Evaluate the indefinite integral of multiplication of two functionsThe limit of the derivative of an increasing and bounded function is always $0$?Cauchy Criterion for Sequences as opposed to SeriesHow to show these two definitions of the Riemann integral are equivalent?Proof that $lima_n=L$ when $n$ goes to infinity, then $a_n$ its a Cauchy SequenceEvaluate the limit using only the following resultsUniform convergence of improper integralsProof of the Cauchy Criterion for SeriesProving the equivalence between two definitions of Reiman integral.Why this property of the integral doesn't work in this case?Let $gin C[a,b]$, $f_n$ is a sequence of continuous functions, and $f_nto f$ uniformly. Prove $lim_ntoinftyint_a^bf_ng = int_a^bfg$The two Riemann Stieltjes integrals are close in the tails

Why A=2 and B=1 in the call signs for Spirit and Opportunity?

Is it legal to have an abortion in another state or abroad?

Is it truly impossible to tell what a CPU is doing?

Find this cartoon

Drums and punctuation

Why are GND pads often only connected by four traces?

Is it legal to meet with potential future employers in the UK, whilst visiting from the USA

Must a warlock replace spells with new spells of exactly their Pact Magic spell slot level?

Gravitational Force Between Numbers

Are black holes spherical during merger?

Take elements from a list based on two criteria

Why did Drogon spare this character?

Can a person survive on blood in place of water?

Grade-school elementary algebra presented in an abstract-algebra style?

Can my floppy disk still work without a shutter spring?

What are Antecedent & Consequent Phrases in Music?

Python program for a simple calculator

Best material to absorb as much light as possible

Dad jokes are fun

Time complexity of an algorithm: Is it important to state the base of the logarithm?

Public transport tickets in UK for two weeks

Making a electromagnet

USPS Back Room - Trespassing?

What could a self-sustaining lunar colony slowly lose that would ultimately prove fatal?



Evaluate the indefinite integral of multiplication of two functions


The limit of the derivative of an increasing and bounded function is always $0$?Cauchy Criterion for Sequences as opposed to SeriesHow to show these two definitions of the Riemann integral are equivalent?Proof that $lima_n=L$ when $n$ goes to infinity, then $a_n$ its a Cauchy SequenceEvaluate the limit using only the following resultsUniform convergence of improper integralsProof of the Cauchy Criterion for SeriesProving the equivalence between two definitions of Reiman integral.Why this property of the integral doesn't work in this case?Let $gin C[a,b]$, $f_n$ is a sequence of continuous functions, and $f_nto f$ uniformly. Prove $lim_ntoinftyint_a^bf_ng = int_a^bfg$The two Riemann Stieltjes integrals are close in the tails













5












$begingroup$



Let $f,g:[a,+infty]tomathbbR$ be continuous and $K>0$ s.t. $$
left|int_c^df(x),dxright|leq K quad forall c,din [a,infty).
$$

If $gin C^1$ is decreasing with $displaystylelim_xto inftyg(x)=0,$ prove that the limit $$int_a^infty f(x)g(x),dx=lim_xtoinfty int_a^x f(t)g(t),dt$$ exists.




I tried to use the Cauchy criterion, that is $forall epsilon>0, exists A>a$ s.t. $A<c<d$ implies that $left|int_c^d f(t)g(t),dtright|<epsilon.$ However I could not get anywhere.



I appreciate any suggestions.



P.S. I already posted this question and as its expression was not completely right, I deleted it and asked it again here.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Are you working in the extended real numbers? Otherwise, I'd say your notation $f, g:[a,+infty]tomathbbR$ is off. Wouldn't it be $f, g:[a,infty)tomathbbR?$
    $endgroup$
    – Adrian Keister
    May 17 at 14:35










  • $begingroup$
    yes ut is indeed extended numbers!
    $endgroup$
    – Majid
    May 17 at 19:12















5












$begingroup$



Let $f,g:[a,+infty]tomathbbR$ be continuous and $K>0$ s.t. $$
left|int_c^df(x),dxright|leq K quad forall c,din [a,infty).
$$

If $gin C^1$ is decreasing with $displaystylelim_xto inftyg(x)=0,$ prove that the limit $$int_a^infty f(x)g(x),dx=lim_xtoinfty int_a^x f(t)g(t),dt$$ exists.




