using trigonometric identitiesSimplify a trigonometric expressionTrigonometric Identities To ProveSimplifying second derivative using trigonometric identitiesTrigonometric Identities helpFind the Value of Trigonometric ExpressionTrigonometric Identities QuestionTricky trig question from GREProve this equation using trigonometric identitiesPythagorean identitiesFind the angle $x$ using trigonometric identities
Is my plasma cannon concept viable?
Public transport tickets in UK for two weeks
Determine this limit
How to deal with a colleague who is being aggressive?
Is there a simple example that empirical evidence is misleading?
Can a person survive on blood in place of water?
Job Market: should one hide their (young) age?
How do I get the ς (final sigma) symbol?
The art of clickbait captions
How was Daenerys able to legitimise this character?
Why would a rational buyer offer to buy with no conditions precedent?
Security vulnerabilities of POST over SSL
Did 20% of US soldiers in Vietnam use heroin, 95% of whom quit afterwards?
How do I superimpose two math symbols?
WordPress 5.2.1 deactivated my jQuery
Is it legal to have an abortion in another state or abroad?
Why did Jon Snow do this immoral act if he is so honorable?
Why was this character made Grand Maester?
Gravitational Force Between Numbers
Drums and punctuation
What Armor Optimization applies to a Mithral full plate?
Why do we need to chain the blocks (creating blockchain) in a permissioned blockchain?
Is superuser the same as root?
Grade-school elementary algebra presented in an abstract-algebra style?
using trigonometric identities
Simplify a trigonometric expressionTrigonometric Identities To ProveSimplifying second derivative using trigonometric identitiesTrigonometric Identities helpFind the Value of Trigonometric ExpressionTrigonometric Identities QuestionTricky trig question from GREProve this equation using trigonometric identitiesPythagorean identitiesFind the angle $x$ using trigonometric identities
$begingroup$
For proving $$frac 16cos (4x)+7 =frac1sin^4x +cos^2x +frac1sin^2x +cos^4x $$
I tried to use that:
beginalign
sin^4 x +cos^4 x&=sin^4 x +2sin^2xcos^2 x+cos^4 x - 2sin^2xcos^2 x\
&=(sin^2x+cos^2 x)^2-2sin^2xcos^2 x\
&=1^2-frac12(2sin xcos x)^2\
&=1-frac12sin^2 (2x)\
&=1-frac12left(frac1-cos 4x2right)\
&=frac34+frac14cos 4x
endalign
but i can't try more
trigonometry
$endgroup$
add a comment |
$begingroup$
For proving $$frac 16cos (4x)+7 =frac1sin^4x +cos^2x +frac1sin^2x +cos^4x $$
I tried to use that:
beginalign
sin^4 x +cos^4 x&=sin^4 x +2sin^2xcos^2 x+cos^4 x - 2sin^2xcos^2 x\
&=(sin^2x+cos^2 x)^2-2sin^2xcos^2 x\
&=1^2-frac12(2sin xcos x)^2\
&=1-frac12sin^2 (2x)\
&=1-frac12left(frac1-cos 4x2right)\
&=frac34+frac14cos 4x
endalign
but i can't try more
trigonometry
$endgroup$
add a comment |
$begingroup$
For proving $$frac 16cos (4x)+7 =frac1sin^4x +cos^2x +frac1sin^2x +cos^4x $$
I tried to use that:
beginalign
sin^4 x +cos^4 x&=sin^4 x +2sin^2xcos^2 x+cos^4 x - 2sin^2xcos^2 x\
&=(sin^2x+cos^2 x)^2-2sin^2xcos^2 x\
&=1^2-frac12(2sin xcos x)^2\
&=1-frac12sin^2 (2x)\
&=1-frac12left(frac1-cos 4x2right)\
&=frac34+frac14cos 4x
endalign
but i can't try more
trigonometry
$endgroup$
For proving $$frac 16cos (4x)+7 =frac1sin^4x +cos^2x +frac1sin^2x +cos^4x $$
I tried to use that:
beginalign
sin^4 x +cos^4 x&=sin^4 x +2sin^2xcos^2 x+cos^4 x - 2sin^2xcos^2 x\
&=(sin^2x+cos^2 x)^2-2sin^2xcos^2 x\
&=1^2-frac12(2sin xcos x)^2\
&=1-frac12sin^2 (2x)\
&=1-frac12left(frac1-cos 4x2right)\
&=frac34+frac14cos 4x
endalign
but i can't try more
trigonometry
trigonometry
asked May 17 at 17:58
GeorgeGeorge
3246
3246
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
$displaystyle sin^4x+cos^2x=frac(1-cos2x)^24+frac1+cos 2x2=frac3+cos^22x4=frac3+frac1+cos 4x24=frac7+cos4x8$
$displaystyle sin^2x+cos^4x=sin^4left(frac pi2-xright)+cos^2left(frac pi2-xright)=frac7+cos4left(frac pi2-xright)8=frac7+cos4x8$
$endgroup$
add a comment |
$begingroup$
Note that
$$beginalignsin^4x +cos^2x &=
sin^2x(1-cos^2x) +cos^2x\
&=sin^2x+cos^2x(1-sin^2x)=sin^2x +cos^4x.
