I am getting undefined as the answer of this integral problem $intlimits_2^3fracmathrm dn(n-2)(3-n)$. Am I doing something wrong? Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Improper integral $int^pi/2_0 (operatornamecsc x - frac1x),mathrm dx$an intriguing integral $I=intlimits_0^4 fracdx4+2^x $Computing the integral $intlimits_-infty^infty(t^2-1)delta(t):dt$Help to understand this property: $intlimits_ka^kbsleft(fracxkright)dx = kintlimits_a^bs(x)dx$Prove $intlimits_0^infty mathrmexp(-ax^2-fracbx^2) mathrmd x = frac12sqrtfracpia}mathrme^{-2sqrtab$Computing the integral $int fracdxxsqrt x^2+1$Why am I not getting the right answer for this integral?Show that $intlimits_0^fracpi24cos^2(x)log^2(cos x)~mathrm dx=-pilog 2+pilog^2 2-fracpi2+fracpi^312$Calculating improper integral $int limits_0^inftyfracmathrme^-xsqrtx,mathrmdx$Finding the value of $limlimits_nrightarrow inftysqrtnint^fracpi4_0cos^2n-2(x)mathrm dx$

Determinant is linear as a function of each of the rows of the matrix.

What's the purpose of writing one's academic bio in 3rd person?

What is this single-engine low-wing propeller plane?

What are the motives behind Cersei's orders given to Bronn?

What LEGO pieces have "real-world" functionality?

Withdrew £2800, but only £2000 shows as withdrawn on online banking; what are my obligations?

Do you forfeit tax refunds/credits if you aren't required to and don't file by April 15?

G-Code for resetting to 100% speed

How to motivate offshore teams and trust them to deliver?

Is there a Spanish version of "dot your i's and cross your t's" that includes the letter 'ñ'?

Does accepting a pardon have any bearing on trying that person for the same crime in a sovereign jurisdiction?

How to recreate this effect in Photoshop?

Is a manifold-with-boundary with given interior and non-empty boundary essentially unique?

Why don't the Weasley twins use magic outside of school if the Trace can only find the location of spells cast?

What happens to sewage if there is no river near by?

How to find all the available tools in macOS terminal?

How to deal with a team lead who never gives me credit?

Why aren't air breathing engines used as small first stages

How much radiation do nuclear physics experiments expose researchers to nowadays?

When is phishing education going too far?

What makes black pepper strong or mild?

How to bypass password on Windows XP account?

Is there a "higher Segal conjecture"?

How widely used is the term Treppenwitz? Is it something that most Germans know?



I am getting undefined as the answer of this integral problem $intlimits_2^3fracmathrm dn(n-2)(3-n)$. Am I doing something wrong?



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Improper integral $int^pi/2_0 (operatornamecsc x - frac1x),mathrm dx$an intriguing integral $I=intlimits_0^4 fracdx4+2^x $Computing the integral $intlimits_-infty^infty(t^2-1)delta(t):dt$Help to understand this property: $intlimits_ka^kbsleft(fracxkright)dx = kintlimits_a^bs(x)dx$Prove $intlimits_0^infty mathrmexp(-ax^2-fracbx^2) mathrmd x = frac12sqrtfracpiamathrme^-2sqrtab$Computing the integral $int fracdxxsqrt x^2+1$Why am I not getting the right answer for this integral?Show that $intlimits_0^fracpi24cos^2(x)log^2(cos x)~mathrm dx=-pilog 2+pilog^2 2-fracpi2+fracpi^312$Calculating improper integral $int limits_0^inftyfracmathrme^-xsqrtx,mathrmdx$Finding the value of $limlimits_nrightarrow inftysqrtnint^fracpi4_0cos^2n-2(x)mathrm dx$










2












$begingroup$



Find $$intlimits_2^3fracmathrm dn(n-2)(3-n)$$





My Attempt:



