Why are ambiguous grammars bad?Finding a unambiguous grammarWhy is left recursion bad?Show that every grammar for an inherently ambiguous CFL has infinitely many ambiguitiesAmbiguous Grammar and SLR parsing table : No conflicts?Find unambiguous grammar for an ambiguous grammarHow to find whether a grammar is ambiguous?Converting Ambiguous Grammar G to LL(1)unambiguous grammar but it's not LR(1)LR parsers and ambiguous and non deterministic grammarsIs there any relationship between grammar being ambiguous and the language itself?Whether it's necessary for a grammar to be ambiguous when it is both left recursive and right recursive

How can I maintain game balance while allowing my player to craft genuinely useful items?

Why was New Asgard established at this place?

Do Battery Electrons Only Move If There is a Positive Terminal at the End of the Wire?

Is using Legacy mode is a bad thing to do?

Digital signature that is only verifiable by one specific person

How to use random to choose colors

Is this broken pipe the reason my freezer is not working? Can it be fixed?

How to prevent cables getting intertwined

Do my partner and son need an SSN to be dependents on my taxes?

How to ask if I can mow my neighbor's lawn

Justifying Affordable Bespoke Spaceships

You may find me... puzzling

Credit card validation in C

How could I create a situation in which a PC has to make a saving throw or be forced to pet a dog?

Is it a bad idea to have a pen name with only an initial for a surname?

how to find which software is doing ssh connection?

How to sort human readable size

How can I prevent a user from copying files on another hard drive?

How can the US president give an order to a civilian?

Harmonic Series Phase Difference?

Who was the youngest Executive Producer?

Is a sequel allowed to start before the end of the first book?

Build a scale without computer

How can I ping multiple IP addresses at the same time?



Why are ambiguous grammars bad?


Finding a unambiguous grammarWhy is left recursion bad?Show that every grammar for an inherently ambiguous CFL has infinitely many ambiguitiesAmbiguous Grammar and SLR parsing table : No conflicts?Find unambiguous grammar for an ambiguous grammarHow to find whether a grammar is ambiguous?Converting Ambiguous Grammar G to LL(1)unambiguous grammar but it's not LR(1)LR parsers and ambiguous and non deterministic grammarsIs there any relationship between grammar being ambiguous and the language itself?Whether it's necessary for a grammar to be ambiguous when it is both left recursive and right recursive






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








28












$begingroup$


I understand that if there exist 2 or more left or right derivation trees, then the grammar is ambiguous, but I am unable to understand why it is so bad that everyone wants to get rid of it.










share|cite|improve this question









New contributor



HIRAK MONDAL is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$







  • 1




    $begingroup$
    Related but not identical: softwareengineering.stackexchange.com/q/343872/206652 (disclaimer: I wrote the accepted answer)
    $endgroup$
    – marstato
    Jun 9 at 21:45










  • $begingroup$
    See also: "Finding an unambiguous grammar".
    $endgroup$
    – Rob
    Jun 10 at 6:08






  • 1




    $begingroup$
    Indeed unambiguous form are better for practical uses, unambiguous form use less number of productions rules build smaller tree in high (hence efficient compiler-take less time to parse). Most tools provide ability resolve ambiguity explicitly out side grammar.
    $endgroup$
    – Grijesh Chauhan
    Jun 10 at 8:54






  • 3




    $begingroup$
    "everyone wants to get rid of it". Well, that's just not true. In commercially relevant languages, it's common to see ambiguity added as languages evolve. E.g. C++ intentionally added the ambiguity std::vector<std::vector<int>> in 2011, which used to require a space between >> before. The key insight is that these languages have many more users than vendors, so fixing a minor annoyance for users justifies a lot of work by implementors.
    $endgroup$
    – MSalters
    Jun 11 at 7:16

















28












$begingroup$


I understand that if there exist 2 or more left or right derivation trees, then the grammar is ambiguous, but I am unable to understand why it is so bad that everyone wants to get rid of it.










share|cite|improve this question









New contributor



HIRAK MONDAL is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$







  • 1




    $begingroup$
    Related but not identical: softwareengineering.stackexchange.com/q/343872/206652 (disclaimer: I wrote the accepted answer)
    $endgroup$
    – marstato
    Jun 9 at 21:45










  • $begingroup$
    See also: "Finding an unambiguous grammar".
    $endgroup$
    – Rob
    Jun 10 at 6:08






  • 1




    $begingroup$
    Indeed unambiguous form are better for practical uses, unambiguous form use less number of productions rules build smaller tree in high (hence efficient compiler-take less time to parse). Most tools provide ability resolve ambiguity explicitly out side grammar.
    $endgroup$
    – Grijesh Chauhan
    Jun 10 at 8:54






  • 3




    $begingroup$
    "everyone wants to get rid of it". Well, that's just not true. In commercially relevant languages, it's common to see ambiguity added as languages evolve. E.g. C++ intentionally added the ambiguity std::vector<std::vector<int>> in 2011, which used to require a space between >> before. The key insight is that these languages have many more users than vendors, so fixing a minor annoyance for users justifies a lot of work by implementors.
    $endgroup$
    – MSalters
    Jun 11 at 7:16













28












28








28


3



$begingroup$


I understand that if there exist 2 or more left or right derivation trees, then the grammar is ambiguous, but I am unable to understand why it is so bad that everyone wants to get rid of it.










share|cite|improve this question









New contributor



HIRAK MONDAL is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






$endgroup$




I understand that if there exist 2 or more left or right derivation trees, then the grammar is ambiguous, but I am unable to understand why it is so bad that everyone wants to get rid of it.







compilers ambiguity






share|cite|improve this question









New contributor



HIRAK MONDAL is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.










share|cite|improve this question









New contributor



HIRAK MONDAL is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








share|cite|improve this question




share|cite|improve this question








edited Jun 10 at 3:42









user2357112

24717




24717






New contributor



HIRAK MONDAL is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








asked Jun 9 at 12:52









HIRAK MONDALHIRAK MONDAL

14029




14029




New contributor



HIRAK MONDAL is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




New contributor




HIRAK MONDAL is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









  • 1




    $begingroup$
    Related but not identical: softwareengineering.stackexchange.com/q/343872/206652 (disclaimer: I wrote the accepted answer)
    $endgroup$
    – marstato
    Jun 9 at 21:45










  • $begingroup$
    See also: "Finding an unambiguous grammar".
    $endgroup$
    – Rob
    Jun 10 at 6:08






  • 1




    $begingroup$
    Indeed unambiguous form are better for practical uses, unambiguous form use less number of productions rules build smaller tree in high (hence efficient compiler-take less time to parse). Most tools provide ability resolve ambiguity explicitly out side grammar.
    $endgroup$
    – Grijesh Chauhan
    Jun 10 at 8:54






  • 3




    $begingroup$
    "everyone wants to get rid of it". Well, that's just not true. In commercially relevant languages, it's common to see ambiguity added as languages evolve. E.g. C++ intentionally added the ambiguity std::vector<std::vector<int>> in 2011, which used to require a space between >> before. The key insight is that these languages have many more users than vendors, so fixing a minor annoyance for users justifies a lot of work by implementors.
    $endgroup$
    – MSalters
    Jun 11 at 7:16












  • 1




    $begingroup$
    Related but not identical: softwareengineering.stackexchange.com/q/343872/206652 (disclaimer: I wrote the accepted answer)
    $endgroup$
    – marstato
    Jun 9 at 21:45










  • $begingroup$
    See also: "Finding an unambiguous grammar".
    $endgroup$
    – Rob
    Jun 10 at 6:08






  • 1




    $begingroup$
    Indeed unambiguous form are better for practical uses, unambiguous form use less number of productions rules build smaller tree in high (hence efficient compiler-take less time to parse). Most tools provide ability resolve ambiguity explicitly out side grammar.
    $endgroup$
    – Grijesh Chauhan
    Jun 10 at 8:54






  • 3




    $begingroup$
    "everyone wants to get rid of it". Well, that's just not true. In commercially relevant languages, it's common to see ambiguity added as languages evolve. E.g. C++ intentionally added the ambiguity std::vector<std::vector<int>> in 2011, which used to require a space between >> before. The key insight is that these languages have many more users than vendors, so fixing a minor annoyance for users justifies a lot of work by implementors.
    $endgroup$
    – MSalters
    Jun 11 at 7:16







1




1




$begingroup$
Related but not identical: softwareengineering.stackexchange.com/q/343872/206652 (disclaimer: I wrote the accepted answer)
$endgroup$
– marstato
Jun 9 at 21:45




$begingroup$
Related but not identical: softwareengineering.stackexchange.com/q/343872/206652 (disclaimer: I wrote the accepted answer)
$endgroup$
– marstato
Jun 9 at 21:45












$begingroup$
See also: "Finding an unambiguous grammar".
$endgroup$
– Rob
Jun 10 at 6:08




$begingroup$
See also: "Finding an unambiguous grammar".
$endgroup$
– Rob
Jun 10 at 6:08




