List comprehensions in Mathematica?Selectively Mapping over elements in a ListCreate a table with inline conditionsData Table Manipulation in MathematicaCheck every list element for appearanceFilling a matrix with a list of listsMatrix Multiplication after “Flatten”Table with List iterator return unpacked listFinding the two pairs in a list of pairs that minimize and maximize a given functionFinding roots of a ListReplacing specific elements of a nested list

RPI3B+: What are the four components below the HDMI connector called?

Why does this quadratic expression have three zeroes?

Print the last, middle and first character of your code

Should disabled buttons give feedback when clicked?

Matchmaker, Matchmaker, make me a match

Why were Er and Onan punished if they were under 20?

Cracking the Coding Interview — 1.5 One Away

How would my creatures handle groups without a strong concept of numbers?

Received a dinner invitation through my employer's email, is it ok to attend?

Why are all my yellow 2V/20mA LEDs burning out with 330k Ohm resistor?

For a hashing function like MD5, how similar can two plaintext strings be and still generate the same hash?

Integer Lists of Noah

Are there any sports for which the world's best player is female?

How is angular momentum conserved for the orbiting body if the centripetal force disappears?

Can the Mage Hand cantrip be used to trip an enemy who is running away?

Was I subtly told to resign?

Optimization terminology: "Exact" v. "Approximate"

Cops: The Hidden OEIS Substring

What is this triple-transistor arrangement called?

How do you glue a text to a point?

During copyediting, journal disagrees about spelling of paper's main topic

QGIS Zanzibar how to crop?

Storming Area 51

Why do players in the past play much longer tournaments than today's top players?



List comprehensions in Mathematica?


Selectively Mapping over elements in a ListCreate a table with inline conditionsData Table Manipulation in MathematicaCheck every list element for appearanceFilling a matrix with a list of listsMatrix Multiplication after “Flatten”Table with List iterator return unpacked listFinding the two pairs in a list of pairs that minimize and maximize a given functionFinding roots of a ListReplacing specific elements of a nested list






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








3












$begingroup$


I'm looking for an implementation of list comprehensions in Python (nested for-in statement with destructuring and conditionals). Here's an example:



matrix=[['a','b'],['c','d']]
flat=[(el,i,j) for (i, array) in enumerate(matrix) for (j, el) in enumerate(array) if i!=j]
print(flat)


enter image description here



Now, anyone could write this with a table or loop, but that's not what I'm looking for.










share|improve this question









$endgroup$







  • 5




    $begingroup$
    I don't understand what the Python code does and, frankly, I don't really think you are providing enough info here. Can you explain what you want to do, or perhaps provide the corresponding table or loop MMA code that you mention? What functionality are you looking for exactly?
    $endgroup$
    – MarcoB
    Jul 2 at 17:51










  • $begingroup$
    That kind of functionality is provided by Dataset.
    $endgroup$
    – Anton Antonov
    Jul 2 at 18:11






  • 1




    $begingroup$
    @MarcoB This is probably the best/most-used feature of python. I'm just looking for an implementation of something equally useful in mma.
    $endgroup$
    – M.R.
    Jul 2 at 20:08






  • 1




    $begingroup$
    Well, one might say that this is not a python site, and make allowances to encourage folks who know Mathematica well, which is what is needed for a good answer, to try to help. After all, it's not hard to summarize the functionality in the question. Further, re "that's not what I'm looking for": what are you looking for? The iterators in python don't have exact equivalents in M, however close MapIndexed is to for (i, array) in enumerate(matrix). And since you have to use a nested loop in python, how do you expect not to have to use a loop in M?
    $endgroup$
    – Michael E2
    Jul 2 at 22:59










  • $begingroup$
    Why not just MapIndexed with a level spec of 2 and a conditional Nothing and then call Flatten[#, 1] on that? Seems to me to be the easiest way.
    $endgroup$
    – b3m2a1
    Jul 3 at 0:32

















3












$begingroup$


I'm looking for an implementation of list comprehensions in Python (nested for-in statement with destructuring and conditionals). Here's an example:



matrix=[['a','b'],['c','d']]
flat=[(el,i,j) for (i, array) in enumerate(matrix) for (j, el) in enumerate(array) if i!=j]
print(flat)


enter image description here



Now, anyone could write this with a table or loop, but that's not what I'm looking for.










share|improve this question









$endgroup$







  • 5




    $begingroup$
    I don't understand what the Python code does and, frankly, I don't really think you are providing enough info here. Can you explain what you want to do, or perhaps provide the corresponding table or loop MMA code that you mention? What functionality are you looking for exactly?
    $endgroup$
    – MarcoB
    Jul 2 at 17:51










  • $begingroup$
    That kind of functionality is provided by Dataset.
    $endgroup$
    – Anton Antonov
    Jul 2 at 18:11






  • 1




    $begingroup$
    @MarcoB This is probably the best/most-used feature of python. I'm just looking for an implementation of something equally useful in mma.
    $endgroup$
    – M.R.
    Jul 2 at 20:08