I tried to use the Cauchy criterion, that is $forall epsilon>0, exists A>a$ s.t. $A<c<d$ implies that $left|int_c^d f(t)g(t),dtright|<epsilon.$ However I could not get anywhere.



I appreciate any suggestions.



P.S. I already posted this question and as its expression was not completely right, I deleted it and asked it again here.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Are you working in the extended real numbers? Otherwise, I'd say your notation $f, g:[a,+infty]tomathbbR$ is off. Wouldn't it be $f, g:[a,infty)tomathbbR?$
    $endgroup$
    – Adrian Keister
    May 17 at 14:35










  • $begingroup$
    yes ut is indeed extended numbers!
    $endgroup$
    – Majid
    May 17 at 19:12













5












5








5


1



$begingroup$



Let $f,g:[a,+infty]tomathbbR$ be continuous and $K>0$ s.t. $$
left|int_c^df(x),dxright|leq K quad forall c,din [a,infty).
$$

If $gin C^1$ is decreasing with $displaystylelim_xto inftyg(x)=0,$ prove that the limit $$int_a^infty f(x)g(x),dx=lim_xtoinfty int_a^x f(t)g(t),dt$$ exists.




I tried to use the Cauchy criterion, that is $forall epsilon>0, exists A>a$ s.t. $A<c<d$ implies that $left|int_c^d f(t)g(t),dtright|<epsilon.$ However I could not get anywhere.



I appreciate any suggestions.



P.S. I already posted this question and as its expression was not completely right, I deleted it and asked it again here.










share|cite|improve this question











$endgroup$





Let $f,g:[a,+infty]tomathbbR$ be continuous and $K>0$ s.t. $$
left|int_c^df(x),dxright|leq K quad forall c,din [a,infty).
$$

If $gin C^1$ is decreasing with $displaystylelim_xto inftyg(x)=0,$ prove that the limit $$int_a^infty f(x)g(x),dx=lim_xtoinfty int_a^x f(t)g(t),dt$$ exists.




I tried to use the Cauchy criterion, that is $forall epsilon>0, exists A>a$ s.t. $A<c<d$ implies that $left|int_c^d f(t)g(t),dtright|<epsilon.$ However I could not get anywhere.



I appreciate any suggestions.



P.S. I already posted this question and as its expression was not completely right, I deleted it and asked it again here.







real-analysis integration riemann-integration






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited May 17 at 14:34









Adrian Keister

5,39072133




5,39072133










asked May 17 at 14:23









MajidMajid

2,0092926




2,0092926











  • $begingroup$
    Are you working in the extended real numbers? Otherwise, I'd say your notation $f, g:[a,+infty]tomathbbR$ is off. Wouldn't it be $f, g:[a,infty)tomathbbR?$
    $endgroup$
    – Adrian Keister
    May 17 at 14:35










  • $begingroup$
    yes ut is indeed extended numbers!
    $endgroup$
    – Majid
    May 17 at 19:12
















  • $begingroup$
    Are you working in the extended real numbers? Otherwise, I'd say your notation $f, g:[a,+infty]tomathbbR$ is off. Wouldn't it be $f, g:[a,infty)tomathbbR?$
    $endgroup$
    – Adrian Keister
    May 17 at 14:35










  • $begingroup$
    yes ut is indeed extended numbers!
    $endgroup$
    – Majid
    May 17 at 19:12















$begingroup$
Are you working in the extended real numbers? Otherwise, I'd say your notation $f, g:[a,+infty]tomathbbR$ is off. Wouldn't it be $f, g:[a,infty)tomathbbR?$
$endgroup$
– Adrian Keister
May 17 at 14:35




$begingroup$
Are you working in the extended real numbers? Otherwise, I'd say your notation $f, g:[a,+infty]tomathbbR$ is off. Wouldn't it be $f, g:[a,infty)tomathbbR?$
$endgroup$
– Adrian Keister
May 17 at 14:35












$begingroup$
yes ut is indeed extended numbers!
$endgroup$
– Majid
May 17 at 19:12




$begingroup$
yes ut is indeed extended numbers!
$endgroup$
– Majid
May 17 at 19:12










2 Answers
2






active

oldest

votes


















6












$begingroup$

For $x in [a,infty)$, define $F(x) := int^x_a f(t),dt$. Then $lvert F(x) rvert le K$, and $F'(x) = f(x)$ by the fundamental theorem of calculus.



Now for $x,y in[a,infty)$, and wlog let $y ge x$. By integrating by parts and using the triangle inequality, we see beginalign*leftlvert int^y_a f(t) g(t) ,dt - int^x_a f(t)g(t),dtrightrvert &= left lvertint^y_x f(t) g(t), dt right rvert\
&= left lvert int^y_x F'(t)g(t) ,dt right rvert\
&= left lvert [F(t)g(t)]^t=y_t=x - int^y_x F(x)g'(x),dx right rvert\
&le lvert F(y)g(y)rvert + lvert F(x)g(x) rvert + int^y_x lvert F(t)g'(t) rvert ,dt\
& le Kleft(lvert g(y) rvert + lvert g(x) rvert + int^y_x lvert g'(t)rvert ,dt right).
endalign*
Since $g$ is decreasing, we have $g'(t) le 0$, and so $lvert g'(t)rvert = -g'(t).$ Thus beginalign*leftlvert int^y_a f(t) g(t) ,dt - int^x_a f(t)g(t),dtrightrvert & le Kleft(lvert g(y) rvert + lvert g(x) rvert + int^y_x lvert g'(t)rvert ,dt right)\
&= Kleft(lvert g(y) rvert + lvert g(x) rvert - int^y_x g'(t) ,dt right)\
&= K(lvert g(y) rvert + vert g(x) rvert + g(x) - g(y)) \&le 4K textmax(lvert g(x) rvert, lvert g(y) rvert).
endalign*
Since $lvert g(t) rvert to 0$ as $t to infty$, for any $epsilon > 0$, there is $M > 0$, such that $lvert g(t)rvert < epsilon/4K$ for all $t > M$. But then for $x,y > M$, we have shown $$leftlvert int^y_a f(t) g(t), dt - int^x_a f(t)g(t),dtrightrvert < epsilon.$$ Finally, take any sequence $x_n_n=1^infty$ with $x_n to infty$, and this shows that $$leftint^x_n_a f(t)g(t),dt right_n=1^infty$$ is a Cauchy sequence and hence converges. By the sequential criterion theorem, we conclude that $$lim_xtoinfty int^x_a f(t) g(t) ,dt$$ converges.



As an aside, this is completely analogous to the Dirichlet Test for infinite series, which is a generalization of the alternating series test.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    thanks for the explicit solution :)
    $endgroup$
    – Majid
    May 17 at 19:23


















0












$begingroup$

Since it is given that $g$ is continuously differentiable, so $g'$ exists.
Now the idea is to write $displaystyleint fg$ as $displaystyle gint f-int left(g'int fright)$.



