Elements other than carbon that can form many different compounds by bonding to themselves?Can you determine whether a compound can form given particular elements?Except pure alloys, are there any compounds with more metal elements proportion of atoms than nonmetal elements in proportion of atoms?How can transition metals form so many bonds with ligands?Why do different elements form different types of carbides?Can our chemical elements be differents on other universes?Can Carbon Form bonds without Hybridization?Why can two carbon atoms not form more than triple bond with each other?How many bonds can nitrogen form?Textbook Claim: “… in all cases it is the electrostatic force acting between charged particles that is responsible for all the forms of bonding.”Why is it not possible for seven close copper atoms to come together to gain a noble-gas configuration of valence electrons?
Applying a function to a nested list
How to scale a verbatim environment on a minipage?
How did Captain America use this power?
Can commander tax be proliferated?
Any examples of headwear for races with animal ears?
Visa for volunteering in England
Why are there synthetic chemicals in our bodies? Where do they come from?
Transfer over $10k
What is the limiting factor for a CAN bus to exceed 1Mbps bandwidth?
How to implement float hashing with approximate equality
Pigeonhole Principle Problem
Copy line and insert it in a new position with sed or awk
Is balancing necessary on a full-wheel change?
Survey Confirmation - Emphasize the question or the answer?
Why do computer-science majors learn calculus?
What word means "to make something obsolete"?
Did we get closer to another plane than we were supposed to, or was the pilot just protecting our delicate sensibilities?
Unexpected email from Yorkshire Bank
Why is the SNP putting so much emphasis on currency plans?
Airbnb - host wants to reduce rooms, can we get refund?
How to reply this mail from potential PhD professor?
Why do money exchangers give different rates to different bills
Why are notes ordered like they are on a piano?
Field Length Validation for Desktop Application which has maximum 1000 characters
Elements other than carbon that can form many different compounds by bonding to themselves?
Can you determine whether a compound can form given particular elements?Except pure alloys, are there any compounds with more metal elements proportion of atoms than nonmetal elements in proportion of atoms?How can transition metals form so many bonds with ligands?Why do different elements form different types of carbides?Can our chemical elements be differents on other universes?Can Carbon Form bonds without Hybridization?Why can two carbon atoms not form more than triple bond with each other?How many bonds can nitrogen form?Textbook Claim: “… in all cases it is the electrostatic force acting between charged particles that is responsible for all the forms of bonding.”Why is it not possible for seven close copper atoms to come together to gain a noble-gas configuration of valence electrons?
$begingroup$
My textbook says the following:
Unique among the elements, carbon can bond to itself to form extremely strong two-dimensional sheets, as it does in graphite, as well as buckyballs and nanotubes.
Is carbon the only element that can do this?
If not, then what are the other elements can also do this? Is there a term to describe such elements?
What is the chemical characteristic that allows this to occur?
I would greatly appreciate it if people could please take the time to clarify this.
bond elements
$endgroup$
|
show 3 more comments
$begingroup$
My textbook says the following:
Unique among the elements, carbon can bond to itself to form extremely strong two-dimensional sheets, as it does in graphite, as well as buckyballs and nanotubes.
Is carbon the only element that can do this?
If not, then what are the other elements can also do this? Is there a term to describe such elements?
What is the chemical characteristic that allows this to occur?
I would greatly appreciate it if people could please take the time to clarify this.
bond elements
$endgroup$
2
$begingroup$
Catenation : self linking property of an element (atom).
$endgroup$
– glucose
Apr 26 at 10:47
11
$begingroup$
The right question isn't whether an element can bond to itself. Plenty do that. The issue is whether an element can form a wide variety of stable structures when bonded to itself.
$endgroup$
– matt_black
Apr 26 at 13:32
1
$begingroup$
I was also aware that boron sheets were recently synthesized, but did not realize that someone has even predicted nitrogen sheets that could be stable at room temperature!
$endgroup$
– jeffB
Apr 26 at 15:20
1
$begingroup$
Sulfur can also form rings and chains
$endgroup$
– porphyrin
Apr 26 at 15:52
1
$begingroup$
What is the actual question here? Your citation does not say that bonding between identical atoms is something unique - every single element could do this even if transiently. The point is that carbon carbon allotropes are somewhat exceptional.
$endgroup$
– Mithoron
Apr 26 at 21:22
|
show 3 more comments
$begingroup$
My textbook says the following:
Unique among the elements, carbon can bond to itself to form extremely strong two-dimensional sheets, as it does in graphite, as well as buckyballs and nanotubes.
Is carbon the only element that can do this?
If not, then what are the other elements can also do this? Is there a term to describe such elements?
What is the chemical characteristic that allows this to occur?
I would greatly appreciate it if people could please take the time to clarify this.
bond elements
$endgroup$
My textbook says the following:
Unique among the elements, carbon can bond to itself to form extremely strong two-dimensional sheets, as it does in graphite, as well as buckyballs and nanotubes.
Is carbon the only element that can do this?
If not, then what are the other elements can also do this? Is there a term to describe such elements?
What is the chemical characteristic that allows this to occur?
I would greatly appreciate it if people could please take the time to clarify this.
bond elements
bond elements
edited Apr 27 at 0:03
Karsten Theis
5,382644
5,382644
asked Apr 26 at 10:20
The PointerThe Pointer
1814
1814
2
$begingroup$
Catenation : self linking property of an element (atom).
$endgroup$
– glucose
Apr 26 at 10:47
11
$begingroup$
The right question isn't whether an element can bond to itself. Plenty do that. The issue is whether an element can form a wide variety of stable structures when bonded to itself.
$endgroup$
– matt_black
Apr 26 at 13:32
1
$begingroup$
I was also aware that boron sheets were recently synthesized, but did not realize that someone has even predicted nitrogen sheets that could be stable at room temperature!
$endgroup$
– jeffB
Apr 26 at 15:20
1
$begingroup$
Sulfur can also form rings and chains
$endgroup$
– porphyrin
Apr 26 at 15:52
1
$begingroup$
What is the actual question here? Your citation does not say that bonding between identical atoms is something unique - every single element could do this even if transiently. The point is that carbon carbon allotropes are somewhat exceptional.
$endgroup$
– Mithoron
Apr 26 at 21:22
|
show 3 more comments
2
$begingroup$
Catenation : self linking property of an element (atom).
$endgroup$
– glucose
Apr 26 at 10:47
11
$begingroup$
The right question isn't whether an element can bond to itself. Plenty do that. The issue is whether an element can form a wide variety of stable structures when bonded to itself.
$endgroup$
– matt_black
Apr 26 at 13:32
1
$begingroup$
I was also aware that boron sheets were recently synthesized, but did not realize that someone has even predicted nitrogen sheets that could be stable at room temperature!
$endgroup$
– jeffB
Apr 26 at 15:20
1
$begingroup$
Sulfur can also form rings and chains
$endgroup$
– porphyrin
Apr 26 at 15:52
1
$begingroup$
What is the actual question here? Your citation does not say that bonding between identical atoms is something unique - every single element could do this even if transiently. The point is that carbon carbon allotropes are somewhat exceptional.
$endgroup$
– Mithoron
Apr 26 at 21:22
2
2
$begingroup$
Catenation : self linking property of an element (atom).
$endgroup$
– glucose
Apr 26 at 10:47
$begingroup$
Catenation : self linking property of an element (atom).
$endgroup$
– glucose
Apr 26 at 10:47
11
11
$begingroup$
The right question isn't whether an element can bond to itself. Plenty do that. The issue is whether an element can form a wide variety of stable structures when bonded to itself.
$endgroup$
– matt_black
Apr 26 at 13:32
$begingroup$
The right question isn't whether an element can bond to itself. Plenty do that. The issue is whether an element can form a wide variety of stable structures when bonded to itself.
$endgroup$
– matt_black
Apr 26 at 13:32
1
1
$begingroup$
I was also aware that boron sheets were recently synthesized, but did not realize that someone has even predicted nitrogen sheets that could be stable at room temperature!
$endgroup$
– jeffB
Apr 26 at 15:20
$begingroup$
I was also aware that boron sheets were recently synthesized, but did not realize that someone has even predicted nitrogen sheets that could be stable at room temperature!
$endgroup$
– jeffB
Apr 26 at 15:20
1
1
$begingroup$
Sulfur can also form rings and chains
$endgroup$
– porphyrin
Apr 26 at 15:52
$begingroup$
Sulfur can also form rings and chains
$endgroup$
– porphyrin
Apr 26 at 15:52
1
1
$begingroup$
What is the actual question here? Your citation does not say that bonding between identical atoms is something unique - every single element could do this even if transiently. The point is that carbon carbon allotropes are somewhat exceptional.
$endgroup$
– Mithoron
Apr 26 at 21:22
$begingroup$
What is the actual question here? Your citation does not say that bonding between identical atoms is something unique - every single element could do this even if transiently. The point is that carbon carbon allotropes are somewhat exceptional.
$endgroup$
– Mithoron
Apr 26 at 21:22
|
show 3 more comments
3 Answers
3
active
oldest
votes
$begingroup$
Is carbon the only element that can do this?
No, carbon is not the only element with such characteristics.
If not, then what are the other elements can also do this?
There is a whole number of elements such as silicon, arsenic, germanium.
Is there a term to describe such elements?
At least I'm unaware of such a term, which might be furnished by our far wiser community.
What is the chemical characteristic that allows this to occur?
Catenation.
More information:
According to the Molecular Orbital Theory, the condition for a compound to exist is that it should have more electrons in the bonding orbitals than in the anti-bonding orbitals. So, as long as you have the bonding orbitals filled more, you can have pretty anything, more than just chains of atoms.
Thus, the existence of a compound also depends on the precise conditions in which the compound is kept, for example sodium forms different types of chlorides under different conditions and that as pointed out by Poutnik in the comments, $ceHe2^1+$ and a ton of others are discovered and still more awaiting discovery.
$endgroup$
add a comment |
$begingroup$
No, carbon is not the only one that can bond to itself. It's a unique property of some elements mainly the group 14 elements like silicon, germanium, arsenic etc. This phenomenon is called catenation. It might be mainly due to presence of four valence electrons in their outermost shell. A large number of carbon atoms are linked with each other with sigma and pi bonds. However catenation gets limited as we move down the group in group 14.
New contributor
$endgroup$
add a comment |
$begingroup$
So most of this has been answered, but the main elements that can bond to themselves are called diatomic atoms. This includes hydrogen, nitrogen, fluorine, oxygen, iodine, chlorine, and bromine. There are other elements that can do this as well, however these main elements occur naturally in their diatomic state as gases.
New contributor
$endgroup$
4
$begingroup$
"Diatomic atom" is a weird term, diatomic molecule makes way more sense. Besides, the way the answer is formulated, it appears to me that all elements that are capable of self-bonding are diatomic molecules, whereas in reality diatomic molecules is a tiny subset of the former.
$endgroup$
– andselisk
Apr 26 at 20:30
$begingroup$
It's pretty clear that the question is asking about self-bonding beyond simple diatomic molecules.
$endgroup$
– Mark
Apr 26 at 22:24
1
$begingroup$
The ability to make a stable diatomic molecule might be the reason for not observing chains or 2D structures for these elements.
$endgroup$
– Karsten Theis
Apr 27 at 3:56
$begingroup$
@Karsten Theis very much agree. Extreme Peierl distortion.
$endgroup$
– Alchimista
2 days ago
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "431"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f114364%2felements-other-than-carbon-that-can-form-many-different-compounds-by-bonding-to%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Is carbon the only element that can do this?
No, carbon is not the only element with such characteristics.
If not, then what are the other elements can also do this?
There is a whole number of elements such as silicon, arsenic, germanium.
Is there a term to describe such elements?
At least I'm unaware of such a term, which might be furnished by our far wiser community.
What is the chemical characteristic that allows this to occur?
Catenation.
More information:
According to the Molecular Orbital Theory, the condition for a compound to exist is that it should have more electrons in the bonding orbitals than in the anti-bonding orbitals. So, as long as you have the bonding orbitals filled more, you can have pretty anything, more than just chains of atoms.