Let $$beginalignfrac1(n-2)(3-n)&=fracAn-2+fracB3-n \ &= fracA(3-n)+B(n-2)(n-2)(3-n)\ Rightarrow 1 &= A(3-n)+B(n-2) \ &= 3A - An+Bn-2B \ &= n(B-A)+3A-2B.endalign$$ Equating coefficients on both sides, we obtain $$B-A=0 qquad and qquad 3A-2B=1.$$ $$therefore A=B=1.$$ $$$$ $$beginaligntherefore intlimits_2^3fracmathrm dn(n-2)(3-n) &= intlimits_2^3bigg(frac1n-2+frac13-nbigg),mathrm dn \ &= intlimits_2^3frac1n-2,mathrm dn+intlimits_2^3frac13-n,mathrm dn \ &=left[log(n-2)right]_small 2^small 3+left[log(3-n)right]_small 2^small 3 \ &= left[log(3-2)-log(2-2)right]+left[log(3-3)+log(3-2)right] \ &= left[log 1-log 0right]+left[log 0 - log 1right]endalign$$ but $log 0$ is undefined, thus my answer is coming undefined. Am I doing something wrong in the solution?




Thank you in advance.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Actually this integral is divergent. $x=2$ and $x=3$ are two vertical asymptotes of the given integrand.
    $endgroup$
    – Dbchatto67
    yesterday
















2












$begingroup$



Find $$intlimits_2^3fracmathrm dn(n-2)(3-n)$$





My Attempt:



Let $$beginalignfrac1(n-2)(3-n)&=fracAn-2+fracB3-n \ &= fracA(3-n)+B(n-2)(n-2)(3-n)\ Rightarrow 1 &= A(3-n)+B(n-2) \ &= 3A - An+Bn-2B \ &= n(B-A)+3A-2B.endalign$$ Equating coefficients on both sides, we obtain $$B-A=0 qquad and qquad 3A-2B=1.$$ $$therefore A=B=1.$$ $$$$ $$beginaligntherefore intlimits_2^3fracmathrm dn(n-2)(3-n) &= intlimits_2^3bigg(frac1n-2+frac13-nbigg),mathrm dn \ &= intlimits_2^3frac1n-2,mathrm dn+intlimits_2^3frac13-n,mathrm dn \ &=left[log(n-2)right]_small 2^small 3+left[log(3-n)right]_small 2^small 3 \ &= left[log(3-2)-log(2-2)right]+left[log(3-3)+log(3-2)right] \ &= left[log 1-log 0right]+left[log 0 - log 1right]endalign$$ but $log 0$ is undefined, thus my answer is coming undefined. Am I doing something wrong in the solution?




Thank you in advance.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Actually this integral is divergent. $x=2$ and $x=3$ are two vertical asymptotes of the given integrand.
    $endgroup$
    – Dbchatto67
    yesterday














2












2








2





$begingroup$



Find $$intlimits_2^3fracmathrm dn(n-2)(3-n)$$





My Attempt:



Let $$beginalignfrac1(n-2)(3-n)&=fracAn-2+fracB3-n \ &= fracA(3-n)+B(n-2)(n-2)(3-n)\ Rightarrow 1 &= A(3-n)+B(n-2) \ &= 3A - An+Bn-2B \ &= n(B-A)+3A-2B.endalign$$ Equating coefficients on both sides, we obtain $$B-A=0 qquad and qquad 3A-2B=1.$$ $$therefore A=B=1.$$ $$$$ $$beginaligntherefore intlimits_2^3fracmathrm dn(n-2)(3-n) &= intlimits_2^3bigg(frac1n-2+frac13-nbigg),mathrm dn \ &= intlimits_2^3frac1n-2,mathrm dn+intlimits_2^3frac13-n,mathrm dn \ &=left[log(n-2)right]_small 2^small 3+left[log(3-n)right]_small 2^small 3 \ &= left[log(3-2)-log(2-2)right]+left[log(3-3)+log(3-2)right] \ &= left[log 1-log 0right]+left[log 0 - log 1right]endalign$$ but $log 0$ is undefined, thus my answer is coming undefined. Am I doing something wrong in the solution?




Thank you in advance.










share|cite|improve this question











$endgroup$





Find $$intlimits_2^3fracmathrm dn(n-2)(3-n)$$





My Attempt:



Let $$beginalignfrac1(n-2)(3-n)&=fracAn-2+fracB3-n \ &= fracA(3-n)+B(n-2)(n-2)(3-n)\ Rightarrow 1 &= A(3-n)+B(n-2) \ &= 3A - An+Bn-2B \ &= n(B-A)+3A-2B.endalign$$ Equating coefficients on both sides, we obtain $$B-A=0 qquad and qquad 3A-2B=1.$$ $$therefore A=B=1.$$ $$$$ $$beginaligntherefore intlimits_2^3fracmathrm dn(n-2)(3-n) &= intlimits_2^3bigg(frac1n-2+frac13-nbigg),mathrm dn \ &= intlimits_2^3frac1n-2,mathrm dn+intlimits_2^3frac13-n,mathrm dn \ &=left[log(n-2)right]_small 2^small 3+left[log(3-n)right]_small 2^small 3 \ &= left[log(3-2)-log(2-2)right]+left[log(3-3)+log(3-2)right] \ &= left[log 1-log 0right]+left[log 0 - log 1right]endalign$$ but $log 0$ is undefined, thus my answer is coming undefined. Am I doing something wrong in the solution?




Thank you in advance.







integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited yesterday









YuiTo Cheng

2,43841037




2,43841037










asked yesterday









arandomguyarandomguy

17418




17418











  • $begingroup$
    Actually this integral is divergent. $x=2$ and $x=3$ are two vertical asymptotes of the given integrand.
    $endgroup$
    – Dbchatto67
    yesterday

















  • $begingroup$
    Actually this integral is divergent. $x=2$ and $x=3$ are two vertical asymptotes of the given integrand.
    $endgroup$
    – Dbchatto67
    yesterday
















$begingroup$
Actually this integral is divergent. $x=2$ and $x=3$ are two vertical asymptotes of the given integrand.
$endgroup$
– Dbchatto67
yesterday





$begingroup$
Actually this integral is divergent. $x=2$ and $x=3$ are two vertical asymptotes of the given integrand.
$endgroup$
– Dbchatto67
yesterday











2 Answers
2






active

oldest

votes


















3












$begingroup$

No.



There are two singularities at $n = 2$ and $n = 3$, as can be determined by inspecting the denominator, and they are quite strong. The integral does not converge.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    Whats quite strong mean
    $endgroup$
    – Mikey Spivak
    yesterday










  • $begingroup$
    @MikeySpivak - Basically, how quickly the function goes to infinity as the singularity is approached. Generally speaking, the larger the negative exponent of a negative-degree term, the stronger the singularity is.
    $endgroup$
    – The_Sympathizer
    yesterday










  • $begingroup$
    More quantitatively, a singular term $x^-alpha$ with $alpha ge 1$ is strong enough to diverge when integrated (with respect to $x$) up to its singular point, but with $0 le alpha < 1$, it actually is weak enough that it can converge.
    $endgroup$
    – The_Sympathizer
    yesterday



















2












$begingroup$

No, there is nothing wrong. You havebeginalignint_2^3frac1(x-2)(x-3),mathrm dx&=int_2^5/2frac1(x-2)(x-3),mathrm dx+int_5/2^3frac1(x-2)(x-3),mathrm dx\&=lim_tto2^+int_t^5/2frac1(x-2)(x-3),mathrm dx+lim_tto3^-int_5/2^tfrac1(x-2)(x-3),mathrm dx.endalignNone of these limits exist, since the function that's being integrated behaves as $frac1x-3$ near $3$ and as $frac1x-2$ near $2$.






share|cite|improve this answer









$endgroup$













    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3187072%2fi-am-getting-undefined-as-the-answer-of-this-integral-problem-int-limits-2%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    No.



    There are two singularities at $n = 2$ and $n = 3$, as can be determined by inspecting the denominator, and they are quite strong. The integral does not converge.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Whats quite strong mean
      $endgroup$
      – Mikey Spivak
      yesterday










    • $begingroup$
      @MikeySpivak - Basically, how quickly the function goes to infinity as the singularity is approached. Generally speaking, the larger the negative exponent of a negative-degree term, the stronger the singularity is.
      $endgroup$
      – The_Sympathizer
      yesterday










    • $begingroup$
      More quantitatively, a singular term $x^-alpha$ with $alpha ge 1$ is strong enough to diverge when integrated (with respect to $x$) up to its singular point, but with $0 le alpha < 1$, it actually is weak enough that it can converge.
      $endgroup$
      – The_Sympathizer
      yesterday
















    3












    $begingroup$

    No.



    There are two singularities at $n = 2$ and $n = 3$, as can be determined by inspecting the denominator, and they are quite strong. The integral does not converge.






    share|cite|improve this answer









    $endgroup$












    • $begingroup$
      Whats quite strong mean
      $endgroup$
      – Mikey Spivak
      yesterday










    • $begingroup$
      @MikeySpivak - Basically, how quickly the function goes to infinity as the singularity is approached. Generally speaking, the larger the negative exponent of a negative-degree term, the stronger the singularity is.
      $endgroup$
      – The_Sympathizer
      yesterday










    • $begingroup$
      More quantitatively, a singular term $x^-alpha$ with $alpha ge 1$ is strong enough to diverge when integrated (with respect to $x$) up to its singular point, but with $0 le alpha < 1$, it actually is weak enough that it can converge.
      $endgroup$
      – The_Sympathizer
      yesterday














    3












    3








    3





    $begingroup$

    No.



    There are two singularities at $n = 2$ and $n = 3$, as can be determined by inspecting the denominator, and they are quite strong. The integral does not converge.






    share|cite|improve this answer









    $endgroup$



    No.



    There are two singularities at $n = 2$ and $n = 3$, as can be determined by inspecting the denominator, and they are quite strong. The integral does not converge.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered yesterday









    The_SympathizerThe_Sympathizer

    7,8852246




    7,8852246











    • $begingroup$
      Whats quite strong mean
      $endgroup$
      – Mikey Spivak
      yesterday










    • $begingroup$
      @MikeySpivak - Basically, how quickly the function goes to infinity as the singularity is approached. Generally speaking, the larger the negative exponent of a negative-degree term, the stronger the singularity is.
      $endgroup$
      – The_Sympathizer
      yesterday










    • $begingroup$
      More quantitatively, a singular term $x^-alpha$ with $alpha ge 1$ is strong enough to diverge when integrated (with respect to $x$) up to its singular point, but with $0 le alpha < 1$, it actually is weak enough that it can converge.
      $endgroup$
      – The_Sympathizer
      yesterday

















    • $begingroup$
      Whats quite strong mean
      $endgroup$
      – Mikey Spivak
      yesterday










    • $begingroup$
      @MikeySpivak - Basically, how quickly the function goes to infinity as the singularity is approached. Generally speaking, the larger the negative exponent of a negative-degree term, the stronger the singularity is.
      $endgroup$
      – The_Sympathizer
      yesterday










    • $begingroup$
      More quantitatively, a singular term $x^-alpha$ with $alpha ge 1$ is strong enough to diverge when integrated (with respect to $x$) up to its singular point, but with $0 le alpha < 1$, it actually is weak enough that it can converge.
      $endgroup$
      – The_Sympathizer
      yesterday
















    $begingroup$
    Whats quite strong mean
    $endgroup$
    – Mikey Spivak
    yesterday




    $begingroup$
    Whats quite strong mean
    $endgroup$
    – Mikey Spivak
    yesterday












    $begingroup$
    @MikeySpivak - Basically, how quickly the function goes to infinity as the singularity is approached. Generally speaking, the larger the negative exponent of a negative-degree term, the stronger the singularity is.
    $endgroup$
    – The_Sympathizer
    yesterday




    $begingroup$
    @MikeySpivak - Basically, how quickly the function goes to infinity as the singularity is approached. Generally speaking, the larger the negative exponent of a negative-degree term, the stronger the singularity is.
    $endgroup$
    – The_Sympathizer
    yesterday