Now using triangle inequality,
$$left|int fgright|leqleft| gint fright|+left|int left(g'int fright)right|,$$
now I think you can complete it, but don't forget to use the fact that $displaystylelim_xtoinfty g'(x)=0.$






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    But we are not assuming that $g'(x) to 0$, and indeed, it may not.
    $endgroup$
    – User8128
    May 17 at 14:58






  • 1




    $begingroup$
    You are right,actually i thought that asymptotically g is becoming constant and hence the derivative must go to $0$,but that's not true.
    $endgroup$
    – Soumyadip Sarkar
    May 17 at 15:04







  • 3




    $begingroup$
    Exactly right: the prototypical counterexample is something like $g(x) = fracsin(x^10)1+x^2$
    $endgroup$
    – User8128
    May 17 at 15:05







  • 1




    $begingroup$
    @User8128 Note $g$ is decreasing. That still does not imply $g'to0$, but you will need another counterexample: small jumps with large $|g'|$ such that the sum of the jumps is bounded, for instance, i.e. something like this: math.stackexchange.com/questions/788813/…
    $endgroup$
    – Jean-Claude Arbaut
    May 18 at 11:39












Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3229549%2fevaluate-the-indefinite-integral-of-multiplication-of-two-functions%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









6












$begingroup$

For $x in [a,infty)$, define $F(x) := int^x_a f(t),dt$. Then $lvert F(x) rvert le K$, and $F'(x) = f(x)$ by the fundamental theorem of calculus.



Now for $x,y in[a,infty)$, and wlog let $y ge x$. By integrating by parts and using the triangle inequality, we see beginalign*leftlvert int^y_a f(t) g(t) ,dt - int^x_a f(t)g(t),dtrightrvert &= left lvertint^y_x f(t) g(t), dt right rvert\
&= left lvert int^y_x F'(t)g(t) ,dt right rvert\
&= left lvert [F(t)g(t)]^t=y_t=x - int^y_x F(x)g'(x),dx right rvert\
&le lvert F(y)g(y)rvert + lvert F(x)g(x) rvert + int^y_x lvert F(t)g'(t) rvert ,dt\
& le Kleft(lvert g(y) rvert + lvert g(x) rvert + int^y_x lvert g'(t)rvert ,dt right).
endalign*
Since $g$ is decreasing, we have $g'(t) le 0$, and so $lvert g'(t)rvert = -g'(t).$ Thus beginalign*leftlvert int^y_a f(t) g(t) ,dt - int^x_a f(t)g(t),dtrightrvert & le Kleft(lvert g(y) rvert + lvert g(x) rvert + int^y_x lvert g'(t)rvert ,dt right)\
&= Kleft(lvert g(y) rvert + lvert g(x) rvert - int^y_x g'(t) ,dt right)\
&= K(lvert g(y) rvert + vert g(x) rvert + g(x) - g(y)) \&le 4K textmax(lvert g(x) rvert, lvert g(y) rvert).
endalign*
Since $lvert g(t) rvert to 0$ as $t to infty$, for any $epsilon > 0$, there is $M > 0$, such that $lvert g(t)rvert < epsilon/4K$ for all $t > M$. But then for $x,y > M$, we have shown $$leftlvert int^y_a f(t) g(t), dt - int^x_a f(t)g(t),dtrightrvert < epsilon.$$ Finally, take any sequence $x_n_n=1^infty$ with $x_n to infty$, and this shows that $$leftint^x_n_a f(t)g(t),dt right_n=1^infty$$ is a Cauchy sequence and hence converges. By the sequential criterion theorem, we conclude that $$lim_xtoinfty int^x_a f(t) g(t) ,dt$$ converges.



As an aside, this is completely analogous to the Dirichlet Test for infinite series, which is a generalization of the alternating series test.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    thanks for the explicit solution :)
    $endgroup$
    – Majid
    May 17 at 19:23















6












$begingroup$

For $x in [a,infty)$, define $F(x) := int^x_a f(t),dt$. Then $lvert F(x) rvert le K$, and $F'(x) = f(x)$ by the fundamental theorem of calculus.