Thus, the existence of a compound also depends on the precise conditions in which the compound is kept, for example sodium forms different types of chlorides under different conditions and that as pointed out by Poutnik in the comments, $ceHe2^1+$ and a ton of others are discovered and still more awaiting discovery.
$endgroup$
add a comment |
$begingroup$
Is carbon the only element that can do this?
No, carbon is not the only element with such characteristics.
If not, then what are the other elements can also do this?
There is a whole number of elements such as silicon, arsenic, germanium.
Is there a term to describe such elements?
At least I'm unaware of such a term, which might be furnished by our far wiser community.
What is the chemical characteristic that allows this to occur?
Catenation.
More information:
According to the Molecular Orbital Theory, the condition for a compound to exist is that it should have more electrons in the bonding orbitals than in the anti-bonding orbitals. So, as long as you have the bonding orbitals filled more, you can have pretty anything, more than just chains of atoms.
Thus, the existence of a compound also depends on the precise conditions in which the compound is kept, for example sodium forms different types of chlorides under different conditions and that as pointed out by Poutnik in the comments, $ceHe2^1+$ and a ton of others are discovered and still more awaiting discovery.
$endgroup$
add a comment |
$begingroup$
Is carbon the only element that can do this?
No, carbon is not the only element with such characteristics.
If not, then what are the other elements can also do this?
There is a whole number of elements such as silicon, arsenic, germanium.
Is there a term to describe such elements?
At least I'm unaware of such a term, which might be furnished by our far wiser community.
What is the chemical characteristic that allows this to occur?
Catenation.
More information:
According to the Molecular Orbital Theory, the condition for a compound to exist is that it should have more electrons in the bonding orbitals than in the anti-bonding orbitals. So, as long as you have the bonding orbitals filled more, you can have pretty anything, more than just chains of atoms.
Thus, the existence of a compound also depends on the precise conditions in which the compound is kept, for example sodium forms different types of chlorides under different conditions and that as pointed out by Poutnik in the comments, $ceHe2^1+$ and a ton of others are discovered and still more awaiting discovery.
$endgroup$
Is carbon the only element that can do this?
No, carbon is not the only element with such characteristics.
If not, then what are the other elements can also do this?
There is a whole number of elements such as silicon, arsenic, germanium.
Is there a term to describe such elements?
At least I'm unaware of such a term, which might be furnished by our far wiser community.
What is the chemical characteristic that allows this to occur?
Catenation.
More information:
According to the Molecular Orbital Theory, the condition for a compound to exist is that it should have more electrons in the bonding orbitals than in the anti-bonding orbitals. So, as long as you have the bonding orbitals filled more, you can have pretty anything, more than just chains of atoms.
Thus, the existence of a compound also depends on the precise conditions in which the compound is kept, for example sodium forms different types of chlorides under different conditions and that as pointed out by Poutnik in the comments, $ceHe2^1+$ and a ton of others are discovered and still more awaiting discovery.
edited Apr 26 at 14:40
Martin - マーチン♦
34.1k9112240
34.1k9112240
answered Apr 26 at 10:39
user79161user79161
30319
30319
add a comment |
add a comment |
$begingroup$
No, carbon is not the only one that can bond to itself. It's a unique property of some elements mainly the group 14 elements like silicon, germanium, arsenic etc. This phenomenon is called catenation. It might be mainly due to presence of four valence electrons in their outermost shell. A large number of carbon atoms are linked with each other with sigma and pi bonds. However catenation gets limited as we move down the group in group 14.
New contributor
$endgroup$
add a comment |
$begingroup$
No, carbon is not the only one that can bond to itself. It's a unique property of some elements mainly the group 14 elements like silicon, germanium, arsenic etc. This phenomenon is called catenation. It might be mainly due to presence of four valence electrons in their outermost shell. A large number of carbon atoms are linked with each other with sigma and pi bonds. However catenation gets limited as we move down the group in group 14.
New contributor
$endgroup$
add a comment |
$begingroup$
No, carbon is not the only one that can bond to itself. It's a unique property of some elements mainly the group 14 elements like silicon, germanium, arsenic etc. This phenomenon is called catenation. It might be mainly due to presence of four valence electrons in their outermost shell. A large number of carbon atoms are linked with each other with sigma and pi bonds. However catenation gets limited as we move down the group in group 14.
New contributor
$endgroup$
No, carbon is not the only one that can bond to itself. It's a unique property of some elements mainly the group 14 elements like silicon, germanium, arsenic etc. This phenomenon is called catenation. It might be mainly due to presence of four valence electrons in their outermost shell. A large number of carbon atoms are linked with each other with sigma and pi bonds. However catenation gets limited as we move down the group in group 14.
New contributor
New contributor
answered Apr 26 at 14:43
Charlie GogoiCharlie Gogoi
192
192
New contributor
New contributor
add a comment |
add a comment |
$begingroup$
So most of this has been answered, but the main elements that can bond to themselves are called diatomic atoms. This includes hydrogen, nitrogen, fluorine, oxygen, iodine, chlorine, and bromine. There are other elements that can do this as well, however these main elements occur naturally in their diatomic state as gases.
New contributor
$endgroup$
4
$begingroup$
"Diatomic atom" is a weird term, diatomic molecule makes way more sense. Besides, the way the answer is formulated, it appears to me that all elements that are capable of self-bonding are diatomic molecules, whereas in reality diatomic molecules is a tiny subset of the former.
$endgroup$
– andselisk
Apr 26 at 20:30
$begingroup$
It's pretty clear that the question is asking about self-bonding beyond simple diatomic molecules.
$endgroup$
– Mark
Apr 26 at 22:24
1
$begingroup$
The ability to make a stable diatomic molecule might be the reason for not observing chains or 2D structures for these elements.
$endgroup$
– Karsten Theis
Apr 27 at 3:56
$begingroup$
@Karsten Theis very much agree. Extreme Peierl distortion.
$endgroup$
– Alchimista
2 days ago
add a comment |
$begingroup$
So most of this has been answered, but the main elements that can bond to themselves are called diatomic atoms. This includes hydrogen, nitrogen, fluorine, oxygen, iodine, chlorine, and bromine. There are other elements that can do this as well, however these main elements occur naturally in their diatomic state as gases.
New contributor
$endgroup$
4
$begingroup$
"Diatomic atom" is a weird term, diatomic molecule makes way more sense. Besides, the way the answer is formulated, it appears to me that all elements that are capable of self-bonding are diatomic molecules, whereas in reality diatomic molecules is a tiny subset of the former.
$endgroup$
– andselisk
Apr 26 at 20:30
$begingroup$
It's pretty clear that the question is asking about self-bonding beyond simple diatomic molecules.
$endgroup$
– Mark
Apr 26 at 22:24
1
$begingroup$
The ability to make a stable diatomic molecule might be the reason for not observing chains or 2D structures for these elements.
$endgroup$
– Karsten Theis
Apr 27 at 3:56
$begingroup$
@Karsten Theis very much agree. Extreme Peierl distortion.
$endgroup$
– Alchimista
2 days ago
add a comment |
$begingroup$
So most of this has been answered, but the main elements that can bond to themselves are called diatomic atoms. This includes hydrogen, nitrogen, fluorine, oxygen, iodine, chlorine, and bromine. There are other elements that can do this as well, however these main elements occur naturally in their diatomic state as gases.
New contributor
$endgroup$
So most of this has been answered, but the main elements that can bond to themselves are called diatomic atoms. This includes hydrogen, nitrogen, fluorine, oxygen, iodine, chlorine, and bromine. There are other elements that can do this as well, however these main elements occur naturally in their diatomic state as gases.
New contributor
edited Apr 26 at 20:27
andselisk
20.2k667131
20.2k667131
New contributor
answered Apr 26 at 20:08
Santiago ArellanoSantiago Arellano
112
112
New contributor
New contributor
4
$begingroup$
"Diatomic atom" is a weird term, diatomic molecule makes way more sense. Besides, the way the answer is formulated, it appears to me that all elements that are capable of self-bonding are diatomic molecules, whereas in reality diatomic molecules is a tiny subset of the former.