    $begingroup$
    More quantitatively, a singular term $x^-alpha$ with $alpha ge 1$ is strong enough to diverge when integrated (with respect to $x$) up to its singular point, but with $0 le alpha < 1$, it actually is weak enough that it can converge.
    $endgroup$
    – The_Sympathizer
    yesterday





    $begingroup$
    More quantitatively, a singular term $x^-alpha$ with $alpha ge 1$ is strong enough to diverge when integrated (with respect to $x$) up to its singular point, but with $0 le alpha < 1$, it actually is weak enough that it can converge.
    $endgroup$
    – The_Sympathizer
    yesterday












    2












    $begingroup$

    No, there is nothing wrong. You havebeginalignint_2^3frac1(x-2)(x-3),mathrm dx&=int_2^5/2frac1(x-2)(x-3),mathrm dx+int_5/2^3frac1(x-2)(x-3),mathrm dx\&=lim_tto2^+int_t^5/2frac1(x-2)(x-3),mathrm dx+lim_tto3^-int_5/2^tfrac1(x-2)(x-3),mathrm dx.endalignNone of these limits exist, since the function that's being integrated behaves as $frac1x-3$ near $3$ and as $frac1x-2$ near $2$.






    share|cite|improve this answer









    $endgroup$

















      2












      $begingroup$

      No, there is nothing wrong. You havebeginalignint_2^3frac1(x-2)(x-3),mathrm dx&=int_2^5/2frac1(x-2)(x-3),mathrm dx+int_5/2^3frac1(x-2)(x-3),mathrm dx\&=lim_tto2^+int_t^5/2frac1(x-2)(x-3),mathrm dx+lim_tto3^-int_5/2^tfrac1(x-2)(x-3),mathrm dx.endalignNone of these limits exist, since the function that's being integrated behaves as $frac1x-3$ near $3$ and as $frac1x-2$ near $2$.






      share|cite|improve this answer









      $endgroup$















        2












        2








        2





        $begingroup$

        No, there is nothing wrong. You havebeginalignint_2^3frac1(x-2)(x-3),mathrm dx&=int_2^5/2frac1(x-2)(x-3),mathrm dx+int_5/2^3frac1(x-2)(x-3),mathrm dx\&=lim_tto2^+int_t^5/2frac1(x-2)(x-3),mathrm dx+lim_tto3^-int_5/2^tfrac1(x-2)(x-3),mathrm dx.endalignNone of these limits exist, since the function that's being integrated behaves as $frac1x-3$ near $3$ and as $frac1x-2$ near $2$.






        share|cite|improve this answer









        $endgroup$



        No, there is nothing wrong. You havebeginalignint_2^3frac1(x-2)(x-3),mathrm dx&=int_2^5/2frac1(x-2)(x-3),mathrm dx+int_5/2^3frac1(x-2)(x-3),mathrm dx\&=lim_tto2^+int_t^5/2frac1(x-2)(x-3),mathrm dx+lim_tto3^-int_5/2^tfrac1(x-2)(x-3),mathrm dx.endalignNone of these limits exist, since the function that's being integrated behaves as $frac1x-3$ near $3$ and as $frac1x-2$ near $2$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered yesterday









        José Carlos SantosJosé Carlos Santos

        175k24134243




        175k24134243



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3187072%2fi-am-getting-undefined-as-the-answer-of-this-integral-problem-int-limits-2%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

            Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation

            Magento 2 “No Payment Methods” in Admin New OrderHow to integrate Paypal Express Checkout with the Magento APIMagento 1.5 - Sales > Order > edit order and shipping methods disappearAuto Invoice Check/Money Order Payment methodAdd more simple payment methods?Shipping methods not showingWhat should I do to change payment methods if changing the configuration has no effects?1.9 - No Payment Methods showing upMy Payment Methods not Showing for downloadable/virtual product when checkout?Magento2 API to access internal payment methodHow to call an existing payment methods in the registration form?