Now for $x,y in[a,infty)$, and wlog let $y ge x$. By integrating by parts and using the triangle inequality, we see beginalign*leftlvert int^y_a f(t) g(t) ,dt - int^x_a f(t)g(t),dtrightrvert &= left lvertint^y_x f(t) g(t), dt right rvert\
&= left lvert int^y_x F'(t)g(t) ,dt right rvert\
&= left lvert [F(t)g(t)]^t=y_t=x - int^y_x F(x)g'(x),dx right rvert\
&le lvert F(y)g(y)rvert + lvert F(x)g(x) rvert + int^y_x lvert F(t)g'(t) rvert ,dt\
& le Kleft(lvert g(y) rvert + lvert g(x) rvert + int^y_x lvert g'(t)rvert ,dt right).
endalign*
Since $g$ is decreasing, we have $g'(t) le 0$, and so $lvert g'(t)rvert = -g'(t).$ Thus beginalign*leftlvert int^y_a f(t) g(t) ,dt - int^x_a f(t)g(t),dtrightrvert & le Kleft(lvert g(y) rvert + lvert g(x) rvert + int^y_x lvert g'(t)rvert ,dt right)\
&= Kleft(lvert g(y) rvert + lvert g(x) rvert - int^y_x g'(t) ,dt right)\
&= K(lvert g(y) rvert + vert g(x) rvert + g(x) - g(y)) \&le 4K textmax(lvert g(x) rvert, lvert g(y) rvert).
endalign*
Since $lvert g(t) rvert to 0$ as $t to infty$, for any $epsilon > 0$, there is $M > 0$, such that $lvert g(t)rvert < epsilon/4K$ for all $t > M$. But then for $x,y > M$, we have shown $$leftlvert int^y_a f(t) g(t), dt - int^x_a f(t)g(t),dtrightrvert < epsilon.$$ Finally, take any sequence $x_n_n=1^infty$ with $x_n to infty$, and this shows that $$leftint^x_n_a f(t)g(t),dt right_n=1^infty$$ is a Cauchy sequence and hence converges. By the sequential criterion theorem, we conclude that $$lim_xtoinfty int^x_a f(t) g(t) ,dt$$ converges.



As an aside, this is completely analogous to the Dirichlet Test for infinite series, which is a generalization of the alternating series test.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    thanks for the explicit solution :)
    $endgroup$
    – Majid
    May 17 at 19:23













6












6








6





$begingroup$

For $x in [a,infty)$, define $F(x) := int^x_a f(t),dt$. Then $lvert F(x) rvert le K$, and $F'(x) = f(x)$ by the fundamental theorem of calculus.



Now for $x,y in[a,infty)$, and wlog let $y ge x$. By integrating by parts and using the triangle inequality, we see beginalign*leftlvert int^y_a f(t) g(t) ,dt - int^x_a f(t)g(t),dtrightrvert &= left lvertint^y_x f(t) g(t), dt right rvert\
&= left lvert int^y_x F'(t)g(t) ,dt right rvert\
&= left lvert [F(t)g(t)]^t=y_t=x - int^y_x F(x)g'(x),dx right rvert\
&le lvert F(y)g(y)rvert + lvert F(x)g(x) rvert + int^y_x lvert F(t)g'(t) rvert ,dt\
& le Kleft(lvert g(y) rvert + lvert g(x) rvert + int^y_x lvert g'(t)rvert ,dt right).
endalign*
Since $g$ is decreasing, we have $g'(t) le 0$, and so $lvert g'(t)rvert = -g'(t).$ Thus beginalign*leftlvert int^y_a f(t) g(t) ,dt - int^x_a f(t)g(t),dtrightrvert & le Kleft(lvert g(y) rvert + lvert g(x) rvert + int^y_x lvert g'(t)rvert ,dt right)\
&= Kleft(lvert g(y) rvert + lvert g(x) rvert - int^y_x g'(t) ,dt right)\
&= K(lvert g(y) rvert + vert g(x) rvert + g(x) - g(y)) \&le 4K textmax(lvert g(x) rvert, lvert g(y) rvert).
endalign*
Since $lvert g(t) rvert to 0$ as $t to infty$, for any $epsilon > 0$, there is $M > 0$, such that $lvert g(t)rvert < epsilon/4K$ for all $t > M$. But then for $x,y > M$, we have shown $$leftlvert int^y_a f(t) g(t), dt - int^x_a f(t)g(t),dtrightrvert < epsilon.$$ Finally, take any sequence $x_n_n=1^infty$ with $x_n to infty$, and this shows that $$leftint^x_n_a f(t)g(t),dt right_n=1^infty$$ is a Cauchy sequence and hence converges. By the sequential criterion theorem, we conclude that $$lim_xtoinfty int^x_a f(t) g(t) ,dt$$ converges.