$endgroup$
– andselisk
Apr 26 at 20:30
$begingroup$
It's pretty clear that the question is asking about self-bonding beyond simple diatomic molecules.
$endgroup$
– Mark
Apr 26 at 22:24
1
$begingroup$
The ability to make a stable diatomic molecule might be the reason for not observing chains or 2D structures for these elements.
$endgroup$
– Karsten Theis
Apr 27 at 3:56
$begingroup$
@Karsten Theis very much agree. Extreme Peierl distortion.
$endgroup$
– Alchimista
2 days ago
add a comment |
4
$begingroup$
"Diatomic atom" is a weird term, diatomic molecule makes way more sense. Besides, the way the answer is formulated, it appears to me that all elements that are capable of self-bonding are diatomic molecules, whereas in reality diatomic molecules is a tiny subset of the former.
$endgroup$
– andselisk
Apr 26 at 20:30
$begingroup$
It's pretty clear that the question is asking about self-bonding beyond simple diatomic molecules.
$endgroup$
– Mark
Apr 26 at 22:24
1
$begingroup$
The ability to make a stable diatomic molecule might be the reason for not observing chains or 2D structures for these elements.
$endgroup$
– Karsten Theis
Apr 27 at 3:56
$begingroup$
@Karsten Theis very much agree. Extreme Peierl distortion.
$endgroup$
– Alchimista
2 days ago
4
4
$begingroup$
"Diatomic atom" is a weird term, diatomic molecule makes way more sense. Besides, the way the answer is formulated, it appears to me that all elements that are capable of self-bonding are diatomic molecules, whereas in reality diatomic molecules is a tiny subset of the former.
$endgroup$
– andselisk
Apr 26 at 20:30
$begingroup$
"Diatomic atom" is a weird term, diatomic molecule makes way more sense. Besides, the way the answer is formulated, it appears to me that all elements that are capable of self-bonding are diatomic molecules, whereas in reality diatomic molecules is a tiny subset of the former.
$endgroup$
– andselisk
Apr 26 at 20:30
$begingroup$
It's pretty clear that the question is asking about self-bonding beyond simple diatomic molecules.
$endgroup$
– Mark
Apr 26 at 22:24
$begingroup$
It's pretty clear that the question is asking about self-bonding beyond simple diatomic molecules.
$endgroup$
– Mark
Apr 26 at 22:24
1
1
$begingroup$
The ability to make a stable diatomic molecule might be the reason for not observing chains or 2D structures for these elements.
$endgroup$
– Karsten Theis
Apr 27 at 3:56
$begingroup$
The ability to make a stable diatomic molecule might be the reason for not observing chains or 2D structures for these elements.
$endgroup$
– Karsten Theis
Apr 27 at 3:56
$begingroup$
@Karsten Theis very much agree. Extreme Peierl distortion.
$endgroup$
– Alchimista
2 days ago
$begingroup$
@Karsten Theis very much agree. Extreme Peierl distortion.
$endgroup$
– Alchimista
2 days ago
add a comment |
Thanks for contributing an answer to Chemistry Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f114364%2felements-other-than-carbon-that-can-form-many-different-compounds-by-bonding-to%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Catenation : self linking property of an element (atom).
$endgroup$
– glucose
Apr 26 at 10:47
11
$begingroup$
The right question isn't whether an element can bond to itself. Plenty do that. The issue is whether an element can form a wide variety of stable structures when bonded to itself.
$endgroup$
– matt_black
Apr 26 at 13:32
1
$begingroup$
I was also aware that boron sheets were recently synthesized, but did not realize that someone has even predicted nitrogen sheets that could be stable at room temperature!
$endgroup$
– jeffB
Apr 26 at 15:20
1
$begingroup$
Sulfur can also form rings and chains
$endgroup$
– porphyrin
Apr 26 at 15:52
1
$begingroup$
What is the actual question here? Your citation does not say that bonding between identical atoms is something unique - every single element could do this even if transiently. The point is that carbon carbon allotropes are somewhat exceptional.
$endgroup$
– Mithoron
Apr 26 at 21:22