  • 1




    $begingroup$
    Well, one might say that this is not a python site, and make allowances to encourage folks who know Mathematica well, which is what is needed for a good answer, to try to help. After all, it's not hard to summarize the functionality in the question. Further, re "that's not what I'm looking for": what are you looking for? The iterators in python don't have exact equivalents in M, however close MapIndexed is to for (i, array) in enumerate(matrix). And since you have to use a nested loop in python, how do you expect not to have to use a loop in M?
    $endgroup$
    – Michael E2
    Jul 2 at 22:59










  • $begingroup$
    Why not just MapIndexed with a level spec of 2 and a conditional Nothing and then call Flatten[#, 1] on that? Seems to me to be the easiest way.
    $endgroup$
    – b3m2a1
    Jul 3 at 0:32













3












3








3


2



$begingroup$


I'm looking for an implementation of list comprehensions in Python (nested for-in statement with destructuring and conditionals). Here's an example:



matrix=[['a','b'],['c','d']]
flat=[(el,i,j) for (i, array) in enumerate(matrix) for (j, el) in enumerate(array) if i!=j]
print(flat)


enter image description here



Now, anyone could write this with a table or loop, but that's not what I'm looking for.










share|improve this question









$endgroup$




I'm looking for an implementation of list comprehensions in Python (nested for-in statement with destructuring and conditionals). Here's an example:



matrix=[['a','b'],['c','d']]
flat=[(el,i,j) for (i, array) in enumerate(matrix) for (j, el) in enumerate(array) if i!=j]
print(flat)


enter image description here



Now, anyone could write this with a table or loop, but that's not what I'm looking for.







list-manipulation python






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Jul 2 at 17:43









M.R.M.R.

15.6k5 gold badges61 silver badges200 bronze badges




15.6k5 gold badges61 silver badges200 bronze badges







  • 5




    $begingroup$
    I don't understand what the Python code does and, frankly, I don't really think you are providing enough info here. Can you explain what you want to do, or perhaps provide the corresponding table or loop MMA code that you mention? What functionality are you looking for exactly?
    $endgroup$
    – MarcoB
    Jul 2 at 17:51










  • $begingroup$
    That kind of functionality is provided by Dataset.
    $endgroup$
    – Anton Antonov
    Jul 2 at 18:11






  • 1




    $begingroup$
    @MarcoB This is probably the best/most-used feature of python. I'm just looking for an implementation of something equally useful in mma.
    $endgroup$
    – M.R.
    Jul 2 at 20:08






  • 1




    $begingroup$
    Well, one might say that this is not a python site, and make allowances to encourage folks who know Mathematica well, which is what is needed for a good answer, to try to help. After all, it's not hard to summarize the functionality in the question. Further, re "that's not what I'm looking for": what are you looking for? The iterators in python don't have exact equivalents in M, however close MapIndexed is to for (i, array) in enumerate(matrix). And since you have to use a nested loop in python, how do you expect not to have to use a loop in M?
    $endgroup$
    – Michael E2
    Jul 2 at 22:59










  • $begingroup$
    Why not just MapIndexed with a level spec of 2 and a conditional Nothing and then call Flatten[#, 1] on that? Seems to me to be the easiest way.
    $endgroup$
    – b3m2a1
    Jul 3 at 0:32












  • 5




    $begingroup$
    I don't understand what the Python code does and, frankly, I don't really think you are providing enough info here. Can you explain what you want to do, or perhaps provide the corresponding table or loop MMA code that you mention? What functionality are you looking for exactly?
    $endgroup$
    – MarcoB
    Jul 2 at 17:51










  • $begingroup$
    That kind of functionality is provided by Dataset.
    $endgroup$
    – Anton Antonov
    Jul 2 at 18:11






  • 1




    $begingroup$
    @MarcoB This is probably the best/most-used feature of python. I'm just looking for an implementation of something equally useful in mma.
    $endgroup$
    – M.R.
    Jul 2 at 20:08






  • 1




    $begingroup$
    Well, one might say that this is not a python site, and make allowances to encourage folks who know Mathematica well, which is what is needed for a good answer, to try to help. After all, it's not hard to summarize the functionality in the question. Further, re "that's not what I'm looking for": what are you looking for? The iterators in python don't have exact equivalents in M, however close MapIndexed is to for (i, array) in enumerate(matrix). And since you have to use a nested loop in python, how do you expect not to have to use a loop in M?
    $endgroup$
    – Michael E2
    Jul 2 at 22:59










  • $begingroup$
    Why not just MapIndexed with a level spec of 2 and a conditional Nothing and then call Flatten[#, 1] on that? Seems to me to be the easiest way.
    $endgroup$
    – b3m2a1
    Jul 3 at 0:32







5




5




$begingroup$
I don't understand what the Python code does and, frankly, I don't really think you are providing enough info here. Can you explain what you want to do, or perhaps provide the corresponding table or loop MMA code that you mention? What functionality are you looking for exactly?
$endgroup$
– MarcoB
Jul 2 at 17:51




$begingroup$
I don't understand what the Python code does and, frankly, I don't really think you are providing enough info here. Can you explain what you want to do, or perhaps provide the corresponding table or loop MMA code that you mention? What functionality are you looking for exactly?
$endgroup$
– MarcoB
Jul 2 at 17:51












$begingroup$
That kind of functionality is provided by Dataset.
$endgroup$
– Anton Antonov
Jul 2 at 18:11




$begingroup$
That kind of functionality is provided by Dataset.
$endgroup$
– Anton Antonov
Jul 2 at 18:11




1




1




$begingroup$
@MarcoB This is probably the best/most-used feature of python. I'm just looking for an implementation of something equally useful in mma.
$endgroup$
– M.R.
Jul 2 at 20:08




$begingroup$
@MarcoB This is probably the best/most-used feature of python. I'm just looking for an implementation of something equally useful in mma.
$endgroup$
– M.R.
Jul 2 at 20:08




1




1




$begingroup$
Well, one might say that this is not a python site, and make allowances to encourage folks who know Mathematica well, which is what is needed for a good answer, to try to help. After all, it's not hard to summarize the functionality in the question. Further, re "that's not what I'm looking for": what are you looking for? The iterators in python don't have exact equivalents in M, however close MapIndexed is to for (i, array) in enumerate(matrix). And since you have to use a nested loop in python, how do you expect not to have to use a loop in M?
$endgroup$
– Michael E2
Jul 2 at 22:59




$begingroup$
Well, one might say that this is not a python site, and make allowances to encourage folks who know Mathematica well, which is what is needed for a good answer, to try to help. After all, it's not hard to summarize the functionality in the question. Further, re "that's not what I'm looking for": what are you looking for? The iterators in python don't have exact equivalents in M, however close MapIndexed is to for (i, array) in enumerate(matrix). And since you have to use a nested loop in python, how do you expect not to have to use a loop in M?
$endgroup$
– Michael E2
Jul 2 at 22:59












$begingroup$
Why not just MapIndexed with a level spec of 2 and a conditional Nothing and then call Flatten[#, 1] on that? Seems to me to be the easiest way.
$endgroup$
– b3m2a1
Jul 3 at 0:32




$begingroup$
Why not just MapIndexed with a level spec of 2 and a conditional Nothing and then call Flatten[#, 1] on that? Seems to me to be the easiest way.
$endgroup$
– b3m2a1
Jul 3 at 0:32










4 Answers
4






active

oldest

votes


















7












$begingroup$

IMO, Mathematica's functional operators more than cover the use cases for list comprehensions in Python. There are a couple of different list comprehension syntaxes which are covered by a couple of different functions in Mathematica:



[f(v) for v in values] is covered by Map[f, values]



[f(v, i) for v in enumerate(values)] is covered by MapIndexed[f, values]



[f(v1, v2) for v1, v2 in zip(values1, values2)] is covered by MapThread[f, values1, values2]



The syntax [f(v) for v in values if v == x] is typically accomplished with Select or Pick, as in Select[f /@ values, # == x &].



Python list comprehensions can also be used for nested loops:



[f(x, y) for x in xvalues
for y in yvalues]


This is equivalent to Flatten@Outer[f, xvalues, yvalues].



Mathematica's functionality in this area is much better than Python's list comprehension. Mathematica's functions are more readable and more flexible, for example in cases where you need to use the level argument.






share|improve this answer









$endgroup$








  • 2




    $begingroup$
    f/@Select[values,#==x&] matches more closely
    $endgroup$
    – Philip Maymin
    Jul 3 at 11:06


















6












$begingroup$

Something like this?



matrix = "a", "b", "c", "d";

allflat = Flatten[MapIndexed[List, matrix, 2], 1]
(* "a", 1, 1, "b", 1, 2, "c", 2, 1, "d", 2, 2 *)

flat = Select[allflat, Apply[Unequal]@*Last]
(* "b", 1, 2, "c", 2, 1 *)





share|improve this answer











$endgroup$








  • 1




    $begingroup$
    You can also use Nothing and a condition to obviate the need for the Select after the fact.
    $endgroup$
    – b3m2a1
    Jul 3 at 0:33


















6












$begingroup$

A straightforward translation of a general list comprehension, suggested by various Python tutorials, even if not the most efficient way (see for instance @Roman's answer), is to append each item to a list:



Module[res = ,
MapIndexed[ (* use Do[], Map[], or MapIndexed[] to implement the iterable *)
Function[array, i,
MapIndexed[
Function[el, j,
If[i != j, (* if condition *)
AppendTo[res, el, First@i, First@j]] (* add to list *)
],
array
]
],
matrix
];
res
]


Reap and Sow might be the closest thing in Mathematica to a list comprehension, and effectively implements the above approach.



Reap[
MapIndexed[
Function[array, i,
MapIndexed[
Function[el, j,
If[i != j, Sow[el, First@i, First@j]]
],
array
]
],
matrix
]
][[2, 1]]


And Reap-Sow allows multiple list comprehensions simultaneously with the second tag argument.



Note: Sometimes one can use Table[] with If[condition, x, Nothing] to implement [x for x in list if condition]. But implementing nested iterations with Table[], such as in the OP's example, would result in nested lists instead of a flat list. They could be flattened. For the OP's example:



Flatten[
Table[
With[array = matrix[[i]],
Table[
With[el = array[[j]],
If[i != j, el, i, j, Nothing]
],
j, Length@array
]
],
i, Length@matrix
],
1
]


Note that with Table[], Do[], and Map[] you can only have one item, either the index j or the element el. If you get the index, you can extract the element as above.. To get both at once, you would have to use MapIndexed. Note also that instead of Table[], you can use MapIndexed at level 2, as in @Roman's answer, which produces a nested, non-flat, result. Using MapIndexed[] instead of Table[] above gives us the following solution:



Flatten[
MapIndexed[
If[Unequal @@ #2, Flatten[##], Nothing] &,
matrix,
2],
1]





share|improve this answer











$endgroup$




















    3












    $begingroup$


    ...an implementation of list comprehensions in Python




    We could implement Python (poorly) in Mathematica:



    Needs@"GeneralUtilities`";

    ClearAll[for];
    SetAttributes[for, HoldAll];
    for[x_ ∈ iterator_, body_] /; MatchQ[iterator, _Iterator] :=
    Module[i, iter = iterator, tag,
    Hold[x] /. Hold[v___] | Hold[v___] :>
    Block[v, (* Blocks variables in x *)
    Reap[
    While[
    i = Read[iter];
    i =!= IteratorExhausted,
    x = i;
    Sow[body, tag]
    ],
    tag][[2, 1]]
    ]];

    enumerate[list_List] := NewIterator[
    enumerate,
    i = 0, max = Length@list,
    If[i++ < max, i, list[[i]], IteratorExhausted]];

    ClearAll[lc];
    SetAttributes[lc, HoldAll];
    lc[x_, iterFN_] := Module[tag,
    Reap[iterFN[Unevaluated@Sow[x, tag]], tag][[2, 1]]
    ];


    Now the syntax is pretty close to Python's:




    [
    (el,i,j)
    for (i, array) in enumerate(matrix) for (j, el) in enumerate(array) if i!=j
    ]



    lc[
    el, i, j,
    for[i, array ∈ enumerate@matrix, for[j, el ∈ enumerate@array, If[i != j, #]]] &
    ]

    (* "b", 1, 2, "c", 2, 1 *)


    One could even alter enumerate[] to index arrays from 0 instead of 1.






    share|improve this answer











    $endgroup$















      Your Answer








      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "387"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f201407%2flist-comprehensions-in-mathematica%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      7












      $begingroup$

      IMO, Mathematica's functional operators more than cover the use cases for list comprehensions in Python. There are a couple of different list comprehension syntaxes which are covered by a couple of different functions in Mathematica:



      [f(v) for v in values] is covered by Map[f, values]



      [f(v, i) for v in enumerate(values)] is covered by MapIndexed[f, values]



      [f(v1, v2) for v1, v2 in zip(values1, values2)] is covered by MapThread[f, values1, values2]



      The syntax [f(v) for v in values if v == x] is typically accomplished with Select or Pick, as in Select[f /@ values, # == x &].



      Python list comprehensions can also be used for nested loops:



      [f(x, y) for x in xvalues
      for y in yvalues]


      This is equivalent to Flatten@Outer[f, xvalues, yvalues].



      Mathematica's functionality in this area is much better than Python's list comprehension. Mathematica's functions are more readable and more flexible, for example in cases where you need to use the level argument.






      share|improve this answer









      $endgroup$








      • 2




        $begingroup$
        f/@Select[values,#==x&] matches more closely
        $endgroup$
        – Philip Maymin
        Jul 3 at 11:06















      7












      $begingroup$

      IMO, Mathematica's functional operators more than cover the use cases for list comprehensions in Python. There are a couple of different list comprehension syntaxes which are covered by a couple of different functions in Mathematica:



      [f(v) for v in values] is covered by Map[f, values]



      [f(v, i) for v in enumerate(values)] is covered by MapIndexed[f, values]



      [f(v1, v2) for v1, v2 in zip(values1, values2)] is covered by MapThread[f, values1, values2]



      The syntax [f(v) for v in values if v == x] is typically accomplished with Select or Pick, as in Select[f /@ values, # == x &].



      Python list comprehensions can also be used for nested loops:



      [f(x, y) for x in xvalues
      for y in yvalues]


      This is equivalent to Flatten@Outer[f, xvalues, yvalues].



      Mathematica's functionality in this area is much better than Python's list comprehension. Mathematica's functions are more readable and more flexible, for example in cases where you need to use the level argument.






      share|improve this answer









      $endgroup$








      • 2




        $begingroup$
        f/@Select[values,#==x&] matches more closely
        $endgroup$
        – Philip Maymin
        Jul 3 at 11:06













      7












      7








      7





      $begingroup$

      IMO, Mathematica's functional operators more than cover the use cases for list comprehensions in Python. There are a couple of different list comprehension syntaxes which are covered by a couple of different functions in Mathematica:



      [f(v) for v in values] is covered by Map[f, values]



      [f(v, i) for v in enumerate(values)] is covered by MapIndexed[f, values]



      [f(v1, v2) for v1, v2 in zip(values1, values2)] is covered by MapThread[f, values1, values2]



      The syntax [f(v) for v in values if v == x] is typically accomplished with Select or Pick, as in Select[f /@ values, # == x &].



      Python list comprehensions can also be used for nested loops:



      [f(x, y) for x in xvalues
      for y in yvalues]


      This is equivalent to Flatten@Outer[f, xvalues, yvalues].



