Extension of 2-adic valuation to the real numbersElementary results with p-adic numbersValuations on tensor productsValuations given by flags on a variety and valuations of maximal rational rankp-adic valuation of a sumExtension of the product formula for valuations to a simultaneous completionCompletion of a finite field extension is also finite?Structure of valuations on $mathbbF_q(X,Y)$?2-adic valuation of odd harmonic sumsRelation between valuation of p-adic regulator of totally real field and its finite p-unramified abelian extensionsThe localization of the integral closure of a valuation ring is a valuation ring

Extension of 2-adic valuation to the real numbers


Elementary results with p-adic numbersValuations on tensor productsValuations given by flags on a variety and valuations of maximal rational rankp-adic valuation of a sumExtension of the product formula for valuations to a simultaneous completionCompletion of a finite field extension is also finite?Structure of valuations on $mathbbF_q(X,Y)$?2-adic valuation of odd harmonic sumsRelation between valuation of p-adic regulator of totally real field and its finite p-unramified abelian extensionsThe localization of the integral closure of a valuation ring is a valuation ring













11












$begingroup$


I just want to know what properties of valuations extend to $mathbb R$...



Denote an extension of the 2-adic valuation from $mathbb Q$ to $mathbb R$ by $nu$.
Suppose $nu(x)=nu(y)=0$.



Is it true that $nu(x+y)ne 0$?



What about $nu(x^2+y^2)le 1$?



I'm interested in knowing both whether these are true for every extension, as well as knowing whether there is some extension for which they are true (for every $x$ and $y$).










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    I changed the title to something more appropriate, so no more clickbait.
    $endgroup$
    – KConrad
    Apr 26 at 15:23






  • 6




    $begingroup$
    I saw nothing wrong with the title actually. Nothing wrong with a bit of humour.
    $endgroup$
    – RP_
    Apr 26 at 16:03















11












$begingroup$


I just want to know what properties of valuations extend to $mathbb R$...



Denote an extension of the 2-adic valuation from $mathbb Q$ to $mathbb R$ by $nu$.
Suppose $nu(x)=nu(y)=0$.



Is it true that $nu(x+y)ne 0$?



What about $nu(x^2+y^2)le 1$?



I'm interested in knowing both whether these are true for every extension, as well as knowing whether there is some extension for which they are true (for every $x$ and $y$).










share|cite|improve this question











$endgroup$







  • 2




    $begingroup$
    I changed the title to something more appropriate, so no more clickbait.
    $endgroup$
    – KConrad
    Apr 26 at 15:23






  • 6




    $begingroup$
    I saw nothing wrong with the title actually. Nothing wrong with a bit of humour.
    $endgroup$
    – RP_
    Apr 26 at 16:03













11












11








11


1



$begingroup$


I just want to know what properties of valuations extend to $mathbb R$...



Denote an extension of the 2-adic valuation from $mathbb Q$ to $mathbb R$ by $nu$.
Suppose $nu(x)=nu(y)=0$.



Is it true that $nu(x+y)ne 0$?



What about $nu(x^2+y^2)le 1$?



I'm interested in knowing both whether these are true for every extension, as well as knowing whether there is some extension for which they are true (for every $x$ and $y$).










share|cite|improve this question











$endgroup$




I just want to know what properties of valuations extend to $mathbb R$...



Denote an extension of the 2-adic valuation from $mathbb Q$ to $mathbb R$ by $nu$.
Suppose $nu(x)=nu(y)=0$.



Is it true that $nu(x+y)ne 0$?



What about $nu(x^2+y^2)le 1$?