1




1




$begingroup$
Indeed unambiguous form are better for practical uses, unambiguous form use less number of productions rules build smaller tree in high (hence efficient compiler-take less time to parse). Most tools provide ability resolve ambiguity explicitly out side grammar.
$endgroup$
– Grijesh Chauhan
Jun 10 at 8:54




$begingroup$
Indeed unambiguous form are better for practical uses, unambiguous form use less number of productions rules build smaller tree in high (hence efficient compiler-take less time to parse). Most tools provide ability resolve ambiguity explicitly out side grammar.
$endgroup$
– Grijesh Chauhan
Jun 10 at 8:54




3




3




$begingroup$
"everyone wants to get rid of it". Well, that's just not true. In commercially relevant languages, it's common to see ambiguity added as languages evolve. E.g. C++ intentionally added the ambiguity std::vector<std::vector<int>> in 2011, which used to require a space between >> before. The key insight is that these languages have many more users than vendors, so fixing a minor annoyance for users justifies a lot of work by implementors.
$endgroup$
– MSalters
Jun 11 at 7:16




$begingroup$
"everyone wants to get rid of it". Well, that's just not true. In commercially relevant languages, it's common to see ambiguity added as languages evolve. E.g. C++ intentionally added the ambiguity std::vector<std::vector<int>> in 2011, which used to require a space between >> before. The key insight is that these languages have many more users than vendors, so fixing a minor annoyance for users justifies a lot of work by implementors.
$endgroup$
– MSalters
Jun 11 at 7:16










6 Answers
6






active

oldest

votes


















51












$begingroup$

Consider the following grammar for arithmetic expressions:
$$
X to X + X mid X - X mid X * X mid X / X mid textttvar mid textttconst
$$

Consider the following expression:
$$
a - b - c
$$

What is its value? Here are two possible parse trees:



(X - X) - Xenter image description here



According to the one on the left, we should interpret $a-b-c$ as $(a-b)-c$, which is the usual interpretation. According to the one on the right, we should interpret it as $a-(b-c) = a-b+c$, which is probably not what was intended.



When compiling a program, we want the interpretation of the syntax to be unambiguous. The easiest way to enforce this is using an unambiguous grammar. If the grammar is ambiguous, we can provide tie-breaking rules, like operator precedence and associativity. These rules can equivalently be expressed by making the grammar unambiguous in a particular way.




Parse trees generated using syntax tree generator.






share|cite|improve this answer









$endgroup$








  • 12




    $begingroup$
    @HIRAKMONDAL The fact that the syntax is ambiguous is not real issue. the problem is that the two different parse trees have different behaviour. If your language has an ambiguous grammar but all parse trees for an expression are semantically equivalent then that wouldn't be a problem (e.g. take Yuval example and consider the case where your only operator +).
    $endgroup$
    – Bakuriu
    Jun 9 at 21:39






  • 13




    $begingroup$
    @Bakuriu What you said is true, but "semantically equivalent" is a tall order. For example, floating point arithmetic is actually not associative (so the two "+" trees would not be equivalent). Additionally even if the answer came out the same way, undefined evaluation order matters a lot in languages where expressions can have side effects. So what you said is technically true but in practice it would be very unusual for a grammar's ambiguity to have no repercussions to the use of that grammar.
    $endgroup$
    – Richard Rast
    Jun 10 at 2:03










  • $begingroup$
    Some languages nowadays check for integer overflow in additions, so even a+b+c for integers depends on the order of evaluation.
    $endgroup$
    – gnasher729
    Jun 10 at 7:30






  • 3




    $begingroup$
    Even worse, in some cases the grammar doesn't provide any way to achieve the alternate meaning. I've seen this in query languages, where the choice of escape grammar (e.g. double the special character to escape it) makes certain queries impossible to express.
    $endgroup$
    – OrangeDog
    Jun 10 at 12:55



















12












$begingroup$

In contrast to the other existing answers [1, 2], there is indeed a field of application, where ambiguous grammars are useful. In the field of natural language processing (NLP), when you want to parse natural language (NL) with formal grammars, you've got the problem that NL is inherently ambiguous on different levels [adapted from Koh18, ch. 6.4]:





  • Syntactic ambuigity:




    Peter chased the man in the red sports car




    Was Peter or the man in the red sports car?




  • Semantic ambuigity:




    Peter went to the bank




    A bank to sit on or a bank to withdraw money from?




  • Pragmatic ambuigity:




    Two men carried two bags




    Did they carry the bags together or did each man carry two bags?





Different approaches for NLP deal differently with processing in general and in particular these ambuigities. For example, your pipeline might look as follows:



  1. Parse NL with ambiguous grammar

  2. For every resulting AST: run model generation to generate ambiguous semantic meanings and to rule out impossible syntactic ambiguities from step 1

  3. For every resulting model: save it in your cache.

You do this pipeline for every sentence. The more text, say, from the same book you process, the more you can rule out impossible superfluous models, which survived until step 3, from previous sentences.



As opposed to programming language, we can let go of the requirement that every NL sentence has precise semantics. Instead, we can just bookkeep multiple possible semantic models throughout parsing of larger texts. From while to while, later insights help us to rule out previous ambiguities.



If you want to get your hands dirty with parsers being able to output multiple derivations for ambiguous grammar, have a look at the Grammatical Framework. Also, [Koh18, ch. 5] has an introduction to it showing something similar to my pipeline above. Note though that since [Koh18] are lecture notes, the notes might not be that easy to understand on their own without the lectures.




References



[Koh18]: Michael Kohlhase. "Logic-Based Natural Language Processing. Winter Semester 2018/19. Lecture Notes." URL: https://kwarc.info/teaching/LBS/notes.pdf. URL of course description: https://kwarc.info/courses/lbs/ (in German)



[Koh18, ch. 5]: See chapter 5, "Implementing Fragments: Grammatical and Logical Frameworks", in [Koh18]



[Koh18, ch. 6.4] See chapter 6.4, "The computational Role of Ambiguities", in [Koh18]






share|cite|improve this answer











$endgroup$












  • $begingroup$
    Thanks a ton.. I had the same doubt and u cleared it.. :)
    $endgroup$
    – HIRAK MONDAL
    Jun 10 at 9:25






  • 1




    $begingroup$
    Not to mention problems with Buffalo buffalo buffalo Buffalo buffalo buffalo ... for a suitable number of buffalo
    $endgroup$
    – Hagen von Eitzen
    Jun 10 at 11:13










  • $begingroup$
    You write, “in contrast,” but I’d call this the other side of the coin from what I answered. Parsing natural languages with their ambiguous grammars is so hard that traditional parsers can’t do it!
    $endgroup$
    – Davislor
    Jun 10 at 16:46






  • 1




    $begingroup$
    @ComFreek I should be more precise here. A brief look at GF (Thanks for the link!) shows that it reads context-free grammars with three extensions (such as allowing reduplication) and returns a list of all possible derivations. Algorithms to do that have been around since the ’50s. However, being able to handle fully-general CFGs means your worst-case runtime blows up, and in practice, even when using a general parser such as GLL, software engineers try to use a subset of CFGs, such as LL grammars, that can be parsed more efficiently.
    $endgroup$
    – Davislor
    Jun 11 at 17:07






  • 1




    $begingroup$
    @ComFreek So it’s not that computers can’t handle CFG (although natural languages are not really context-free and actually-useful machine translation uses completely different techniques). It’s that, if you require your parser to handle ambiguity, that rules out certain shortcuts that would have made it more efficient.
    $endgroup$
    – Davislor
    Jun 11 at 17:12


















10












$begingroup$

Even if there’s a well-defined way to handle ambiguity (ambiguous expressions are syntax errors, for example), these grammars still cause trouble. As soon as you introduce ambiguity into a grammar, a parser can no longer be sure that the first match it gets is definitive. It needs to keep trying all the other ways to parse a statement, to rule out any ambiguity. You’re also not dealing with something simple like a LL(1) language, so you can’t use a simple, small, fast parser. Your grammar has symbols that can be read multiple ways, so you have to be prepared to backtrack a lot.



In some restricted domains, you might be able to get away with proving that all possible ways to parse an expression are equivalent (for example, because they represent an associative operation). (a+b) + c = a + (b+c).






share|cite|improve this answer









$endgroup$




















    9












    $begingroup$

    Does IF a THEN IF b THEN x ELSE y mean



    IF a THEN
    IF b THEN
    x
    ELSE
    y


    or



    IF a THEN
    IF b THEN x
    ELSE
    y


    ? AKA the dangling else problem.






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      That's a good example showing that even a non-ambiguous grammar (as in Java, C, C++, ...) allows apparent (!) ambiguities from a human perspective. Even though we are formally and computationally fine, we now got more of a UX/bug-free development problem.
      $endgroup$
      – ComFreek
      Jun 10 at 14:29



















    5












    $begingroup$

    Take the most vexing parse in C++ for example:



    bar foo(foobar());


    Is this a function declaration foo of type bar(foobar()) (the parameter is a function pointer returning a foobar), or a variable declaration foo of type int and initialized with a default initialized foobar?



    This is differentiated in compilers by assuming the first unless the expression inside the parameter list cannot be interpreted as a type.



    when you get such an ambiguous expression the compiler has 2 options



    1. assume that the expression is a particular derivation and add some disambiguator to the grammar to allow the other derivation to be expressed.


    2. error out and require disambiguation either way


    The first can fall out naturally, the second requires that the compiler programmer knows about the ambiguity.



    If this ambiguity stays undetected then it is possible that 2 different compilers default to different derivations for that ambiguous expression. Leading to code being non-portable for non-obvious reasons. Which leads people to assume it's a bug in one of the compilers while it's actually a fault in the language specification.






    share|cite|improve this answer









    $endgroup$




















      5












      $begingroup$

      I think the question contains an assumption that's only borderline correct at best.



      In real life it's pretty common to simply live with ambiguous grammars, as long as they aren't (so to speak) too ambiguous.



      For example, if you look around at grammars compiled with yacc (or similar, such as bison or byacc) you'll find that quite a few produce warnings about "N shift/reduct conflicts" when you compile them. When yacc encounters a shift/reduce conflict, that signals an ambiguity in the grammar.



      A shift/reduce conflict, however, is usually a fairly minor problem. The parser generator will resolve the conflict in favor of the "shift" rather than the reduce. The grammar is perfectly fine if that's what you want (and it does seem to work out perfectly well in practice).



      A shift/reduce conflict typically arises in a case on this general order (using caps for non-terminals and lower-case for terminals):



      A -> B | c
      B -> a | c


      When we encounter a c, there's an ambiguity: should we parse the c directly as an A, or should we parse it as a B, which in turn is an A? In a case like this, yacc and such will choose the simpler/shorter route, and parse the c directly as an A, rather than going the c -> B -> A route. This can be wrong, but if so, it probably means you have a really simple error in your grammar, and you shouldn't allow the c option as a possibility for A at all.



      Now, by contrast, we could have something more like this:



      A -> B | C
      B -> a | c
      C -> b | c


      Now when we encounter a c we have conflict between whether to treat the c as a B or a C. There's a lot less chance that an automatic conflict resolution strategy is going to choose what we really want. Neither of these is a "shift"--both are "reductions", so this is a "reduce/reduce conflict" (which those accustomed to yacc and such generally recognize as a much bigger problem than a shift/reduce conflict).



      So, although I'm not sure I'd go quite so far as to say that anybody really welcomes ambiguity in their grammar, in at least some cases it's minor enough that nobody really cares a whole lot about it. In the abstract they might like the idea of removing all ambiguity--but not enough to always actually do it. For example, a small, simple grammar that contains a minor ambiguity can be preferable to a larger, more complex grammar that eliminates the ambiguity (especially when you get into the practical realm of actually generating a parser from the grammar, and finding that the unambiguous grammar produces a parser that won't run on your target machine).






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        man, wish i'd had this excellent explanation of shift-reduce conflicts 5 months ago! ^^; +1
        $endgroup$
        – HotelCalifornia
        Jun 12 at 8:23











      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "419"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      HIRAK MONDAL is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f110402%2fwhy-are-ambiguous-grammars-bad%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      6 Answers
      6






      active

      oldest

      votes








      6 Answers
      6






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      51












      $begingroup$

      Consider the following grammar for arithmetic expressions:
      $$
      X to X + X mid X - X mid X * X mid X / X mid textttvar mid textttconst
      $$

      Consider the following expression:
      $$
      a - b - c
      $$

      What is its value? Here are two possible parse trees:



      (X - X) - Xenter image description here



      According to the one on the left, we should interpret $a-b-c$ as $(a-b)-c$, which is the usual interpretation. According to the one on the right, we should interpret it as $a-(b-c) = a-b+c$, which is probably not what was intended.



      When compiling a program, we want the interpretation of the syntax to be unambiguous. The easiest way to enforce this is using an unambiguous grammar. If the grammar is ambiguous, we can provide tie-breaking rules, like operator precedence and associativity. These rules can equivalently be expressed by making the grammar unambiguous in a particular way.




      Parse trees generated using syntax tree generator.






      share|cite|improve this answer









      $endgroup$








      • 12




        $begingroup$
        @HIRAKMONDAL The fact that the syntax is ambiguous is not real issue. the problem is that the two different parse trees have different behaviour. If your language has an ambiguous grammar but all parse trees for an expression are semantically equivalent then that wouldn't be a problem (e.g. take Yuval example and consider the case where your only operator +).
        $endgroup$
        – Bakuriu
        Jun 9 at 21:39






      • 13




        $begingroup$
        @Bakuriu What you said is true, but "semantically equivalent" is a tall order. For example, floating point arithmetic is actually not associative (so the two "+" trees would not be equivalent). Additionally even if the answer came out the same way, undefined evaluation order matters a lot in languages where expressions can have side effects. So what you said is technically true but in practice it would be very unusual for a grammar's ambiguity to have no repercussions to the use of that grammar.
        $endgroup$
        – Richard Rast
        Jun 10 at 2:03










      • $begingroup$
        Some languages nowadays check for integer overflow in additions, so even a+b+c for integers depends on the order of evaluation.
        $endgroup$
        – gnasher729
        Jun 10 at 7:30






      • 3




        $begingroup$
        Even worse, in some cases the grammar doesn't provide any way to achieve the alternate meaning. I've seen this in query languages, where the choice of escape grammar (e.g. double the special character to escape it) makes certain queries impossible to express.
        $endgroup$
        – OrangeDog
        Jun 10 at 12:55
















      51












      $begingroup$

      Consider the following grammar for arithmetic expressions:
      $$
      X to X + X mid X - X mid X * X mid X / X mid textttvar mid textttconst
      $$

      Consider the following expression:
      $$
      a - b - c
      $$

      What is its value? Here are two possible parse trees:



      (X - X) - Xenter image description here



      According to the one on the left, we should interpret $a-b-c$ as $(a-b)-c$, which is the usual interpretation. According to the one on the right, we should interpret it as $a-(b-c) = a-b+c$, which is probably not what was intended.



      When compiling a program, we want the interpretation of the syntax to be unambiguous. The easiest way to enforce this is using an unambiguous grammar. If the grammar is ambiguous, we can provide tie-breaking rules, like operator precedence and associativity. These rules can equivalently be expressed by making the grammar unambiguous in a particular way.




      Parse trees generated using syntax tree generator.






      share|cite|improve this answer









      $endgroup$








      • 12




        $begingroup$
        @HIRAKMONDAL The fact that the syntax is ambiguous is not real issue. the problem is that the two different parse trees have different behaviour. If your language has an ambiguous grammar but all parse trees for an expression are semantically equivalent then that wouldn't be a problem (e.g. take Yuval example and consider the case where your only operator +).
        $endgroup$
        – Bakuriu
        Jun 9 at 21:39






      • 13




        $begingroup$
        @Bakuriu What you said is true, but "semantically equivalent" is a tall order. For example, floating point arithmetic is actually not associative (so the two "+" trees would not be equivalent). Additionally even if the answer came out the same way, undefined evaluation order matters a lot in languages where expressions can have side effects. So what you said is technically true but in practice it would be very unusual for a grammar's ambiguity to have no repercussions to the use of that grammar.
        $endgroup$
        – Richard Rast
        Jun 10 at 2:03










      • $begingroup$
        Some languages nowadays check for integer overflow in additions, so even a+b+c for integers depends on the order of evaluation.
        $endgroup$
        – gnasher729
        Jun 10 at 7:30






      • 3




        $begingroup$
        Even worse, in some cases the grammar doesn't provide any way to achieve the alternate meaning. I've seen this in query languages, where the choice of escape grammar (e.g. double the special character to escape it) makes certain queries impossible to express.
        $endgroup$
        – OrangeDog
        Jun 10 at 12:55














      51












      51








      51





      $begingroup$

      Consider the following grammar for arithmetic expressions:
      $$
      X to X + X mid X - X mid X * X mid X / X mid textttvar mid textttconst
      $$

      Consider the following expression:
      $$
      a - b - c
      $$

      What is its value? Here are two possible parse trees:



      (X - X) - Xenter image description here



      According to the one on the left, we should interpret $a-b-c$ as $(a-b)-c$, which is the usual interpretation. According to the one on the right, we should interpret it as $a-(b-c) = a-b+c$, which is probably not what was intended.



      When compiling a program, we want the interpretation of the syntax to be unambiguous. The easiest way to enforce this is using an unambiguous grammar. If the grammar is ambiguous, we can provide tie-breaking rules, like operator precedence and associativity. These rules can equivalently be expressed by making the grammar unambiguous in a particular way.




      Parse trees generated using syntax tree generator.






      share|cite|improve this answer









      $endgroup$



      Consider the following grammar for arithmetic expressions:
      $$
      X to X + X mid X - X mid X * X mid X / X mid textttvar mid textttconst
      $$

      Consider the following expression:
      $$
      a - b - c
      $$

      What is its value? Here are two possible parse trees:



      (X - X) - Xenter image description here



      According to the one on the left, we should interpret $a-b-c$ as $(a-b)-c$, which is the usual interpretation. According to the one on the right, we should interpret it as $a-(b-c) = a-b+c$, which is probably not what was intended.