      Mathematica's functionality in this area is much better than Python's list comprehension. Mathematica's functions are more readable and more flexible, for example in cases where you need to use the level argument.






      share|improve this answer









      $endgroup$



      IMO, Mathematica's functional operators more than cover the use cases for list comprehensions in Python. There are a couple of different list comprehension syntaxes which are covered by a couple of different functions in Mathematica:



      [f(v) for v in values] is covered by Map[f, values]



      [f(v, i) for v in enumerate(values)] is covered by MapIndexed[f, values]



      [f(v1, v2) for v1, v2 in zip(values1, values2)] is covered by MapThread[f, values1, values2]



      The syntax [f(v) for v in values if v == x] is typically accomplished with Select or Pick, as in Select[f /@ values, # == x &].



      Python list comprehensions can also be used for nested loops:



      [f(x, y) for x in xvalues
      for y in yvalues]


      This is equivalent to Flatten@Outer[f, xvalues, yvalues].



      Mathematica's functionality in this area is much better than Python's list comprehension. Mathematica's functions are more readable and more flexible, for example in cases where you need to use the level argument.







      share|improve this answer












      share|improve this answer



      share|improve this answer










      answered Jul 3 at 3:18









      C. E.C. E.

      53k3 gold badges102 silver badges210 bronze badges




      53k3 gold badges102 silver badges210 bronze badges







      • 2




        $begingroup$
        f/@Select[values,#==x&] matches more closely
        $endgroup$
        – Philip Maymin
        Jul 3 at 11:06












      • 2




        $begingroup$
        f/@Select[values,#==x&] matches more closely
        $endgroup$
        – Philip Maymin
        Jul 3 at 11:06







      2




      2




      $begingroup$
      f/@Select[values,#==x&] matches more closely
      $endgroup$
      – Philip Maymin
      Jul 3 at 11:06




      $begingroup$
      f/@Select[values,#==x&] matches more closely
      $endgroup$
      – Philip Maymin
      Jul 3 at 11:06













      6












      $begingroup$

      Something like this?



      matrix = "a", "b", "c", "d";

      allflat = Flatten[MapIndexed[List, matrix, 2], 1]
      (* "a", 1, 1, "b", 1, 2, "c", 2, 1, "d", 2, 2 *)

      flat = Select[allflat, Apply[Unequal]@*Last]
      (* "b", 1, 2, "c", 2, 1 *)





      share|improve this answer











      $endgroup$








      • 1




        $begingroup$
        You can also use Nothing and a condition to obviate the need for the Select after the fact.
        $endgroup$
        – b3m2a1
        Jul 3 at 0:33















      6












      $begingroup$

      Something like this?



      matrix = "a", "b", "c", "d";

      allflat = Flatten[MapIndexed[List, matrix, 2], 1]
      (* "a", 1, 1, "b", 1, 2, "c", 2, 1, "d", 2, 2 *)

      flat = Select[allflat, Apply[Unequal]@*Last]
      (* "b", 1, 2, "c", 2, 1 *)





      share|improve this answer











      $endgroup$








      • 1




        $begingroup$
        You can also use Nothing and a condition to obviate the need for the Select after the fact.
        $endgroup$
        – b3m2a1
        Jul 3 at 0:33













      6












      6








      6





      $begingroup$

      Something like this?



      matrix = "a", "b", "c", "d";

      allflat = Flatten[MapIndexed[List, matrix, 2], 1]
      (* "a", 1, 1, "b", 1, 2, "c", 2, 1, "d", 2, 2 *)

      flat = Select[allflat, Apply[Unequal]@*Last]
      (* "b", 1, 2, "c", 2, 1 *)





      share|improve this answer











      $endgroup$



      Something like this?



      matrix = "a", "b", "c", "d";

      allflat = Flatten[MapIndexed[List, matrix, 2], 1]
      (* "a", 1, 1, "b", 1, 2, "c", 2, 1, "d", 2, 2 *)

      flat = Select[allflat, Apply[Unequal]@*Last]
      (* "b", 1, 2, "c", 2, 1 *)






      share|improve this answer














      share|improve this answer



      share|improve this answer








      edited Jul 2 at 18:17

























      answered Jul 2 at 18:07









      RomanRoman

      13.1k1 gold badge19 silver badges51 bronze badges




      13.1k1 gold badge19 silver badges51 bronze badges







      • 1




        $begingroup$
        You can also use Nothing and a condition to obviate the need for the Select after the fact.
        $endgroup$
        – b3m2a1
        Jul 3 at 0:33












      • 1




        $begingroup$
        You can also use Nothing and a condition to obviate the need for the Select after the fact.
        $endgroup$
        – b3m2a1
        Jul 3 at 0:33







      1




      1




      $begingroup$
      You can also use Nothing and a condition to obviate the need for the Select after the fact.
      $endgroup$
      – b3m2a1
      Jul 3 at 0:33




      $begingroup$
      You can also use Nothing and a condition to obviate the need for the Select after the fact.
      $endgroup$
      – b3m2a1
      Jul 3 at 0:33











      6












      $begingroup$

      A straightforward translation of a general list comprehension, suggested by various Python tutorials, even if not the most efficient way (see for instance @Roman's answer), is to append each item to a list:



      Module[res = ,
      MapIndexed[ (* use Do[], Map[], or MapIndexed[] to implement the iterable *)
      Function[array, i,
      MapIndexed[
      Function[el, j,
      If[i != j, (* if condition *)
      AppendTo[res, el, First@i, First@j]] (* add to list *)
      ],
      array
      ]
      ],
      matrix
      ];
      res
      ]


      Reap and Sow might be the closest thing in Mathematica to a list comprehension, and effectively implements the above approach.