I'm interested in knowing both whether these are true for every extension, as well as knowing whether there is some extension for which they are true (for every $x$ and $y$).







nt.number-theory ra.rings-and-algebras valuation-theory valuation-rings






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Apr 26 at 19:56









Glorfindel

1,31641221




1,31641221










asked Apr 26 at 8:42









domotorpdomotorp

10.1k3390




10.1k3390







  • 2




    $begingroup$
    I changed the title to something more appropriate, so no more clickbait.
    $endgroup$
    – KConrad
    Apr 26 at 15:23






  • 6




    $begingroup$
    I saw nothing wrong with the title actually. Nothing wrong with a bit of humour.
    $endgroup$
    – RP_
    Apr 26 at 16:03












  • 2




    $begingroup$
    I changed the title to something more appropriate, so no more clickbait.
    $endgroup$
    – KConrad
    Apr 26 at 15:23






  • 6




    $begingroup$
    I saw nothing wrong with the title actually. Nothing wrong with a bit of humour.
    $endgroup$
    – RP_
    Apr 26 at 16:03







2




2




$begingroup$
I changed the title to something more appropriate, so no more clickbait.
$endgroup$
– KConrad
Apr 26 at 15:23




$begingroup$
I changed the title to something more appropriate, so no more clickbait.
$endgroup$
– KConrad
Apr 26 at 15:23




6




6




$begingroup$
I saw nothing wrong with the title actually. Nothing wrong with a bit of humour.
$endgroup$
– RP_
Apr 26 at 16:03




$begingroup$
I saw nothing wrong with the title actually. Nothing wrong with a bit of humour.
$endgroup$
– RP_
Apr 26 at 16:03










1 Answer
1






active

oldest

votes


















16












$begingroup$

No. The important thing to know is that, if $K subseteq L$ is a field extension and $v: K to mathbbR$ is a valuation, then $v$ can be extended to $L$. So I can answer all of your questions by working in some easy to handle subfield of $mathbbR$. I'll work in $K = mathbbQ(sqrt5)$ for the first question and in $K = mathbbQ(sqrt3)$ for the second.



The ring of integers in $mathbbQ[sqrt5]$ is $mathbbZ[tau]$ where $tau = tfrac1+sqrt52$, with minimal polynomial $tau^2=tau+1$. Note that $mathcalO_K/(2 mathcalO_K)$ is the field $mathbbF_4$ with four elements. Your first statement is true in $mathbbQ$ only because $mathbbZ/(2 mathbbZ)$ has two elements.



Specifically, both $1$ and $tau$ are in $mathcalO_K$ but not $2 mathcalO_K$, so $v(1) = v(tau) = 0$, but $1+tau$ is also not in $2 mathcalO_K$ so $v(1+tau)=0$ as well.



Similarly, the ring of integers in $mathbbQ(sqrt3)$ is $mathbbZ[sqrt3]$ and the prime $2$ is ramified, with $2 = (1+sqrt3)^2 (2-sqrt3)$ (note that $2-sqrt3$ is a unit). We have $v(1) = v(sqrt3) = 0$, but $v(1+sqrt3^2) = 2$. In this case, the result is true in $mathbbQ$ because $2$ is unramified.






share|cite|improve this answer











$endgroup$








  • 2




    $begingroup$
    "the field $Bbb F_4$ with four elements"?
    $endgroup$
    – Greg Martin
    Apr 26 at 16:47










  • $begingroup$
    Thanks for the correction! @GregMartin
    $endgroup$
    – David E Speyer
    Apr 26 at 20:12











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f330019%2fextension-of-2-adic-valuation-to-the-real-numbers%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









16












$begingroup$

No. The important thing to know is that, if $K subseteq L$ is a field extension and $v: K to mathbbR$ is a valuation, then $v$ can be extended to $L$. So I can answer all of your questions by working in some easy to handle subfield of $mathbbR$. I'll work in $K = mathbbQ(sqrt5)$ for the first question and in $K = mathbbQ(sqrt3)$ for the second.



The ring of integers in $mathbbQ[sqrt5]$ is $mathbbZ[tau]$ where $tau = tfrac1+sqrt52$, with minimal polynomial $tau^2=tau+1$. Note that $mathcalO_K/(2 mathcalO_K)$ is the field $mathbbF_4$ with four elements. Your first statement is true in $mathbbQ$ only because $mathbbZ/(2 mathbbZ)$ has two elements.



Specifically, both $1$ and $tau$ are in $mathcalO_K$ but not $2 mathcalO_K$, so $v(1) = v(tau) = 0$, but $1+tau$ is also not in $2 mathcalO_K$ so $v(1+tau)=0$ as well.



Similarly, the ring of integers in $mathbbQ(sqrt3)$ is $mathbbZ[sqrt3]$ and the prime $2$ is ramified, with $2 = (1+sqrt3)^2 (2-sqrt3)$ (note that $2-sqrt3$ is a unit). We have $v(1) = v(sqrt3) = 0$, but $v(1+sqrt3^2) = 2$. In this case, the result is true in $mathbbQ$ because $2$ is unramified.






share|cite|improve this answer











$endgroup$








  • 2




    $begingroup$
    "the field $Bbb F_4$ with four elements"?
    $endgroup$
    – Greg Martin
    Apr 26 at 16:47










  • $begingroup$
    Thanks for the correction! @GregMartin
    $endgroup$
    – David E Speyer
    Apr 26 at 20:12















16












$begingroup$

No. The important thing to know is that, if $K subseteq L$ is a field extension and $v: K to mathbbR$ is a valuation, then $v$ can be extended to $L$. So I can answer all of your questions by working in some easy to handle subfield of $mathbbR$. I'll work in $K = mathbbQ(sqrt5)$ for the first question and in $K = mathbbQ(sqrt3)$ for the second.



The ring of integers in $mathbbQ[sqrt5]$ is $mathbbZ[tau]$ where $tau = tfrac1+sqrt52$, with minimal polynomial $tau^2=tau+1$. Note that $mathcalO_K/(2 mathcalO_K)$ is the field $mathbbF_4$ with four elements. Your first statement is true in $mathbbQ$ only because $mathbbZ/(2 mathbbZ)$ has two elements.



Specifically, both $1$ and $tau$ are in $mathcalO_K$ but not $2 mathcalO_K$, so $v(1) = v(tau) = 0$, but $1+tau$ is also not in $2 mathcalO_K$ so $v(1+tau)=0$ as well.



Similarly, the ring of integers in $mathbbQ(sqrt3)$ is $mathbbZ[sqrt3]$ and the prime $2$ is ramified, with $2 = (1+sqrt3)^2 (2-sqrt3)$ (note that $2-sqrt3$ is a unit). We have $v(1) = v(sqrt3) = 0$, but $v(1+sqrt3^2) = 2$. In this case, the result is true in $mathbbQ$ because $2$ is unramified.






share|cite|improve this answer











$endgroup$








  • 2




    $begingroup$
    "the field $Bbb F_4$ with four elements"?
    $endgroup$
    – Greg Martin
    Apr 26 at 16:47










  • $begingroup$
    Thanks for the correction! @GregMartin
    $endgroup$
    – David E Speyer
    Apr 26 at 20:12













16












16








16





$begingroup$

No. The important thing to know is that, if $K subseteq L$ is a field extension and $v: K to mathbbR$ is a valuation, then $v$ can be extended to $L$. So I can answer all of your questions by working in some easy to handle subfield of $mathbbR$. I'll work in $K = mathbbQ(sqrt5)$ for the first question and in $K = mathbbQ(sqrt3)$ for the second.



The ring of integers in $mathbbQ[sqrt5]$ is $mathbbZ[tau]$ where $tau = tfrac1+sqrt52$, with minimal polynomial $tau^2=tau+1$. Note that $mathcalO_K/(2 mathcalO_K)$ is the field $mathbbF_4$ with four elements. Your first statement is true in $mathbbQ$ only because $mathbbZ/(2 mathbbZ)$ has two elements.



Specifically, both $1$ and $tau$ are in $mathcalO_K$ but not $2 mathcalO_K$, so $v(1) = v(tau) = 0$, but $1+tau$ is also not in $2 mathcalO_K$ so $v(1+tau)=0$ as well.