      When compiling a program, we want the interpretation of the syntax to be unambiguous. The easiest way to enforce this is using an unambiguous grammar. If the grammar is ambiguous, we can provide tie-breaking rules, like operator precedence and associativity. These rules can equivalently be expressed by making the grammar unambiguous in a particular way.




      Parse trees generated using syntax tree generator.







      share|cite|improve this answer












      share|cite|improve this answer



      share|cite|improve this answer










      answered Jun 9 at 13:11









      Yuval FilmusYuval Filmus

      202k15197359




      202k15197359







      • 12




        $begingroup$
        @HIRAKMONDAL The fact that the syntax is ambiguous is not real issue. the problem is that the two different parse trees have different behaviour. If your language has an ambiguous grammar but all parse trees for an expression are semantically equivalent then that wouldn't be a problem (e.g. take Yuval example and consider the case where your only operator +).
        $endgroup$
        – Bakuriu
        Jun 9 at 21:39






      • 13




        $begingroup$
        @Bakuriu What you said is true, but "semantically equivalent" is a tall order. For example, floating point arithmetic is actually not associative (so the two "+" trees would not be equivalent). Additionally even if the answer came out the same way, undefined evaluation order matters a lot in languages where expressions can have side effects. So what you said is technically true but in practice it would be very unusual for a grammar's ambiguity to have no repercussions to the use of that grammar.
        $endgroup$
        – Richard Rast
        Jun 10 at 2:03










      • $begingroup$
        Some languages nowadays check for integer overflow in additions, so even a+b+c for integers depends on the order of evaluation.
        $endgroup$
        – gnasher729
        Jun 10 at 7:30






      • 3




        $begingroup$
        Even worse, in some cases the grammar doesn't provide any way to achieve the alternate meaning. I've seen this in query languages, where the choice of escape grammar (e.g. double the special character to escape it) makes certain queries impossible to express.
        $endgroup$
        – OrangeDog
        Jun 10 at 12:55













      • 12




        $begingroup$
        @HIRAKMONDAL The fact that the syntax is ambiguous is not real issue. the problem is that the two different parse trees have different behaviour. If your language has an ambiguous grammar but all parse trees for an expression are semantically equivalent then that wouldn't be a problem (e.g. take Yuval example and consider the case where your only operator +).
        $endgroup$
        – Bakuriu
        Jun 9 at 21:39






      • 13




        $begingroup$
        @Bakuriu What you said is true, but "semantically equivalent" is a tall order. For example, floating point arithmetic is actually not associative (so the two "+" trees would not be equivalent). Additionally even if the answer came out the same way, undefined evaluation order matters a lot in languages where expressions can have side effects. So what you said is technically true but in practice it would be very unusual for a grammar's ambiguity to have no repercussions to the use of that grammar.
        $endgroup$
        – Richard Rast
        Jun 10 at 2:03










      • $begingroup$
        Some languages nowadays check for integer overflow in additions, so even a+b+c for integers depends on the order of evaluation.
        $endgroup$
        – gnasher729
        Jun 10 at 7:30






      • 3




        $begingroup$
        Even worse, in some cases the grammar doesn't provide any way to achieve the alternate meaning. I've seen this in query languages, where the choice of escape grammar (e.g. double the special character to escape it) makes certain queries impossible to express.
        $endgroup$
        – OrangeDog
        Jun 10 at 12:55








      12




      12




      $begingroup$
      @HIRAKMONDAL The fact that the syntax is ambiguous is not real issue. the problem is that the two different parse trees have different behaviour. If your language has an ambiguous grammar but all parse trees for an expression are semantically equivalent then that wouldn't be a problem (e.g. take Yuval example and consider the case where your only operator +).
      $endgroup$
      – Bakuriu
      Jun 9 at 21:39




      $begingroup$
      @HIRAKMONDAL The fact that the syntax is ambiguous is not real issue. the problem is that the two different parse trees have different behaviour. If your language has an ambiguous grammar but all parse trees for an expression are semantically equivalent then that wouldn't be a problem (e.g. take Yuval example and consider the case where your only operator +).
      $endgroup$
      – Bakuriu
      Jun 9 at 21:39




      13




      13




      $begingroup$
      @Bakuriu What you said is true, but "semantically equivalent" is a tall order. For example, floating point arithmetic is actually not associative (so the two "+" trees would not be equivalent). Additionally even if the answer came out the same way, undefined evaluation order matters a lot in languages where expressions can have side effects. So what you said is technically true but in practice it would be very unusual for a grammar's ambiguity to have no repercussions to the use of that grammar.
      $endgroup$
      – Richard Rast
      Jun 10 at 2:03




      $begingroup$
      @Bakuriu What you said is true, but "semantically equivalent" is a tall order. For example, floating point arithmetic is actually not associative (so the two "+" trees would not be equivalent). Additionally even if the answer came out the same way, undefined evaluation order matters a lot in languages where expressions can have side effects. So what you said is technically true but in practice it would be very unusual for a grammar's ambiguity to have no repercussions to the use of that grammar.
      $endgroup$
      – Richard Rast
      Jun 10 at 2:03












      $begingroup$
      Some languages nowadays check for integer overflow in additions, so even a+b+c for integers depends on the order of evaluation.
      $endgroup$
      – gnasher729
      Jun 10 at 7:30




      $begingroup$
      Some languages nowadays check for integer overflow in additions, so even a+b+c for integers depends on the order of evaluation.
      $endgroup$
      – gnasher729
      Jun 10 at 7:30




      3




      3




      $begingroup$
      Even worse, in some cases the grammar doesn't provide any way to achieve the alternate meaning. I've seen this in query languages, where the choice of escape grammar (e.g. double the special character to escape it) makes certain queries impossible to express.
      $endgroup$
      – OrangeDog
      Jun 10 at 12:55





      $begingroup$
      Even worse, in some cases the grammar doesn't provide any way to achieve the alternate meaning. I've seen this in query languages, where the choice of escape grammar (e.g. double the special character to escape it) makes certain queries impossible to express.
      $endgroup$
      – OrangeDog
      Jun 10 at 12:55














      12












      $begingroup$

      In contrast to the other existing answers [1, 2], there is indeed a field of application, where ambiguous grammars are useful. In the field of natural language processing (NLP), when you want to parse natural language (NL) with formal grammars, you've got the problem that NL is inherently ambiguous on different levels [adapted from Koh18, ch. 6.4]:





      • Syntactic ambuigity:




        Peter chased the man in the red sports car




        Was Peter or the man in the red sports car?




      • Semantic ambuigity:




        Peter went to the bank




        A bank to sit on or a bank to withdraw money from?




      • Pragmatic ambuigity:




        Two men carried two bags




        Did they carry the bags together or did each man carry two bags?





      Different approaches for NLP deal differently with processing in general and in particular these ambuigities. For example, your pipeline might look as follows:



      1. Parse NL with ambiguous grammar

      2. For every resulting AST: run model generation to generate ambiguous semantic meanings and to rule out impossible syntactic ambiguities from step 1

      3. For every resulting model: save it in your cache.

      You do this pipeline for every sentence. The more text, say, from the same book you process, the more you can rule out impossible superfluous models, which survived until step 3, from previous sentences.



      As opposed to programming language, we can let go of the requirement that every NL sentence has precise semantics. Instead, we can just bookkeep multiple possible semantic models throughout parsing of larger texts. From while to while, later insights help us to rule out previous ambiguities.



      If you want to get your hands dirty with parsers being able to output multiple derivations for ambiguous grammar, have a look at the Grammatical Framework. Also, [Koh18, ch. 5] has an introduction to it showing something similar to my pipeline above. Note though that since [Koh18] are lecture notes, the notes might not be that easy to understand on their own without the lectures.




      References



      [Koh18]: Michael Kohlhase. "Logic-Based Natural Language Processing. Winter Semester 2018/19. Lecture Notes." URL: https://kwarc.info/teaching/LBS/notes.pdf. URL of course description: https://kwarc.info/courses/lbs/ (in German)



      [Koh18, ch. 5]: See chapter 5, "Implementing Fragments: Grammatical and Logical Frameworks", in [Koh18]



      [Koh18, ch. 6.4] See chapter 6.4, "The computational Role of Ambiguities", in [Koh18]






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        Thanks a ton.. I had the same doubt and u cleared it.. :)
        $endgroup$
        – HIRAK MONDAL
        Jun 10 at 9:25






      • 1




        $begingroup$
        Not to mention problems with Buffalo buffalo buffalo Buffalo buffalo buffalo ... for a suitable number of buffalo
        $endgroup$
        – Hagen von Eitzen
        Jun 10 at 11:13










      • $begingroup$
        You write, “in contrast,” but I’d call this the other side of the coin from what I answered. Parsing natural languages with their ambiguous grammars is so hard that traditional parsers can’t do it!
        $endgroup$
        – Davislor
        Jun 10 at 16:46






      • 1




        $begingroup$
        @ComFreek I should be more precise here. A brief look at GF (Thanks for the link!) shows that it reads context-free grammars with three extensions (such as allowing reduplication) and returns a list of all possible derivations. Algorithms to do that have been around since the ’50s. However, being able to handle fully-general CFGs means your worst-case runtime blows up, and in practice, even when using a general parser such as GLL, software engineers try to use a subset of CFGs, such as LL grammars, that can be parsed more efficiently.
        $endgroup$
        – Davislor
        Jun 11 at 17:07






      • 1




        $begingroup$
        @ComFreek So it’s not that computers can’t handle CFG (although natural languages are not really context-free and actually-useful machine translation uses completely different techniques). It’s that, if you require your parser to handle ambiguity, that rules out certain shortcuts that would have made it more efficient.
        $endgroup$
        – Davislor
        Jun 11 at 17:12















      12












      $begingroup$

      In contrast to the other existing answers [1, 2], there is indeed a field of application, where ambiguous grammars are useful. In the field of natural language processing (NLP), when you want to parse natural language (NL) with formal grammars, you've got the problem that NL is inherently ambiguous on different levels [adapted from Koh18, ch. 6.4]:





      • Syntactic ambuigity:




        Peter chased the man in the red sports car




        Was Peter or the man in the red sports car?




      • Semantic ambuigity:




        Peter went to the bank




        A bank to sit on or a bank to withdraw money from?




      • Pragmatic ambuigity:




        Two men carried two bags




        Did they carry the bags together or did each man carry two bags?





      Different approaches for NLP deal differently with processing in general and in particular these ambuigities. For example, your pipeline might look as follows:



      1. Parse NL with ambiguous grammar

      2. For every resulting AST: run model generation to generate ambiguous semantic meanings and to rule out impossible syntactic ambiguities from step 1

      3. For every resulting model: save it in your cache.

      You do this pipeline for every sentence. The more text, say, from the same book you process, the more you can rule out impossible superfluous models, which survived until step 3, from previous sentences.



      As opposed to programming language, we can let go of the requirement that every NL sentence has precise semantics. Instead, we can just bookkeep multiple possible semantic models throughout parsing of larger texts. From while to while, later insights help us to rule out previous ambiguities.



      If you want to get your hands dirty with parsers being able to output multiple derivations for ambiguous grammar, have a look at the Grammatical Framework. Also, [Koh18, ch. 5] has an introduction to it showing something similar to my pipeline above. Note though that since [Koh18] are lecture notes, the notes might not be that easy to understand on their own without the lectures.




      References



      [Koh18]: Michael Kohlhase. "Logic-Based Natural Language Processing. Winter Semester 2018/19. Lecture Notes." URL: https://kwarc.info/teaching/LBS/notes.pdf. URL of course description: https://kwarc.info/courses/lbs/ (in German)



      [Koh18, ch. 5]: See chapter 5, "Implementing Fragments: Grammatical and Logical Frameworks", in [Koh18]



      [Koh18, ch. 6.4] See chapter 6.4, "The computational Role of Ambiguities", in [Koh18]






      share|cite|improve this answer











      $endgroup$












      • $begingroup$
        Thanks a ton.. I had the same doubt and u cleared it.. :)
        $endgroup$
        – HIRAK MONDAL
        Jun 10 at 9:25






      • 1




        $begingroup$
        Not to mention problems with Buffalo buffalo buffalo Buffalo buffalo buffalo ... for a suitable number of buffalo
        $endgroup$
        – Hagen von Eitzen
        Jun 10 at 11:13










      • $begingroup$
        You write, “in contrast,” but I’d call this the other side of the coin from what I answered. Parsing natural languages with their ambiguous grammars is so hard that traditional parsers can’t do it!
        $endgroup$
        – Davislor
        Jun 10 at 16:46






      • 1




        $begingroup$
        @ComFreek I should be more precise here. A brief look at GF (Thanks for the link!) shows that it reads context-free grammars with three extensions (such as allowing reduplication) and returns a list of all possible derivations. Algorithms to do that have been around since the ’50s. However, being able to handle fully-general CFGs means your worst-case runtime blows up, and in practice, even when using a general parser such as GLL, software engineers try to use a subset of CFGs, such as LL grammars, that can be parsed more efficiently.
        $endgroup$
        – Davislor
        Jun 11 at 17:07






      • 1




        $begingroup$
        @ComFreek So it’s not that computers can’t handle CFG (although natural languages are not really context-free and actually-useful machine translation uses completely different techniques). It’s that, if you require your parser to handle ambiguity, that rules out certain shortcuts that would have made it more efficient.
        $endgroup$
        – Davislor
        Jun 11 at 17:12













      12












      12








      12





      $begingroup$

      In contrast to the other existing answers [1, 2], there is indeed a field of application, where ambiguous grammars are useful. In the field of natural language processing (NLP), when you want to parse natural language (NL) with formal grammars, you've got the problem that NL is inherently ambiguous on different levels [adapted from Koh18, ch. 6.4]:





      • Syntactic ambuigity:




        Peter chased the man in the red sports car




        Was Peter or the man in the red sports car?




      • Semantic ambuigity:




        Peter went to the bank




        A bank to sit on or a bank to withdraw money from?




      • Pragmatic ambuigity:




        Two men carried two bags




        Did they carry the bags together or did each man carry two bags?





      Different approaches for NLP deal differently with processing in general and in particular these ambuigities. For example, your pipeline might look as follows:



      1. Parse NL with ambiguous grammar

      2. For every resulting AST: run model generation to generate ambiguous semantic meanings and to rule out impossible syntactic ambiguities from step 1

      3. For every resulting model: save it in your cache.

      You do this pipeline for every sentence. The more text, say, from the same book you process, the more you can rule out impossible superfluous models, which survived until step 3, from previous sentences.



      As opposed to programming language, we can let go of the requirement that every NL sentence has precise semantics. Instead, we can just bookkeep multiple possible semantic models throughout parsing of larger texts. From while to while, later insights help us to rule out previous ambiguities.



      If you want to get your hands dirty with parsers being able to output multiple derivations for ambiguous grammar, have a look at the Grammatical Framework. Also, [Koh18, ch. 5] has an introduction to it showing something similar to my pipeline above. Note though that since [Koh18] are lecture notes, the notes might not be that easy to understand on their own without the lectures.




      References



      [Koh18]: Michael Kohlhase. "Logic-Based Natural Language Processing. Winter Semester 2018/19. Lecture Notes." URL: https://kwarc.info/teaching/LBS/notes.pdf. URL of course description: https://kwarc.info/courses/lbs/ (in German)



      [Koh18, ch. 5]: See chapter 5, "Implementing Fragments: Grammatical and Logical Frameworks", in [Koh18]



      [Koh18, ch. 6.4] See chapter 6.4, "The computational Role of Ambiguities", in [Koh18]






      share|cite|improve this answer











      $endgroup$



      In contrast to the other existing answers [1, 2], there is indeed a field of application, where ambiguous grammars are useful. In the field of natural language processing (NLP), when you want to parse natural language (NL) with formal grammars, you've got the problem that NL is inherently ambiguous on different levels [adapted from Koh18, ch. 6.4]:





      • Syntactic ambuigity:




        Peter chased the man in the red sports car




        Was Peter or the man in the red sports car?




      • Semantic ambuigity:




        Peter went to the bank




        A bank to sit on or a bank to withdraw money from?




      • Pragmatic ambuigity:




        Two men carried two bags




        Did they carry the bags together or did each man carry two bags?





      Different approaches for NLP deal differently with processing in general and in particular these ambuigities. For example, your pipeline might look as follows:



      1. Parse NL with ambiguous grammar

      2. For every resulting AST: run model generation to generate ambiguous semantic meanings and to rule out impossible syntactic ambiguities from step 1

      3. For every resulting model: save it in your cache.

      You do this pipeline for every sentence. The more text, say, from the same book you process, the more you can rule out impossible superfluous models, which survived until step 3, from previous sentences.



      As opposed to programming language, we can let go of the requirement that every NL sentence has precise semantics. Instead, we can just bookkeep multiple possible semantic models throughout parsing of larger texts. From while to while, later insights help us to rule out previous ambiguities.



      If you want to get your hands dirty with parsers being able to output multiple derivations for ambiguous grammar, have a look at the Grammatical Framework. Also, [Koh18, ch. 5] has an introduction to it showing something similar to my pipeline above. Note though that since [Koh18] are lecture notes, the notes might not be that easy to understand on their own without the lectures.




      References



      [Koh18]: Michael Kohlhase. "Logic-Based Natural Language Processing. Winter Semester 2018/19. Lecture Notes." URL: https://kwarc.info/teaching/LBS/notes.pdf. URL of course description: https://kwarc.info/courses/lbs/ (in German)



      [Koh18, ch. 5]: See chapter 5, "Implementing Fragments: Grammatical and Logical Frameworks", in [Koh18]



      [Koh18, ch. 6.4] See chapter 6.4, "The computational Role of Ambiguities", in [Koh18]







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited 17 hours ago

























      answered Jun 10 at 8:50









      ComFreekComFreek

      25117




      25117











      • $begingroup$
        Thanks a ton.. I had the same doubt and u cleared it.. :)
        $endgroup$
        – HIRAK MONDAL
        Jun 10 at 9:25






      • 1




        $begingroup$
        Not to mention problems with Buffalo buffalo buffalo Buffalo buffalo buffalo ... for a suitable number of buffalo
        $endgroup$
        – Hagen von Eitzen
        Jun 10 at 11:13










      • $begingroup$
        You write, “in contrast,” but I’d call this the other side of the coin from what I answered. Parsing natural languages with their ambiguous grammars is so hard that traditional parsers can’t do it!
        $endgroup$
        – Davislor
        Jun 10 at 16:46






      • 1




        $begingroup$
        @ComFreek I should be more precise here. A brief look at GF (Thanks for the link!) shows that it reads context-free grammars with three extensions (such as allowing reduplication) and returns a list of all possible derivations. Algorithms to do that have been around since the ’50s. However, being able to handle fully-general CFGs means your worst-case runtime blows up, and in practice, even when using a general parser such as GLL, software engineers try to use a subset of CFGs, such as LL grammars, that can be parsed more efficiently.
        $endgroup$
        – Davislor
        Jun 11 at 17:07






      • 1




        $begingroup$
        @ComFreek So it’s not that computers can’t handle CFG (although natural languages are not really context-free and actually-useful machine translation uses completely different techniques). It’s that, if you require your parser to handle ambiguity, that rules out certain shortcuts that would have made it more efficient.
        $endgroup$
        – Davislor
        Jun 11 at 17:12
















      • $begingroup$
        Thanks a ton.. I had the same doubt and u cleared it.. :)
        $endgroup$
        – HIRAK MONDAL
        Jun 10 at 9:25






      • 1




        $begingroup$
        Not to mention problems with Buffalo buffalo buffalo Buffalo buffalo buffalo ... for a suitable number of buffalo
        $endgroup$
        – Hagen von Eitzen
        Jun 10 at 11:13










      • $begingroup$
        You write, “in contrast,” but I’d call this the other side of the coin from what I answered. Parsing natural languages with their ambiguous grammars is so hard that traditional parsers can’t do it!
        $endgroup$
        – Davislor
        Jun 10 at 16:46






      • 1




        $begingroup$
        @ComFreek I should be more precise here. A brief look at GF (Thanks for the link!) shows that it reads context-free grammars with three extensions (such as allowing reduplication) and returns a list of all possible derivations. Algorithms to do that have been around since the ’50s. However, being able to handle fully-general CFGs means your worst-case runtime blows up, and in practice, even when using a general parser such as GLL, software engineers try to use a subset of CFGs, such as LL grammars, that can be parsed more efficiently.
        $endgroup$
        – Davislor
        Jun 11 at 17:07






      • 1




        $begingroup$
        @ComFreek So it’s not that computers can’t handle CFG (although natural languages are not really context-free and actually-useful machine translation uses completely different techniques). It’s that, if you require your parser to handle ambiguity, that rules out certain shortcuts that would have made it more efficient.
        $endgroup$
        – Davislor
        Jun 11 at 17:12















      $begingroup$
      Thanks a ton.. I had the same doubt and u cleared it.. :)
      $endgroup$
      – HIRAK MONDAL
      Jun 10 at 9:25




      $begingroup$
      Thanks a ton.. I had the same doubt and u cleared it.. :)
      $endgroup$
      – HIRAK MONDAL
      Jun 10 at 9:25




      1




      1




      $begingroup$
      Not to mention problems with Buffalo buffalo buffalo Buffalo buffalo buffalo ... for a suitable number of buffalo
      $endgroup$
      – Hagen von Eitzen
      Jun 10 at 11:13




      $begingroup$
      Not to mention problems with Buffalo buffalo buffalo Buffalo buffalo buffalo ... for a suitable number of buffalo
      $endgroup$
      – Hagen von Eitzen
      Jun 10 at 11:13












      $begingroup$
      You write, “in contrast,” but I’d call this the other side of the coin from what I answered. Parsing natural languages with their ambiguous grammars is so hard that traditional parsers can’t do it!
      $endgroup$
      – Davislor
      Jun 10 at 16:46




      $begingroup$
      You write, “in contrast,” but I’d call this the other side of the coin from what I answered. Parsing natural languages with their ambiguous grammars is so hard that traditional parsers can’t do it!
      $endgroup$
      – Davislor
      Jun 10 at 16:46




      1




      1




      $begingroup$
      @ComFreek I should be more precise here. A brief look at GF (Thanks for the link!) shows that it reads context-free grammars with three extensions (such as allowing reduplication) and returns a list of all possible derivations. Algorithms to do that have been around since the ’50s. However, being able to handle fully-general CFGs means your worst-case runtime blows up, and in practice, even when using a general parser such as GLL, software engineers try to use a subset of CFGs, such as LL grammars, that can be parsed more efficiently.
      $endgroup$
      – Davislor
      Jun 11 at 17:07




      $begingroup$
      @ComFreek I should be more precise here. A brief look at GF (Thanks for the link!) shows that it reads context-free grammars with three extensions (such as allowing reduplication) and returns a list of all possible derivations. Algorithms to do that have been around since the ’50s. However, being able to handle fully-general CFGs means your worst-case runtime blows up, and in practice, even when using a general parser such as GLL, software engineers try to use a subset of CFGs, such as LL grammars, that can be parsed more efficiently.
      $endgroup$
      – Davislor
      Jun 11 at 17:07




      1




      1




      $begingroup$
      @ComFreek So it’s not that computers can’t handle CFG (although natural languages are not really context-free and actually-useful machine translation uses completely different techniques). It’s that, if you require your parser to handle ambiguity, that rules out certain shortcuts that would have made it more efficient.
      $endgroup$
      – Davislor
      Jun 11 at 17:12




      $begingroup$
      @ComFreek So it’s not that computers can’t handle CFG (although natural languages are not really context-free and actually-useful machine translation uses completely different techniques). It’s that, if you require your parser to handle ambiguity, that rules out certain shortcuts that would have made it more efficient.
      $endgroup$
      – Davislor
      Jun 11 at 17:12











      10












      $begingroup$

      Even if there’s a well-defined way to handle ambiguity (ambiguous expressions are syntax errors, for example), these grammars still cause trouble. As soon as you introduce ambiguity into a grammar, a parser can no longer be sure that the first match it gets is definitive. It needs to keep trying all the other ways to parse a statement, to rule out any ambiguity. You’re also not dealing with something simple like a LL(1) language, so you can’t use a simple, small, fast parser. Your grammar has symbols that can be read multiple ways, so you have to be prepared to backtrack a lot.



      In some restricted domains, you might be able to get away with proving that all possible ways to parse an expression are equivalent (for example, because they represent an associative operation). (a+b) + c = a + (b+c).






      share|cite|improve this answer









      $endgroup$

















        10












        $begingroup$

        Even if there’s a well-defined way to handle ambiguity (ambiguous expressions are syntax errors, for example), these grammars still cause trouble. As soon as you introduce ambiguity into a grammar, a parser can no longer be sure that the first match it gets is definitive. It needs to keep trying all the other ways to parse a statement, to rule out any ambiguity. You’re also not dealing with something simple like a LL(1) language, so you can’t use a simple, small, fast parser. Your grammar has symbols that can be read multiple ways, so you have to be prepared to backtrack a lot.



        In some restricted domains, you might be able to get away with proving that all possible ways to parse an expression are equivalent (for example, because they represent an associative operation). (a+b) + c = a + (b+c).






        share|cite|improve this answer









        $endgroup$















          10












          10








          10





          $begingroup$

          Even if there’s a well-defined way to handle ambiguity (ambiguous expressions are syntax errors, for example), these grammars still cause trouble. As soon as you introduce ambiguity into a grammar, a parser can no longer be sure that the first match it gets is definitive. It needs to keep trying all the other ways to parse a statement, to rule out any ambiguity. You’re also not dealing with something simple like a LL(1) language, so you can’t use a simple, small, fast parser. Your grammar has symbols that can be read multiple ways, so you have to be prepared to backtrack a lot.



          In some restricted domains, you might be able to get away with proving that all possible ways to parse an expression are equivalent (for example, because they represent an associative operation). (a+b) + c = a + (b+c).






          share|cite|improve this answer









          $endgroup$



          Even if there’s a well-defined way to handle ambiguity (ambiguous expressions are syntax errors, for example), these grammars still cause trouble. As soon as you introduce ambiguity into a grammar, a parser can no longer be sure that the first match it gets is definitive. It needs to keep trying all the other ways to parse a statement, to rule out any ambiguity. You’re also not dealing with something simple like a LL(1) language, so you can’t use a simple, small, fast parser. Your grammar has symbols that can be read multiple ways, so you have to be prepared to backtrack a lot.



          In some restricted domains, you might be able to get away with proving that all possible ways to parse an expression are equivalent (for example, because they represent an associative operation). (a+b) + c = a + (b+c).







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jun 9 at 21:28









          DavislorDavislor

          91349




          91349





















              9












              $begingroup$

              Does IF a THEN IF b THEN x ELSE y mean



              IF a THEN
              IF b THEN
              x
              ELSE
              y


              or



              IF a THEN
              IF b THEN x
              ELSE
              y


              ? AKA the dangling else problem.






              share|cite|improve this answer









              $endgroup$








              • 1




                $begingroup$
                That's a good example showing that even a non-ambiguous grammar (as in Java, C, C++, ...) allows apparent (!) ambiguities from a human perspective. Even though we are formally and computationally fine, we now got more of a UX/bug-free development problem.
                $endgroup$
                – ComFreek
                Jun 10 at 14:29
















              9












              $begingroup$

              Does IF a THEN IF b THEN x ELSE y mean



              IF a THEN
              IF b THEN
              x
              ELSE
              y


              or



              IF a THEN
              IF b THEN x
              ELSE
              y


              ? AKA the dangling else problem.






              share|cite|improve this answer









              $endgroup$








              • 1




                $begingroup$
                That's a good example showing that even a non-ambiguous grammar (as in Java, C, C++, ...) allows apparent (!) ambiguities from a human perspective. Even though we are formally and computationally fine, we now got more of a UX/bug-free development problem.
                $endgroup$
                – ComFreek
                Jun 10 at 14:29














              9












              9








              9





              $begingroup$

              Does IF a THEN IF b THEN x ELSE y mean



              IF a THEN
              IF b THEN
              x
              ELSE
              y


              or



              IF a THEN
              IF b THEN x
              ELSE
              y


              ? AKA the dangling else problem.






              share|cite|improve this answer









              $endgroup$



              Does IF a THEN IF b THEN x ELSE y mean



              IF a THEN
              IF b THEN
              x
              ELSE
              y


              or



              IF a THEN
              IF b THEN x
              ELSE
              y


              ? AKA the dangling else problem.







              share|cite|improve this answer












              share|cite|improve this answer



              share|cite|improve this answer










              answered Jun 10 at 13:58









              David RicherbyDavid Richerby

              72.6k16112202




              72.6k16112202







              • 1




                $begingroup$
                That's a good example showing that even a non-ambiguous grammar (as in Java, C, C++, ...) allows apparent (!) ambiguities from a human perspective. Even though we are formally and computationally fine, we now got more of a UX/bug-free development problem.
                $endgroup$
                – ComFreek
                Jun 10 at 14:29













              • 1




                $begingroup$
                That's a good example showing that even a non-ambiguous grammar (as in Java, C, C++, ...) allows apparent (!) ambiguities from a human perspective. Even though we are formally and computationally fine, we now got more of a UX/bug-free development problem.
                $endgroup$
                – ComFreek
                Jun 10 at 14:29








              1




              1




              $begingroup$
              That's a good example showing that even a non-ambiguous grammar (as in Java, C, C++, ...) allows apparent (!) ambiguities from a human perspective. Even though we are formally and computationally fine, we now got more of a UX/bug-free development problem.
              $endgroup$
              – ComFreek
              Jun 10 at 14:29





              $begingroup$
              That's a good example showing that even a non-ambiguous grammar (as in Java, C, C++, ...) allows apparent (!) ambiguities from a human perspective. Even though we are formally and computationally fine, we now got more of a UX/bug-free development problem.
              $endgroup$
              – ComFreek
              Jun 10 at 14:29












              5












              $begingroup$

              Take the most vexing parse in C++ for example:



              bar foo(foobar());


              Is this a function declaration foo of type bar(foobar()) (the parameter is a function pointer returning a foobar), or a variable declaration foo of type int and initialized with a default initialized foobar?



              This is differentiated in compilers by assuming the first unless the expression inside the parameter list cannot be interpreted as a type.



              when you get such an ambiguous expression the compiler has 2 options



              1. assume that the expression is a particular derivation and add some disambiguator to the grammar to allow the other derivation to be expressed.


              2. error out and require disambiguation either way


              The first can fall out naturally, the second requires that the compiler programmer knows about the ambiguity.



              If this ambiguity stays undetected then it is possible that 2 different compilers default to different derivations for that ambiguous expression. Leading to code being non-portable for non-obvious reasons. Which leads people to assume it's a bug in one of the compilers while it's actually a fault in the language specification.






              share|cite|improve this answer









              $endgroup$

















                5












                $begingroup$

                Take the most vexing parse in C++ for example:



                bar foo(foobar());


                Is this a function declaration foo of type bar(foobar()) (the parameter is a function pointer returning a foobar), or a variable declaration foo of type int and initialized with a default initialized foobar?



                This is differentiated in compilers by assuming the first unless the expression inside the parameter list cannot be interpreted as a type.



                when you get such an ambiguous expression the compiler has 2 options



                1. assume that the expression is a particular derivation and add some disambiguator to the grammar to allow the other derivation to be expressed.


                2. error out and require disambiguation either way


                The first can fall out naturally, the second requires that the compiler programmer knows about the ambiguity.



                If this ambiguity stays undetected then it is possible that 2 different compilers default to different derivations for that ambiguous expression. Leading to code being non-portable for non-obvious reasons. Which leads people to assume it's a bug in one of the compilers while it's actually a fault in the language specification.






                share|cite|improve this answer









                $endgroup$















                  5












                  5








                  5





                  $begingroup$

                  Take the most vexing parse in C++ for example:



                  bar foo(foobar());


                  Is this a function declaration foo of type bar(foobar()) (the parameter is a function pointer returning a foobar), or a variable declaration foo of type int and initialized with a default initialized foobar?



                  This is differentiated in compilers by assuming the first unless the expression inside the parameter list cannot be interpreted as a type.



                  when you get such an ambiguous expression the compiler has 2 options



                  1. assume that the expression is a particular derivation and add some disambiguator to the grammar to allow the other derivation to be expressed.


                  2. error out and require disambiguation either way


                  The first can fall out naturally, the second requires that the compiler programmer knows about the ambiguity.



                  If this ambiguity stays undetected then it is possible that 2 different compilers default to different derivations for that ambiguous expression. Leading to code being non-portable for non-obvious reasons. Which leads people to assume it's a bug in one of the compilers while it's actually a fault in the language specification.






                  share|cite|improve this answer









                  $endgroup$



                  Take the most vexing parse in C++ for example:



                  bar foo(foobar());


                  Is this a function declaration foo of type bar(foobar()) (the parameter is a function pointer returning a foobar), or a variable declaration foo of type int and initialized with a default initialized foobar?



                  This is differentiated in compilers by assuming the first unless the expression inside the parameter list cannot be interpreted as a type.



                  when you get such an ambiguous expression the compiler has 2 options



                  1. assume that the expression is a particular derivation and add some disambiguator to the grammar to allow the other derivation to be expressed.


                  2. error out and require disambiguation either way


                  The first can fall out naturally, the second requires that the compiler programmer knows about the ambiguity.



                  If this ambiguity stays undetected then it is possible that 2 different compilers default to different derivations for that ambiguous expression. Leading to code being non-portable for non-obvious reasons. Which leads people to assume it's a bug in one of the compilers while it's actually a fault in the language specification.







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jun 11 at 9:31









                  ratchet freakratchet freak

                  3,023910




                  3,023910





















                      5












                      $begingroup$

                      I think the question contains an assumption that's only borderline correct at best.



                      In real life it's pretty common to simply live with ambiguous grammars, as long as they aren't (so to speak) too ambiguous.



                      For example, if you look around at grammars compiled with yacc (or similar, such as bison or byacc) you'll find that quite a few produce warnings about "N shift/reduct conflicts" when you compile them. When yacc encounters a shift/reduce conflict, that signals an ambiguity in the grammar.



                      A shift/reduce conflict, however, is usually a fairly minor problem. The parser generator will resolve the conflict in favor of the "shift" rather than the reduce. The grammar is perfectly fine if that's what you want (and it does seem to work out perfectly well in practice).



                      A shift/reduce conflict typically arises in a case on this general order (using caps for non-terminals and lower-case for terminals):



                      A -> B | c
                      B -> a | c


                      When we encounter a c, there's an ambiguity: should we parse the c directly as an A, or should we parse it as a B, which in turn is an A? In a case like this, yacc and such will choose the simpler/shorter route, and parse the c directly as an A, rather than going the c -> B -> A route. This can be wrong, but if so, it probably means you have a really simple error in your grammar, and you shouldn't allow the c option as a possibility for A at all.



                      Now, by contrast, we could have something more like this:



                      A -> B | C
                      B -> a | c
                      C -> b | c


                      Now when we encounter a c we have conflict between whether to treat the c as a B or a C. There's a lot less chance that an automatic conflict resolution strategy is going to choose what we really want. Neither of these is a "shift"--both are "reductions", so this is a "reduce/reduce conflict" (which those accustomed to yacc and such generally recognize as a much bigger problem than a shift/reduce conflict).



                      So, although I'm not sure I'd go quite so far as to say that anybody really welcomes ambiguity in their grammar, in at least some cases it's minor enough that nobody really cares a whole lot about it. In the abstract they might like the idea of removing all ambiguity--but not enough to always actually do it. For example, a small, simple grammar that contains a minor ambiguity can be preferable to a larger, more complex grammar that eliminates the ambiguity (especially when you get into the practical realm of actually generating a parser from the grammar, and finding that the unambiguous grammar produces a parser that won't run on your target machine).






                      share|cite|improve this answer











                      $endgroup$












                      • $begingroup$
                        man, wish i'd had this excellent explanation of shift-reduce conflicts 5 months ago! ^^; +1
                        $endgroup$
                        – HotelCalifornia
                        Jun 12 at 8:23















                      5












                      $begingroup$

                      I think the question contains an assumption that's only borderline correct at best.



