“Counterexample” for the Inverse function theoremApplication of the Inverse Function TheoremQuestion regarding the Kolmogorov-Riesz theorem on relatively compact subsets of $L^p(Omega)$.Looking for a special kind of injective functionInverse Function Theorem and InjectivityFind all $(x,y,z) in mathbbR^3$ where $f(x,y,z)=(xy,xz,yz)$ is locally invertibleInverse Function Theorem and global inversesInverse function theorem local injectivity proofFunction satisfying $(Df(x)h,h) geq alpha(h,h), forall x,h in mathbbR^n$ has an inverse around every point?Jordan Regions and the Inverse Function TheoremHow is this not a proof of the Jacobian conjecture in the complex case?
Why does the painters tape have to be blue?
What is the purpose of the yellow wired panels on the IBM 360 Model 20?
What did Brienne write about Jaime?
How would a developer who mostly fixed bugs for years at a company call out their contributions in their CV?
Are cells guaranteed to get at least one mitochondrion when they divide?
Why is std::ssize() introduced in C++20?
Visual Block Mode edit with sequential number
Can a multiclassed Kensei monk/Swashbuckler rogue use an offhand finesse weapon to trigger Sneak Attack, without using a bonus action?
Can I render satellite deployment impossible, or at least impractical, by exploiting the Kessler syndrome?
Goldfish unresponsive, what should I do?
Knight's Tour on a 7x7 Board starting from D5
Why is the Eisenstein ideal paper so great?
What is Orcus doing with Mind Flayers in the art on the last page of Volo's Guide to Monsters?
Why does the hash of infinity have the digits of π?
Why isn't Tyrion mentioned in 'A song of Ice and Fire'?
Count all vowels in string
Can flying creatures choose to hover, even if they don't have hover in their flying speed?
Papers on ArXiv as main references
Why is this integration method not valid?
Why do testers need root cause analysis?
Is there a simple example that empirical evidence is misleading?
Why is unzipped directory exactly 4.0K (much smaller than zipped file)?
Why did OJ Simpson's trial take 9 months?
"Official wife" or "Formal wife"?
“Counterexample” for the Inverse function theorem
Application of the Inverse Function TheoremQuestion regarding the Kolmogorov-Riesz theorem on relatively compact subsets of $L^p(Omega)$.Looking for a special kind of injective functionInverse Function Theorem and InjectivityFind all $(x,y,z) in mathbbR^3$ where $f(x,y,z)=(xy,xz,yz)$ is locally invertibleInverse Function Theorem and global inversesInverse function theorem local injectivity proofFunction satisfying $(Df(x)h,h) geq alpha(h,h), forall x,h in mathbbR^n$ has an inverse around every point?Jordan Regions and the Inverse Function TheoremHow is this not a proof of the Jacobian conjecture in the complex case?
$begingroup$
In my class we stated the theorem as follows:
Let $OmegasubseteqmathbbR^n$ be an open set and $f:OmegatomathbbR^n$ a $mathscrC^1(Omega)$ function. If $|J_f(a)|ne0$ for some $ainOmega$ then there exists $delta>0$ such that $g:=fvert_B(a,delta)$ is injective and ...
This only is a sufficient condition, so is there any function whose jacobian has determinant $0$ at every point but still is injective? If the determinant only vanished on one single point something similar to $f(x)=x^3$ at $x=0$ in $mathbbR$ would do the trick, but if $|f'(x)|=0$ for every $xinOmegasubseteqmathbbR$ then $f$ is constant and not injective. Does the same hold in $mathbbR^n$?
Thanks
real-analysis examples-counterexamples inverse-function-theorem
$endgroup$
add a comment |
$begingroup$
In my class we stated the theorem as follows:
Let $OmegasubseteqmathbbR^n$ be an open set and $f:OmegatomathbbR^n$ a $mathscrC^1(Omega)$ function. If $|J_f(a)|ne0$ for some $ainOmega$ then there exists $delta>0$ such that $g:=fvert_B(a,delta)$ is injective and ...
This only is a sufficient condition, so is there any function whose jacobian has determinant $0$ at every point but still is injective? If the determinant only vanished on one single point something similar to $f(x)=x^3$ at $x=0$ in $mathbbR$ would do the trick, but if $|f'(x)|=0$ for every $xinOmegasubseteqmathbbR$ then $f$ is constant and not injective. Does the same hold in $mathbbR^n$?
Thanks
real-analysis examples-counterexamples inverse-function-theorem
$endgroup$
add a comment |
$begingroup$
In my class we stated the theorem as follows:
Let $OmegasubseteqmathbbR^n$ be an open set and $f:OmegatomathbbR^n$ a $mathscrC^1(Omega)$ function. If $|J_f(a)|ne0$ for some $ainOmega$ then there exists $delta>0$ such that $g:=fvert_B(a,delta)$ is injective and ...
This only is a sufficient condition, so is there any function whose jacobian has determinant $0$ at every point but still is injective? If the determinant only vanished on one single point something similar to $f(x)=x^3$ at $x=0$ in $mathbbR$ would do the trick, but if $|f'(x)|=0$ for every $xinOmegasubseteqmathbbR$ then $f$ is constant and not injective. Does the same hold in $mathbbR^n$?
Thanks
real-analysis examples-counterexamples inverse-function-theorem
$endgroup$
In my class we stated the theorem as follows:
Let $OmegasubseteqmathbbR^n$ be an open set and $f:OmegatomathbbR^n$ a $mathscrC^1(Omega)$ function. If $|J_f(a)|ne0$ for some $ainOmega$ then there exists $delta>0$ such that $g:=fvert_B(a,delta)$ is injective and ...
This only is a sufficient condition, so is there any function whose jacobian has determinant $0$ at every point but still is injective? If the determinant only vanished on one single point something similar to $f(x)=x^3$ at $x=0$ in $mathbbR$ would do the trick, but if $|f'(x)|=0$ for every $xinOmegasubseteqmathbbR$ then $f$ is constant and not injective. Does the same hold in $mathbbR^n$?
Thanks
real-analysis examples-counterexamples inverse-function-theorem
real-analysis examples-counterexamples inverse-function-theorem
asked May 15 at 21:59
PedroPedro
688213
688213
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Actually, this is not possible in $mathbbR^n$ either.
Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).
From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3227626%2fcounterexample-for-the-inverse-function-theorem%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Actually, this is not possible in $mathbbR^n$ either.
Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).
From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.
$endgroup$
add a comment |
$begingroup$
Actually, this is not possible in $mathbbR^n$ either.
Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).
From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.
$endgroup$
add a comment |
$begingroup$
Actually, this is not possible in $mathbbR^n$ either.
Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).
From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.
$endgroup$
Actually, this is not possible in $mathbbR^n$ either.
Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).
From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.
answered May 15 at 22:16
MindlackMindlack
5,290413
5,290413
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3227626%2fcounterexample-for-the-inverse-function-theorem%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown