1927.






                  share|cite|improve this answer









                  $endgroup$



                  Two original references are:



                  E. Noether, Hyperkomplexe Größen und Darstellungstheorien (1929): see page 648.



                  E. Noether, Abstrakter Aufbau der Idealtheorie in algebraischen Zahl- und Funktionenkörpern (1927): see page 40.



                  Noether phrases the isomorphism theorems in terms of "Normalteiler" (normal subgroups) rather than "Kerne" (kernels). Van der Waerden recalls that the 1929 paper was based on a course with the same title that Noether taught at Göttingen in 1926/1927.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered May 3 at 15:28









                  Carlo BeenakkerCarlo Beenakker

                  81.6k9195297




                  81.6k9195297



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to MathOverflow!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f330638%2fhistory-of-the-kernel-of-a-homomorphism%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Get product attribute by attribute group code in magento 2get product attribute by product attribute group in magento 2Magento 2 Log Bundle Product Data in List Page?How to get all product attribute of a attribute group of Default attribute set?Magento 2.1 Create a filter in the product grid by new attributeMagento 2 : Get Product Attribute values By GroupMagento 2 How to get all existing values for one attributeMagento 2 get custom attribute of a single product inside a pluginMagento 2.3 How to get all the Multi Source Inventory (MSI) locations collection in custom module?Magento2: how to develop rest API to get new productsGet product attribute by attribute group code ( [attribute_group_code] ) in magento 2

                      Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

                      Magento 2.3: How do i solve this, Not registered handle, on custom form?How can i rewrite TierPrice Block in Magento2magento 2 captcha not rendering if I override layout xmlmain.CRITICAL: Plugin class doesn't existMagento 2 : Problem while adding custom button order view page?Magento 2.2.5: Overriding Admin Controller sales/orderMagento 2.2.5: Add, Update and Delete existing products Custom OptionsMagento 2.3 : File Upload issue in UI Component FormMagento2 Not registered handleHow to configured Form Builder Js in my custom magento 2.3.0 module?Magento 2.3. How to create image upload field in an admin form