As an aside, this is completely analogous to the Dirichlet Test for infinite series, which is a generalization of the alternating series test.






share|cite|improve this answer











$endgroup$



For $x in [a,infty)$, define $F(x) := int^x_a f(t),dt$. Then $lvert F(x) rvert le K$, and $F'(x) = f(x)$ by the fundamental theorem of calculus.



Now for $x,y in[a,infty)$, and wlog let $y ge x$. By integrating by parts and using the triangle inequality, we see beginalign*leftlvert int^y_a f(t) g(t) ,dt - int^x_a f(t)g(t),dtrightrvert &= left lvertint^y_x f(t) g(t), dt right rvert\
&= left lvert int^y_x F'(t)g(t) ,dt right rvert\
&= left lvert [F(t)g(t)]^t=y_t=x - int^y_x F(x)g'(x),dx right rvert\
&le lvert F(y)g(y)rvert + lvert F(x)g(x) rvert + int^y_x lvert F(t)g'(t) rvert ,dt\
& le Kleft(lvert g(y) rvert + lvert g(x) rvert + int^y_x lvert g'(t)rvert ,dt right).
endalign*
Since $g$ is decreasing, we have $g'(t) le 0$, and so $lvert g'(t)rvert = -g'(t).$ Thus beginalign*leftlvert int^y_a f(t) g(t) ,dt - int^x_a f(t)g(t),dtrightrvert & le Kleft(lvert g(y) rvert + lvert g(x) rvert + int^y_x lvert g'(t)rvert ,dt right)\
&= Kleft(lvert g(y) rvert + lvert g(x) rvert - int^y_x g'(t) ,dt right)\
&= K(lvert g(y) rvert + vert g(x) rvert + g(x) - g(y)) \&le 4K textmax(lvert g(x) rvert, lvert g(y) rvert).
endalign*
Since $lvert g(t) rvert to 0$ as $t to infty$, for any $epsilon > 0$, there is $M > 0$, such that $lvert g(t)rvert < epsilon/4K$ for all $t > M$. But then for $x,y > M$, we have shown $$leftlvert int^y_a f(t) g(t), dt - int^x_a f(t)g(t),dtrightrvert < epsilon.$$ Finally, take any sequence $x_n_n=1^infty$ with $x_n to infty$, and this shows that $$leftint^x_n_a f(t)g(t),dt right_n=1^infty$$ is a Cauchy sequence and hence converges. By the sequential criterion theorem, we conclude that $$lim_xtoinfty int^x_a f(t) g(t) ,dt$$ converges.



As an aside, this is completely analogous to the Dirichlet Test for infinite series, which is a generalization of the alternating series test.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited May 17 at 20:20









Adrian Keister

5,39072133




5,39072133










answered May 17 at 14:56









User8128User8128

11.3k1622




11.3k1622











  • $begingroup$
    thanks for the explicit solution :)
    $endgroup$
    – Majid
    May 17 at 19:23
















  • $begingroup$
    thanks for the explicit solution :)
    $endgroup$
    – Majid
    May 17 at 19:23















$begingroup$
thanks for the explicit solution :)
$endgroup$
– Majid
May 17 at 19:23




$begingroup$
thanks for the explicit solution :)
$endgroup$
– Majid
May 17 at 19:23











0












$begingroup$

Since it is given that $g$ is continuously differentiable, so $g'$ exists.
Now the idea is to write $displaystyleint fg$ as $displaystyle gint f-int left(g'int fright)$.