      Reap[
      MapIndexed[
      Function[array, i,
      MapIndexed[
      Function[el, j,
      If[i != j, Sow[el, First@i, First@j]]
      ],
      array
      ]
      ],
      matrix
      ]
      ][[2, 1]]


      And Reap-Sow allows multiple list comprehensions simultaneously with the second tag argument.



      Note: Sometimes one can use Table[] with If[condition, x, Nothing] to implement [x for x in list if condition]. But implementing nested iterations with Table[], such as in the OP's example, would result in nested lists instead of a flat list. They could be flattened. For the OP's example:



      Flatten[
      Table[
      With[array = matrix[[i]],
      Table[
      With[el = array[[j]],
      If[i != j, el, i, j, Nothing]
      ],
      j, Length@array
      ]
      ],
      i, Length@matrix
      ],
      1
      ]


      Note that with Table[], Do[], and Map[] you can only have one item, either the index j or the element el. If you get the index, you can extract the element as above.. To get both at once, you would have to use MapIndexed. Note also that instead of Table[], you can use MapIndexed at level 2, as in @Roman's answer, which produces a nested, non-flat, result. Using MapIndexed[] instead of Table[] above gives us the following solution:



      Flatten[
      MapIndexed[
      If[Unequal @@ #2, Flatten[##], Nothing] &,
      matrix,
      2],
      1]





      share|improve this answer











      $endgroup$

















        6












        $begingroup$

        A straightforward translation of a general list comprehension, suggested by various Python tutorials, even if not the most efficient way (see for instance @Roman's answer), is to append each item to a list:



        Module[res = ,
        MapIndexed[ (* use Do[], Map[], or MapIndexed[] to implement the iterable *)
        Function[array, i,
        MapIndexed[
        Function[el, j,
        If[i != j, (* if condition *)
        AppendTo[res, el, First@i, First@j]] (* add to list *)
        ],
        array
        ]
        ],
        matrix
        ];
        res
        ]


        Reap and Sow might be the closest thing in Mathematica to a list comprehension, and effectively implements the above approach.



        Reap[
        MapIndexed[
        Function[array, i,
        MapIndexed[
        Function[el, j,
        If[i != j, Sow[el, First@i, First@j]]
        ],
        array
        ]
        ],
        matrix
        ]
        ][[2, 1]]


        And Reap-Sow allows multiple list comprehensions simultaneously with the second tag argument.



        Note: Sometimes one can use Table[] with If[condition, x, Nothing] to implement [x for x in list if condition]. But implementing nested iterations with Table[], such as in the OP's example, would result in nested lists instead of a flat list. They could be flattened. For the OP's example:



        Flatten[
        Table[
        With[array = matrix[[i]],
        Table[
        With[el = array[[j]],
        If[i != j, el, i, j, Nothing]
        ],
        j, Length@array
        ]
        ],
        i, Length@matrix
        ],
        1
        ]


        Note that with Table[], Do[], and Map[] you can only have one item, either the index j or the element el. If you get the index, you can extract the element as above.. To get both at once, you would have to use MapIndexed. Note also that instead of Table[], you can use MapIndexed at level 2, as in @Roman's answer, which produces a nested, non-flat, result. Using MapIndexed[] instead of Table[] above gives us the following solution:



        Flatten[
        MapIndexed[
        If[Unequal @@ #2, Flatten[##], Nothing] &,
        matrix,
        2],
        1]





        share|improve this answer











        $endgroup$















          6












          6








          6





          $begingroup$

          A straightforward translation of a general list comprehension, suggested by various Python tutorials, even if not the most efficient way (see for instance @Roman's answer), is to append each item to a list:



          Module[res = ,
          MapIndexed[ (* use Do[], Map[], or MapIndexed[] to implement the iterable *)
          Function[array, i,
          MapIndexed[
          Function[el, j,
          If[i != j, (* if condition *)
          AppendTo[res, el, First@i, First@j]] (* add to list *)
          ],
          array
          ]
          ],
          matrix
          ];
          res
          ]


          Reap and Sow might be the closest thing in Mathematica to a list comprehension, and effectively implements the above approach.



          Reap[
          MapIndexed[
          Function[array, i,
          MapIndexed[
          Function[el, j,
          If[i != j, Sow[el, First@i, First@j]]
          ],
          array
          ]
          ],
          matrix
          ]
          ][[2, 1]]


          And Reap-Sow allows multiple list comprehensions simultaneously with the second tag argument.



          Note: Sometimes one can use Table[] with If[condition, x, Nothing] to implement [x for x in list if condition]. But implementing nested iterations with Table[], such as in the OP's example, would result in nested lists instead of a flat list. They could be flattened. For the OP's example:



          Flatten[
          Table[
          With[array = matrix[[i]],
          Table[
          With[el = array[[j]],
          If[i != j, el, i, j, Nothing]
          ],
          j, Length@array
          ]
          ],
          i, Length@matrix
          ],
          1
          ]


          Note that with Table[], Do[], and Map[] you can only have one item, either the index j or the element el. If you get the index, you can extract the element as above.. To get both at once, you would have to use MapIndexed. Note also that instead of Table[], you can use MapIndexed at level 2, as in @Roman's answer, which produces a nested, non-flat, result. Using MapIndexed[] instead of Table[] above gives us the following solution:



          Flatten[
          MapIndexed[
          If[Unequal @@ #2, Flatten[##], Nothing] &,
          matrix,
          2],
          1]





          share|improve this answer











          $endgroup$



          A straightforward translation of a general list comprehension, suggested by various Python tutorials, even if not the most efficient way (see for instance @Roman's answer), is to append each item to a list:



          Module[res = ,
          MapIndexed[ (* use Do[], Map[], or MapIndexed[] to implement the iterable *)
          Function[array, i,
          MapIndexed[
          Function[el, j,
          If[i != j, (* if condition *)
          AppendTo[res, el, First@i, First@j]] (* add to list *)
          ],
          array
          ]
          ],
          matrix
          ];
          res
          ]


          Reap and Sow might be the closest thing in Mathematica to a list comprehension, and effectively implements the above approach.



          Reap[
          MapIndexed[
          Function[array, i,
          MapIndexed[
          Function[el, j,
          If[i != j, Sow[el, First@i, First@j]]
          ],
          array
          ]
          ],
          matrix
          ]
          ][[2, 1]]


          And Reap-Sow allows multiple list comprehensions simultaneously with the second tag argument.



          Note: Sometimes one can use Table[] with If[condition, x, Nothing] to implement [x for x in list if condition]. But implementing nested iterations with Table[], such as in the OP's example, would result in nested lists instead of a flat list. They could be flattened. For the OP's example:



          Flatten[
          Table[
          With[array = matrix[[i]],
          Table[
          With[el = array[[j]],
          If[i != j, el, i, j, Nothing]
          ],
          j, Length@array
          ]
          ],
          i, Length@matrix
          ],
          1
          ]


          Note that with Table[], Do[], and Map[] you can only have one item, either the index j or the element el. If you get the index, you can extract the element as above.. To get both at once, you would have to use MapIndexed. Note also that instead of Table[], you can use MapIndexed at level 2, as in @Roman's answer, which produces a nested, non-flat, result. Using MapIndexed[] instead of Table[] above gives us the following solution:



          Flatten[
          MapIndexed[
          If[Unequal @@ #2, Flatten[##], Nothing] &,
          matrix,
          2],
          1]






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Jul 2 at 21:53

























          answered Jul 2 at 19:07









          Michael E2Michael E2

          155k12 gold badges213 silver badges502 bronze badges




          155k12 gold badges213 silver badges502 bronze badges





















              3












              $begingroup$


              ...an implementation of list comprehensions in Python




              We could implement Python (poorly) in Mathematica:



              Needs@"GeneralUtilities`";

              ClearAll[for];
              SetAttributes[for, HoldAll];
              for[x_ ∈ iterator_, body_] /; MatchQ[iterator, _Iterator] :=
              Module[i, iter = iterator, tag,
              Hold[x] /. Hold[v___] | Hold[v___] :>
              Block[v, (* Blocks variables in x *)
              Reap[
              While[
              i = Read[iter];
              i =!= IteratorExhausted,
              x = i;
              Sow[body, tag]
              ],
              tag][[2, 1]]
              ]];

              enumerate[list_List] := NewIterator[
              enumerate,
              i = 0, max = Length@list,
              If[i++ < max, i, list[[i]], IteratorExhausted]];

              ClearAll[lc];
              SetAttributes[lc, HoldAll];
              lc[x_, iterFN_] := Module[tag,
              Reap[iterFN[Unevaluated@Sow[x, tag]], tag][[2, 1]]
              ];


              Now the syntax is pretty close to Python's:




              [
              (el,i,j)
              for (i, array) in enumerate(matrix) for (j, el) in enumerate(array) if i!=j
              ]



              lc[
              el, i, j,
              for[i, array ∈ enumerate@matrix, for[j, el ∈ enumerate@array, If[i != j, #]]] &
              ]

              (* "b", 1, 2, "c", 2, 1 *)


              One could even alter enumerate[] to index arrays from 0 instead of 1.






              share|improve this answer











              $endgroup$

















                3












                $begingroup$


                ...an implementation of list comprehensions in Python




                We could implement Python (poorly) in Mathematica:



                Needs@"GeneralUtilities`";

                ClearAll[for];
                SetAttributes[for, HoldAll];
                for[x_ ∈ iterator_, body_] /; MatchQ[iterator, _Iterator] :=
                Module[i, iter = iterator, tag,
                Hold[x] /. Hold[v___] | Hold[v___] :>
                Block[v, (* Blocks variables in x *)
                Reap[
                While[
                i = Read[iter];
                i =!= IteratorExhausted,
                x = i;
                Sow[body, tag]
                ],
                tag][[2, 1]]
                ]];

                enumerate[list_List] := NewIterator[
                enumerate,
                i = 0, max = Length@list,
                If[i++ < max, i, list[[i]], IteratorExhausted]];

