Banach space and Hilbert space topologyShowing that two Banach spaces are homeomorphic when their dimensions are equal.Is any Banach space a dual space?A Banach space that is not a Hilbert spaceIs every Hilbert space a Banach algebra?Which Hilbert space is isometrically isomorphism with $B(E)$ for some Banach space $E$.Is every Banach space densely embedded in a Hilbert space?Existence of a $mathbb C$-Banach space isometric to a Hilbert Space but whose norm is not induced by an inner product?An example of a Banach space isomorphic but not isometric to a dual Banach spaceThe Hahn-Banach Theorem for Hilbert SpaceBanach spaces and Hilbert spaceBasis of infinite dimensional Banach space and separable hilbert space

Doomsday-clock for my fantasy planet

Why is my log file so massive? 22gb. I am running log backups

Manga about a female worker who got dragged into another world together with this high school girl and she was just told she's not needed anymore

What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?

Does a dangling wire really electrocute me if I'm standing in water?

What happens when a metallic dragon and a chromatic dragon mate?

How could a lack of term limits lead to a "dictatorship?"

What does 'script /dev/null' do?

Can I legally use front facing blue light in the UK?

How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)

Crop image to path created in TikZ?

LWC and complex parameters

Is "plugging out" electronic devices an American expression?

How to make particles emit from certain parts of a 3D object?

What does it exactly mean if a random variable follows a distribution

Need help identifying/translating a plaque in Tangier, Morocco

Is it wise to focus on putting odd beats on left when playing double bass drums?

Is ipsum/ipsa/ipse a third person pronoun, or can it serve other functions?

Shall I use personal or official e-mail account when registering to external websites for work purpose?

Are objects structures and/or vice versa?

Could Giant Ground Sloths have been a good pack animal for the ancient Mayans?

Is it legal to have the "// (c) 2019 John Smith" header in all files when there are hundreds of contributors?

Can a planet have a different gravitational pull depending on its location in orbit around its sun?

Is domain driven design an anti-SQL pattern?



Banach space and Hilbert space topology


Showing that two Banach spaces are homeomorphic when their dimensions are equal.Is any Banach space a dual space?A Banach space that is not a Hilbert spaceIs every Hilbert space a Banach algebra?Which Hilbert space is isometrically isomorphism with $B(E)$ for some Banach space $E$.Is every Banach space densely embedded in a Hilbert space?Existence of a $mathbb C$-Banach space isometric to a Hilbert Space but whose norm is not induced by an inner product?An example of a Banach space isomorphic but not isometric to a dual Banach spaceThe Hahn-Banach Theorem for Hilbert SpaceBanach spaces and Hilbert spaceBasis of infinite dimensional Banach space and separable hilbert space













2












$begingroup$


Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.



However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
    $endgroup$
    – user124910
    yesterday






  • 1




    $begingroup$
    @user124910 We can extend this to non-separable as well. See my answer.
    $endgroup$
    – Henno Brandsma
    yesterday















2












$begingroup$


Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.



However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?










share|cite|improve this question











$endgroup$







  • 1




    $begingroup$
    If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
    $endgroup$
    – user124910
    yesterday






  • 1




    $begingroup$
    @user124910 We can extend this to non-separable as well. See my answer.
    $endgroup$
    – Henno Brandsma
    yesterday













2












2








2





$begingroup$


Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.



However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?










share|cite|improve this question











$endgroup$




Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.



However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?







general-topology functional-analysis hilbert-spaces banach-spaces






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









Henno Brandsma

115k349125




115k349125










asked yesterday









user156213user156213

69238




69238







  • 1




    $begingroup$
    If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
    $endgroup$
    – user124910
    yesterday






  • 1




    $begingroup$
    @user124910 We can extend this to non-separable as well. See my answer.
    $endgroup$
    – Henno Brandsma
    yesterday












  • 1




    $begingroup$
    If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
    $endgroup$
    – user124910
    yesterday






  • 1




    $begingroup$
    @user124910 We can extend this to non-separable as well. See my answer.
    $endgroup$
    – Henno Brandsma
    yesterday







1




1




$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
yesterday




$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
yesterday




1




1




$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
yesterday




$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
yesterday










1 Answer
1






active

oldest

votes


















7












$begingroup$

Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Do you know of a reference with the proof of this?
    $endgroup$
    – user156213
    yesterday






  • 2




    $begingroup$
    @user156213 This post has a reference.
    $endgroup$
    – David Mitra
    15 hours ago











Your Answer





StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178808%2fbanach-space-and-hilbert-space-topology%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









7












$begingroup$

Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Do you know of a reference with the proof of this?
    $endgroup$
    – user156213
    yesterday






  • 2




    $begingroup$
    @user156213 This post has a reference.
    $endgroup$
    – David Mitra
    15 hours ago















7












$begingroup$

Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Do you know of a reference with the proof of this?
    $endgroup$
    – user156213
    yesterday






  • 2




    $begingroup$
    @user156213 This post has a reference.
    $endgroup$
    – David Mitra
    15 hours ago













7












7








7





$begingroup$

Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.






share|cite|improve this answer









$endgroup$



Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.



So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered yesterday









Henno BrandsmaHenno Brandsma

115k349125




115k349125











  • $begingroup$
    Do you know of a reference with the proof of this?
    $endgroup$
    – user156213
    yesterday






  • 2




    $begingroup$
    @user156213 This post has a reference.
    $endgroup$
    – David Mitra
    15 hours ago
















  • $begingroup$
    Do you know of a reference with the proof of this?
    $endgroup$
    – user156213
    yesterday






  • 2




    $begingroup$
    @user156213 This post has a reference.
    $endgroup$
    – David Mitra
    15 hours ago















$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
yesterday




$begingroup$
Do you know of a reference with the proof of this?
$endgroup$
– user156213
yesterday




2




2




$begingroup$
@user156213 This post has a reference.
$endgroup$
– David Mitra
15 hours ago




$begingroup$
@user156213 This post has a reference.
$endgroup$
– David Mitra
15 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178808%2fbanach-space-and-hilbert-space-topology%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation

Magento 2 “No Payment Methods” in Admin New OrderHow to integrate Paypal Express Checkout with the Magento APIMagento 1.5 - Sales > Order > edit order and shipping methods disappearAuto Invoice Check/Money Order Payment methodAdd more simple payment methods?Shipping methods not showingWhat should I do to change payment methods if changing the configuration has no effects?1.9 - No Payment Methods showing upMy Payment Methods not Showing for downloadable/virtual product when checkout?Magento2 API to access internal payment methodHow to call an existing payment methods in the registration form?