Now using triangle inequality,
$$left|int fgright|leqleft| gint fright|+left|int left(g'int fright)right|,$$
now I think you can complete it, but don't forget to use the fact that $displaystylelim_xtoinfty g'(x)=0.$






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    But we are not assuming that $g'(x) to 0$, and indeed, it may not.
    $endgroup$
    – User8128
    May 17 at 14:58






  • 1




    $begingroup$
    You are right,actually i thought that asymptotically g is becoming constant and hence the derivative must go to $0$,but that's not true.
    $endgroup$
    – Soumyadip Sarkar
    May 17 at 15:04







  • 3




    $begingroup$
    Exactly right: the prototypical counterexample is something like $g(x) = fracsin(x^10)1+x^2$
    $endgroup$
    – User8128
    May 17 at 15:05







  • 1




    $begingroup$
    @User8128 Note $g$ is decreasing. That still does not imply $g'to0$, but you will need another counterexample: small jumps with large $|g'|$ such that the sum of the jumps is bounded, for instance, i.e. something like this: math.stackexchange.com/questions/788813/…
    $endgroup$
    – Jean-Claude Arbaut
    May 18 at 11:39
















0












$begingroup$

Since it is given that $g$ is continuously differentiable, so $g'$ exists.
Now the idea is to write $displaystyleint fg$ as $displaystyle gint f-int left(g'int fright)$.



Now using triangle inequality,
$$left|int fgright|leqleft| gint fright|+left|int left(g'int fright)right|,$$
now I think you can complete it, but don't forget to use the fact that $displaystylelim_xtoinfty g'(x)=0.$






share|cite|improve this answer











$endgroup$








  • 1




    $begingroup$
    But we are not assuming that $g'(x) to 0$, and indeed, it may not.
    $endgroup$
    – User8128
    May 17 at 14:58






  • 1




    $begingroup$
    You are right,actually i thought that asymptotically g is becoming constant and hence the derivative must go to $0$,but that's not true.
    $endgroup$
    – Soumyadip Sarkar
    May 17 at 15:04







  • 3




    $begingroup$
    Exactly right: the prototypical counterexample is something like $g(x) = fracsin(x^10)1+x^2$
    $endgroup$
    – User8128
    May 17 at 15:05







  • 1




    $begingroup$
    @User8128 Note $g$ is decreasing. That still does not imply $g'to0$, but you will need another counterexample: small jumps with large $|g'|$ such that the sum of the jumps is bounded, for instance, i.e. something like this: math.stackexchange.com/questions/788813/…
    $endgroup$
    – Jean-Claude Arbaut
    May 18 at 11:39














0












0








0





$begingroup$

Since it is given that $g$ is continuously differentiable, so $g'$ exists.
Now the idea is to write $displaystyleint fg$ as $displaystyle gint f-int left(g'int fright)$.



Now using triangle inequality,
$$left|int fgright|leqleft| gint fright|+left|int left(g'int fright)right|,$$
now I think you can complete it, but don't forget to use the fact that $displaystylelim_xtoinfty g'(x)=0.$






share|cite|improve this answer











$endgroup$



Since it is given that $g$ is continuously differentiable, so $g'$ exists.
Now the idea is to write $displaystyleint fg$ as $displaystyle gint f-int left(g'int fright)$.



Now using triangle inequality,
$$left|int fgright|leqleft| gint fright|+left|int left(g'int fright)right|,$$
now I think you can complete it, but don't forget to use the fact that $displaystylelim_xtoinfty g'(x)=0.$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited May 17 at 20:26









Adrian Keister

5,39072133




5,39072133










answered May 17 at 14:57









Soumyadip SarkarSoumyadip Sarkar

728




728







  • 1




    $begingroup$
    But we are not assuming that $g'(x) to 0$, and indeed, it may not.
    $endgroup$
    – User8128
    May 17 at 14:58






  • 1




    $begingroup$
    You are right,actually i thought that asymptotically g is becoming constant and hence the derivative must go to $0$,but that's not true.
    $endgroup$
    – Soumyadip Sarkar
    May 17 at 15:04







  • 3




    $begingroup$
    Exactly right: the prototypical counterexample is something like $g(x) = fracsin(x^10)1+x^2$
    $endgroup$
    – User8128
    May 17 at 15:05







  • 1




    $begingroup$
    @User8128 Note $g$ is decreasing. That still does not imply $g'to0$, but you will need another counterexample: small jumps with large $|g'|$ such that the sum of the jumps is bounded, for instance, i.e. something like this: math.stackexchange.com/questions/788813/…
    $endgroup$
    – Jean-Claude Arbaut
    May 18 at 11:39













  • 1




    $begingroup$
    But we are not assuming that $g'(x) to 0$, and indeed, it may not.
    $endgroup$
    – User8128
    May 17 at 14:58






  • 1




    $begingroup$
    You are right,actually i thought that asymptotically g is becoming constant and hence the derivative must go to $0$,but that's not true.
    $endgroup$
    – Soumyadip Sarkar
    May 17 at 15:04







  • 3




    $begingroup$
    Exactly right: the prototypical counterexample is something like $g(x) = fracsin(x^10)1+x^2$
    $endgroup$
    – User8128
    May 17 at 15:05







  • 1




    $begingroup$
    @User8128 Note $g$ is decreasing. That still does not imply $g'to0$, but you will need another counterexample: small jumps with large $|g'|$ such that the sum of the jumps is bounded, for instance, i.e. something like this: math.stackexchange.com/questions/788813/…
    $endgroup$
    – Jean-Claude Arbaut
    May 18 at 11:39








1




1




$begingroup$
But we are not assuming that $g'(x) to 0$, and indeed, it may not.
$endgroup$
– User8128
May 17 at 14:58




$begingroup$
But we are not assuming that $g'(x) to 0$, and indeed, it may not.
$endgroup$
– User8128
May 17 at 14:58




1




1




$begingroup$
You are right,actually i thought that asymptotically g is becoming constant and hence the derivative must go to $0$,but that's not true.
$endgroup$
– Soumyadip Sarkar
May 17 at 15:04





$begingroup$
You are right,actually i thought that asymptotically g is becoming constant and hence the derivative must go to $0$,but that's not true.
$endgroup$
– Soumyadip Sarkar
May 17 at 15:04





3




3




$begingroup$
Exactly right: the prototypical counterexample is something like $g(x) = fracsin(x^10)1+x^2$
$endgroup$
– User8128
May 17 at 15:05





$begingroup$
Exactly right: the prototypical counterexample is something like $g(x) = fracsin(x^10)1+x^2$
$endgroup$
– User8128
May 17 at 15:05





1




1




$begingroup$
@User8128 Note $g$ is decreasing. That still does not imply $g'to0$, but you will need another counterexample: small jumps with large $|g'|$ such that the sum of the jumps is bounded, for instance, i.e. something like this: math.stackexchange.com/questions/788813/…
$endgroup$
– Jean-Claude Arbaut
May 18 at 11:39





$begingroup$
@User8128 Note $g$ is decreasing. That still does not imply $g'to0$, but you will need another counterexample: small jumps with large $|g'|$ such that the sum of the jumps is bounded, for instance, i.e. something like this: math.stackexchange.com/questions/788813/…
$endgroup$
– Jean-Claude Arbaut
May 18 at 11:39


















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3229549%2fevaluate-the-indefinite-integral-of-multiplication-of-two-functions%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation

Magento 2 “No Payment Methods” in Admin New OrderHow to integrate Paypal Express Checkout with the Magento APIMagento 1.5 - Sales > Order > edit order and shipping methods disappearAuto Invoice Check/Money Order Payment methodAdd more simple payment methods?Shipping methods not showingWhat should I do to change payment methods if changing the configuration has no effects?1.9 - No Payment Methods showing upMy Payment Methods not Showing for downloadable/virtual product when checkout?Magento2 API to access internal payment methodHow to call an existing payment methods in the registration form?