                ClearAll[lc];
                SetAttributes[lc, HoldAll];
                lc[x_, iterFN_] := Module[tag,
                Reap[iterFN[Unevaluated@Sow[x, tag]], tag][[2, 1]]
                ];


                Now the syntax is pretty close to Python's:




                [
                (el,i,j)
                for (i, array) in enumerate(matrix) for (j, el) in enumerate(array) if i!=j
                ]



                lc[
                el, i, j,
                for[i, array ∈ enumerate@matrix, for[j, el ∈ enumerate@array, If[i != j, #]]] &
                ]

                (* "b", 1, 2, "c", 2, 1 *)


                One could even alter enumerate[] to index arrays from 0 instead of 1.






                share|improve this answer











                $endgroup$















                  3












                  3








                  3





                  $begingroup$


                  ...an implementation of list comprehensions in Python




                  We could implement Python (poorly) in Mathematica:



                  Needs@"GeneralUtilities`";

                  ClearAll[for];
                  SetAttributes[for, HoldAll];
                  for[x_ ∈ iterator_, body_] /; MatchQ[iterator, _Iterator] :=
                  Module[i, iter = iterator, tag,
                  Hold[x] /. Hold[v___] | Hold[v___] :>
                  Block[v, (* Blocks variables in x *)
                  Reap[
                  While[
                  i = Read[iter];
                  i =!= IteratorExhausted,
                  x = i;
                  Sow[body, tag]
                  ],
                  tag][[2, 1]]
                  ]];

                  enumerate[list_List] := NewIterator[
                  enumerate,
                  i = 0, max = Length@list,
                  If[i++ < max, i, list[[i]], IteratorExhausted]];

                  ClearAll[lc];
                  SetAttributes[lc, HoldAll];
                  lc[x_, iterFN_] := Module[tag,
                  Reap[iterFN[Unevaluated@Sow[x, tag]], tag][[2, 1]]
                  ];


                  Now the syntax is pretty close to Python's:




                  [
                  (el,i,j)
                  for (i, array) in enumerate(matrix) for (j, el) in enumerate(array) if i!=j
                  ]



                  lc[
                  el, i, j,
                  for[i, array ∈ enumerate@matrix, for[j, el ∈ enumerate@array, If[i != j, #]]] &
                  ]

                  (* "b", 1, 2, "c", 2, 1 *)


                  One could even alter enumerate[] to index arrays from 0 instead of 1.






                  share|improve this answer











                  $endgroup$




                  ...an implementation of list comprehensions in Python




                  We could implement Python (poorly) in Mathematica:



                  Needs@"GeneralUtilities`";

                  ClearAll[for];
                  SetAttributes[for, HoldAll];
                  for[x_ ∈ iterator_, body_] /; MatchQ[iterator, _Iterator] :=
                  Module[i, iter = iterator, tag,
                  Hold[x] /. Hold[v___] | Hold[v___] :>
                  Block[v, (* Blocks variables in x *)
                  Reap[
                  While[
                  i = Read[iter];
                  i =!= IteratorExhausted,
                  x = i;
                  Sow[body, tag]
                  ],
                  tag][[2, 1]]
                  ]];

                  enumerate[list_List] := NewIterator[
                  enumerate,
                  i = 0, max = Length@list,
                  If[i++ < max, i, list[[i]], IteratorExhausted]];

                  ClearAll[lc];
                  SetAttributes[lc, HoldAll];
                  lc[x_, iterFN_] := Module[tag,
                  Reap[iterFN[Unevaluated@Sow[x, tag]], tag][[2, 1]]
                  ];


                  Now the syntax is pretty close to Python's:




                  [
                  (el,i,j)
                  for (i, array) in enumerate(matrix) for (j, el) in enumerate(array) if i!=j
                  ]



                  lc[
                  el, i, j,
                  for[i, array ∈ enumerate@matrix, for[j, el ∈ enumerate@array, If[i != j, #]]] &
                  ]

                  (* "b", 1, 2, "c", 2, 1 *)


                  One could even alter enumerate[] to index arrays from 0 instead of 1.







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited Jul 3 at 0:39

























                  answered Jul 2 at 23:10









                  Michael E2Michael E2

                  155k12 gold badges213 silver badges502 bronze badges




                  155k12 gold badges213 silver badges502 bronze badges



























                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Mathematica Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f201407%2flist-comprehensions-in-mathematica%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

                      Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation

                      Magento 2 “No Payment Methods” in Admin New OrderHow to integrate Paypal Express Checkout with the Magento APIMagento 1.5 - Sales > Order > edit order and shipping methods disappearAuto Invoice Check/Money Order Payment methodAdd more simple payment methods?Shipping methods not showingWhat should I do to change payment methods if changing the configuration has no effects?1.9 - No Payment Methods showing upMy Payment Methods not Showing for downloadable/virtual product when checkout?Magento2 API to access internal payment methodHow to call an existing payment methods in the registration form?