Similarly, the ring of integers in $mathbbQ(sqrt3)$ is $mathbbZ[sqrt3]$ and the prime $2$ is ramified, with $2 = (1+sqrt3)^2 (2-sqrt3)$ (note that $2-sqrt3$ is a unit). We have $v(1) = v(sqrt3) = 0$, but $v(1+sqrt3^2) = 2$. In this case, the result is true in $mathbbQ$ because $2$ is unramified.






share|cite|improve this answer











$endgroup$



No. The important thing to know is that, if $K subseteq L$ is a field extension and $v: K to mathbbR$ is a valuation, then $v$ can be extended to $L$. So I can answer all of your questions by working in some easy to handle subfield of $mathbbR$. I'll work in $K = mathbbQ(sqrt5)$ for the first question and in $K = mathbbQ(sqrt3)$ for the second.



The ring of integers in $mathbbQ[sqrt5]$ is $mathbbZ[tau]$ where $tau = tfrac1+sqrt52$, with minimal polynomial $tau^2=tau+1$. Note that $mathcalO_K/(2 mathcalO_K)$ is the field $mathbbF_4$ with four elements. Your first statement is true in $mathbbQ$ only because $mathbbZ/(2 mathbbZ)$ has two elements.



Specifically, both $1$ and $tau$ are in $mathcalO_K$ but not $2 mathcalO_K$, so $v(1) = v(tau) = 0$, but $1+tau$ is also not in $2 mathcalO_K$ so $v(1+tau)=0$ as well.



Similarly, the ring of integers in $mathbbQ(sqrt3)$ is $mathbbZ[sqrt3]$ and the prime $2$ is ramified, with $2 = (1+sqrt3)^2 (2-sqrt3)$ (note that $2-sqrt3$ is a unit). We have $v(1) = v(sqrt3) = 0$, but $v(1+sqrt3^2) = 2$. In this case, the result is true in $mathbbQ$ because $2$ is unramified.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Apr 26 at 20:12

























answered Apr 26 at 10:10









David E SpeyerDavid E Speyer

108k9286544




108k9286544







  • 2




    $begingroup$
    "the field $Bbb F_4$ with four elements"?
    $endgroup$
    – Greg Martin
    Apr 26 at 16:47










  • $begingroup$
    Thanks for the correction! @GregMartin
    $endgroup$
    – David E Speyer
    Apr 26 at 20:12












  • 2




    $begingroup$
    "the field $Bbb F_4$ with four elements"?
    $endgroup$
    – Greg Martin
    Apr 26 at 16:47










  • $begingroup$
    Thanks for the correction! @GregMartin
    $endgroup$
    – David E Speyer
    Apr 26 at 20:12







2




2




$begingroup$
"the field $Bbb F_4$ with four elements"?
$endgroup$
– Greg Martin
Apr 26 at 16:47




$begingroup$
"the field $Bbb F_4$ with four elements"?
$endgroup$
– Greg Martin
Apr 26 at 16:47












$begingroup$
Thanks for the correction! @GregMartin
$endgroup$
– David E Speyer
Apr 26 at 20:12




$begingroup$
Thanks for the correction! @GregMartin
$endgroup$
– David E Speyer
Apr 26 at 20:12

















draft saved

draft discarded
















































Thanks for contributing an answer to MathOverflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f330019%2fextension-of-2-adic-valuation-to-the-real-numbers%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation

Magento 2 “No Payment Methods” in Admin New OrderHow to integrate Paypal Express Checkout with the Magento APIMagento 1.5 - Sales > Order > edit order and shipping methods disappearAuto Invoice Check/Money Order Payment methodAdd more simple payment methods?Shipping methods not showingWhat should I do to change payment methods if changing the configuration has no effects?1.9 - No Payment Methods showing upMy Payment Methods not Showing for downloadable/virtual product when checkout?Magento2 API to access internal payment methodHow to call an existing payment methods in the registration form?