                      In real life it's pretty common to simply live with ambiguous grammars, as long as they aren't (so to speak) too ambiguous.



                      For example, if you look around at grammars compiled with yacc (or similar, such as bison or byacc) you'll find that quite a few produce warnings about "N shift/reduct conflicts" when you compile them. When yacc encounters a shift/reduce conflict, that signals an ambiguity in the grammar.



                      A shift/reduce conflict, however, is usually a fairly minor problem. The parser generator will resolve the conflict in favor of the "shift" rather than the reduce. The grammar is perfectly fine if that's what you want (and it does seem to work out perfectly well in practice).



                      A shift/reduce conflict typically arises in a case on this general order (using caps for non-terminals and lower-case for terminals):



                      A -> B | c
                      B -> a | c


                      When we encounter a c, there's an ambiguity: should we parse the c directly as an A, or should we parse it as a B, which in turn is an A? In a case like this, yacc and such will choose the simpler/shorter route, and parse the c directly as an A, rather than going the c -> B -> A route. This can be wrong, but if so, it probably means you have a really simple error in your grammar, and you shouldn't allow the c option as a possibility for A at all.



                      Now, by contrast, we could have something more like this:



                      A -> B | C
                      B -> a | c
                      C -> b | c


                      Now when we encounter a c we have conflict between whether to treat the c as a B or a C. There's a lot less chance that an automatic conflict resolution strategy is going to choose what we really want. Neither of these is a "shift"--both are "reductions", so this is a "reduce/reduce conflict" (which those accustomed to yacc and such generally recognize as a much bigger problem than a shift/reduce conflict).



                      So, although I'm not sure I'd go quite so far as to say that anybody really welcomes ambiguity in their grammar, in at least some cases it's minor enough that nobody really cares a whole lot about it. In the abstract they might like the idea of removing all ambiguity--but not enough to always actually do it. For example, a small, simple grammar that contains a minor ambiguity can be preferable to a larger, more complex grammar that eliminates the ambiguity (especially when you get into the practical realm of actually generating a parser from the grammar, and finding that the unambiguous grammar produces a parser that won't run on your target machine).






                      share|cite|improve this answer











                      $endgroup$












                      • $begingroup$
                        man, wish i'd had this excellent explanation of shift-reduce conflicts 5 months ago! ^^; +1
                        $endgroup$
                        – HotelCalifornia
                        Jun 12 at 8:23













                      5












                      5








                      5





                      $begingroup$

                      I think the question contains an assumption that's only borderline correct at best.



                      In real life it's pretty common to simply live with ambiguous grammars, as long as they aren't (so to speak) too ambiguous.



                      For example, if you look around at grammars compiled with yacc (or similar, such as bison or byacc) you'll find that quite a few produce warnings about "N shift/reduct conflicts" when you compile them. When yacc encounters a shift/reduce conflict, that signals an ambiguity in the grammar.



                      A shift/reduce conflict, however, is usually a fairly minor problem. The parser generator will resolve the conflict in favor of the "shift" rather than the reduce. The grammar is perfectly fine if that's what you want (and it does seem to work out perfectly well in practice).



                      A shift/reduce conflict typically arises in a case on this general order (using caps for non-terminals and lower-case for terminals):



                      A -> B | c
                      B -> a | c


                      When we encounter a c, there's an ambiguity: should we parse the c directly as an A, or should we parse it as a B, which in turn is an A? In a case like this, yacc and such will choose the simpler/shorter route, and parse the c directly as an A, rather than going the c -> B -> A route. This can be wrong, but if so, it probably means you have a really simple error in your grammar, and you shouldn't allow the c option as a possibility for A at all.



                      Now, by contrast, we could have something more like this:



                      A -> B | C
                      B -> a | c
                      C -> b | c


                      Now when we encounter a c we have conflict between whether to treat the c as a B or a C. There's a lot less chance that an automatic conflict resolution strategy is going to choose what we really want. Neither of these is a "shift"--both are "reductions", so this is a "reduce/reduce conflict" (which those accustomed to yacc and such generally recognize as a much bigger problem than a shift/reduce conflict).



                      So, although I'm not sure I'd go quite so far as to say that anybody really welcomes ambiguity in their grammar, in at least some cases it's minor enough that nobody really cares a whole lot about it. In the abstract they might like the idea of removing all ambiguity--but not enough to always actually do it. For example, a small, simple grammar that contains a minor ambiguity can be preferable to a larger, more complex grammar that eliminates the ambiguity (especially when you get into the practical realm of actually generating a parser from the grammar, and finding that the unambiguous grammar produces a parser that won't run on your target machine).






                      share|cite|improve this answer











                      $endgroup$



                      I think the question contains an assumption that's only borderline correct at best.



                      In real life it's pretty common to simply live with ambiguous grammars, as long as they aren't (so to speak) too ambiguous.



                      For example, if you look around at grammars compiled with yacc (or similar, such as bison or byacc) you'll find that quite a few produce warnings about "N shift/reduct conflicts" when you compile them. When yacc encounters a shift/reduce conflict, that signals an ambiguity in the grammar.



                      A shift/reduce conflict, however, is usually a fairly minor problem. The parser generator will resolve the conflict in favor of the "shift" rather than the reduce. The grammar is perfectly fine if that's what you want (and it does seem to work out perfectly well in practice).



                      A shift/reduce conflict typically arises in a case on this general order (using caps for non-terminals and lower-case for terminals):



                      A -> B | c
                      B -> a | c


                      When we encounter a c, there's an ambiguity: should we parse the c directly as an A, or should we parse it as a B, which in turn is an A? In a case like this, yacc and such will choose the simpler/shorter route, and parse the c directly as an A, rather than going the c -> B -> A route. This can be wrong, but if so, it probably means you have a really simple error in your grammar, and you shouldn't allow the c option as a possibility for A at all.



                      Now, by contrast, we could have something more like this:



                      A -> B | C
                      B -> a | c
                      C -> b | c


                      Now when we encounter a c we have conflict between whether to treat the c as a B or a C. There's a lot less chance that an automatic conflict resolution strategy is going to choose what we really want. Neither of these is a "shift"--both are "reductions", so this is a "reduce/reduce conflict" (which those accustomed to yacc and such generally recognize as a much bigger problem than a shift/reduce conflict).



                      So, although I'm not sure I'd go quite so far as to say that anybody really welcomes ambiguity in their grammar, in at least some cases it's minor enough that nobody really cares a whole lot about it. In the abstract they might like the idea of removing all ambiguity--but not enough to always actually do it. For example, a small, simple grammar that contains a minor ambiguity can be preferable to a larger, more complex grammar that eliminates the ambiguity (especially when you get into the practical realm of actually generating a parser from the grammar, and finding that the unambiguous grammar produces a parser that won't run on your target machine).







                      share|cite|improve this answer














                      share|cite|improve this answer



                      share|cite|improve this answer








                      edited Jun 12 at 20:24

























                      answered Jun 11 at 20:18









                      Jerry CoffinJerry Coffin

                      33127




                      33127











                      • $begingroup$
                        man, wish i'd had this excellent explanation of shift-reduce conflicts 5 months ago! ^^; +1
                        $endgroup$
                        – HotelCalifornia
                        Jun 12 at 8:23
















                      • $begingroup$
                        man, wish i'd had this excellent explanation of shift-reduce conflicts 5 months ago! ^^; +1
                        $endgroup$
                        – HotelCalifornia
                        Jun 12 at 8:23















                      $begingroup$
                      man, wish i'd had this excellent explanation of shift-reduce conflicts 5 months ago! ^^; +1
                      $endgroup$
                      – HotelCalifornia
                      Jun 12 at 8:23




                      $begingroup$
                      man, wish i'd had this excellent explanation of shift-reduce conflicts 5 months ago! ^^; +1
                      $endgroup$
                      – HotelCalifornia
                      Jun 12 at 8:23










                      HIRAK MONDAL is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      HIRAK MONDAL is a new contributor. Be nice, and check out our Code of Conduct.












                      HIRAK MONDAL is a new contributor. Be nice, and check out our Code of Conduct.











                      HIRAK MONDAL is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Computer Science Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f110402%2fwhy-are-ambiguous-grammars-bad%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

                      Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation

                      Magento 2 “No Payment Methods” in Admin New OrderHow to integrate Paypal Express Checkout with the Magento APIMagento 1.5 - Sales > Order > edit order and shipping methods disappearAuto Invoice Check/Money Order Payment methodAdd more simple payment methods?Shipping methods not showingWhat should I do to change payment methods if changing the configuration has no effects?1.9 - No Payment Methods showing upMy Payment Methods not Showing for downloadable/virtual product when checkout?Magento2 API to access internal payment methodHow to call an existing payment methods in the registration form?