endalign$$
Hence, according to your work,
$$beginalign
2(sin^4x +cos^2x)&=(sin^4x +cos^2x) +(sin^2x +cos^4x)\
&=sin^4x +cos^4x+1=frac7+cos 4x4.endalign$$
Can you take it from here?
$endgroup$
add a comment |
$begingroup$
$c^4-s^4=(c^2+s^2)(c^2-s^2)=c^2-s^2$
$iff c^4+s^2=c^2+s^4=P$(say) where $c=cos x,s=sin x$
$P+P=1+c^4+s^4=1+(c^2+s^2)^2-2c^2s^2=2-dfracsin^22x2=2-dfrac1-cos4x4=?$
using $sin2x=2sin xcos x,cos2y=2-2sin^2y$
We need $$dfrac1P+dfrac2P=?$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3229789%2fusing-trigonometric-identities%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$displaystyle sin^4x+cos^2x=frac(1-cos2x)^24+frac1+cos 2x2=frac3+cos^22x4=frac3+frac1+cos 4x24=frac7+cos4x8$
$displaystyle sin^2x+cos^4x=sin^4left(frac pi2-xright)+cos^2left(frac pi2-xright)=frac7+cos4left(frac pi2-xright)8=frac7+cos4x8$
$endgroup$
add a comment |
$begingroup$
$displaystyle sin^4x+cos^2x=frac(1-cos2x)^24+frac1+cos 2x2=frac3+cos^22x4=frac3+frac1+cos 4x24=frac7+cos4x8$
$displaystyle sin^2x+cos^4x=sin^4left(frac pi2-xright)+cos^2left(frac pi2-xright)=frac7+cos4left(frac pi2-xright)8=frac7+cos4x8$
$endgroup$
add a comment |
$begingroup$
$displaystyle sin^4x+cos^2x=frac(1-cos2x)^24+frac1+cos 2x2=frac3+cos^22x4=frac3+frac1+cos 4x24=frac7+cos4x8$
$displaystyle sin^2x+cos^4x=sin^4left(frac pi2-xright)+cos^2left(frac pi2-xright)=frac7+cos4left(frac pi2-xright)8=frac7+cos4x8$
$endgroup$
$displaystyle sin^4x+cos^2x=frac(1-cos2x)^24+frac1+cos 2x2=frac3+cos^22x4=frac3+frac1+cos 4x24=frac7+cos4x8$
$displaystyle sin^2x+cos^4x=sin^4left(frac pi2-xright)+cos^2left(frac pi2-xright)=frac7+cos4left(frac pi2-xright)8=frac7+cos4x8$
answered May 17 at 18:03
CY AriesCY Aries
19.3k11844
19.3k11844
add a comment |
add a comment |
$begingroup$
Note that
$$beginalignsin^4x +cos^2x &=
sin^2x(1-cos^2x) +cos^2x\
&=sin^2x+cos^2x(1-sin^2x)=sin^2x +cos^4x.
endalign$$
Hence, according to your work,
$$beginalign
2(sin^4x +cos^2x)&=(sin^4x +cos^2x) +(sin^2x +cos^4x)\
&=sin^4x +cos^4x+1=frac7+cos 4x4.endalign$$
Can you take it from here?
$endgroup$
add a comment |
$begingroup$
Note that
$$beginalignsin^4x +cos^2x &=
sin^2x(1-cos^2x) +cos^2x\
&=sin^2x+cos^2x(1-sin^2x)=sin^2x +cos^4x.
endalign$$
Hence, according to your work,
$$beginalign
2(sin^4x +cos^2x)&=(sin^4x +cos^2x) +(sin^2x +cos^4x)\
&=sin^4x +cos^4x+1=frac7+cos 4x4.endalign$$
Can you take it from here?
$endgroup$
add a comment |
$begingroup$
Note that
$$beginalignsin^4x +cos^2x &=
sin^2x(1-cos^2x) +cos^2x\
&=sin^2x+cos^2x(1-sin^2x)=sin^2x +cos^4x.
endalign$$
Hence, according to your work,
$$beginalign
2(sin^4x +cos^2x)&=(sin^4x +cos^2x) +(sin^2x +cos^4x)\
&=sin^4x +cos^4x+1=frac7+cos 4x4.endalign$$
Can you take it from here?
$endgroup$
Note that
$$beginalignsin^4x +cos^2x &=
sin^2x(1-cos^2x) +cos^2x\
&=sin^2x+cos^2x(1-sin^2x)=sin^2x +cos^4x.
endalign$$
Hence, according to your work,
$$beginalign
2(sin^4x +cos^2x)&=(sin^4x +cos^2x) +(sin^2x +cos^4x)\
&=sin^4x +cos^4x+1=frac7+cos 4x4.endalign$$
Can you take it from here?
edited May 18 at 7:41
answered May 17 at 18:04
Robert ZRobert Z
103k1073146
103k1073146
add a comment |
add a comment |
$begingroup$
$c^4-s^4=(c^2+s^2)(c^2-s^2)=c^2-s^2$
$iff c^4+s^2=c^2+s^4=P$(say) where $c=cos x,s=sin x$
$P+P=1+c^4+s^4=1+(c^2+s^2)^2-2c^2s^2=2-dfracsin^22x2=2-dfrac1-cos4x4=?$
using $sin2x=2sin xcos x,cos2y=2-2sin^2y$
We need $$dfrac1P+dfrac2P=?$$
$endgroup$
add a comment |
$begingroup$
$c^4-s^4=(c^2+s^2)(c^2-s^2)=c^2-s^2$
$iff c^4+s^2=c^2+s^4=P$(say) where $c=cos x,s=sin x$
$P+P=1+c^4+s^4=1+(c^2+s^2)^2-2c^2s^2=2-dfracsin^22x2=2-dfrac1-cos4x4=?$
using $sin2x=2sin xcos x,cos2y=2-2sin^2y$
We need $$dfrac1P+dfrac2P=?$$
$endgroup$
add a comment |
$begingroup$
$c^4-s^4=(c^2+s^2)(c^2-s^2)=c^2-s^2$
$iff c^4+s^2=c^2+s^4=P$(say) where $c=cos x,s=sin x$
$P+P=1+c^4+s^4=1+(c^2+s^2)^2-2c^2s^2=2-dfracsin^22x2=2-dfrac1-cos4x4=?$
using $sin2x=2sin xcos x,cos2y=2-2sin^2y$
We need $$dfrac1P+dfrac2P=?$$
$endgroup$
$c^4-s^4=(c^2+s^2)(c^2-s^2)=c^2-s^2$
$iff c^4+s^2=c^2+s^4=P$(say) where $c=cos x,s=sin x$
$P+P=1+c^4+s^4=1+(c^2+s^2)^2-2c^2s^2=2-dfracsin^22x2=2-dfrac1-cos4x4=?$
using $sin2x=2sin xcos x,cos2y=2-2sin^2y$
We need $$dfrac1P+dfrac2P=?$$
answered May 17 at 18:20
lab bhattacharjeelab bhattacharjee
231k15161283
231k15161283
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3229789%2fusing-trigonometric-identities%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown