Skip to main content

Frozen food Contents Preservatives History Technology Packaging Effects on nutrients Effectiveness Defrosting Quality Reaction See also Notes References External links Navigation menuAdvances in food refrigeration"Sainsbury's changes food freezing advice in bid to cut food waste""Frozen Foods"Öld frá stofnun Íshúsfélags Ísfirðinga hf."Consumer Resources - NSF International"Consumer Demand for Convenience Foods: Demographics and ExpendituresEncyclopedia of World BiographyFrozen Meat Packaginge4392697-61063946500569359

Convenience foodsFood preservationFood storageFood and drink introduced in 1863Food and drink introduced in 1923


Freezingfood commodity industryflash freezingCryogenic freezingfreezersWaste & Resources Action ProgrammeFood Standards AgencypreservativesmicroorganismspreservationCarboxymethylcelluloseThomas Sutcliffe MortDarling HarbourEugene Dominic NicolleClarence Birdseyeflash freezingLabradorÍshúsfélag ÍsfirðingaÍsafjörðurEleanor Rooseveltflash freezingpackagingmicrowave ovenBoil-in-BagsPETActive packagingcookedrefrigeratorpathogensroom temperature












Frozen food




From Wikipedia, the free encyclopedia






Jump to navigation
Jump to search




A frozen processed foods aisle at a supermarket in Canada




Cutting frozen tuna using a bandsaw in the Tsukiji fish market in Tokyo, Japan (2002)


Freezing food preserves it from the time it is prepared to the time it is eaten. Since early times, farmers, fishermen, and trappers have preserved grains and produce in unheated buildings during the winter season.[1] Freezing food slows down decomposition by turning residual moisture into ice, inhibiting the growth of most bacterial species. In the food commodity industry, there are two processes: mechanical and cryogenic (or flash freezing). The freezing kinetics is important to preserve the food quality and texture. Quicker freezing generates smaller ice crystals and maintains cellular structure. Cryogenic freezing is the quickest freezing technology available due to the ultra low liquid nitrogen temperature −196 °C (−320 °F).[2]


Preserving food in domestic kitchens during modern times is achieved using household freezers. Accepted advice to householders was to freeze food on the day of purchase. An initiative by a supermarket group in 2012 (backed by the UK's Waste & Resources Action Programme) promotes the freezing of food "as soon as possible up to the product's 'use by' date". The Food Standards Agency was reported as supporting the change, providing the food had been stored correctly up to that time.[3]




Contents





  • 1 Preservatives


  • 2 History


  • 3 Technology


  • 4 Packaging


  • 5 Effects on nutrients

    • 5.1 Vitamin content of frozen foods



  • 6 Effectiveness


  • 7 Defrosting


  • 8 Quality


  • 9 Reaction


  • 10 See also


  • 11 Notes


  • 12 References


  • 13 External links




Preservatives


Frozen products do not require any added preservatives because microorganisms do not grow when the temperature of the food is below −9.5 °C (15 °F), which is sufficient on its own in preventing food spoilage. Long-term preservation of food may call for food storage at even lower temperatures. Carboxymethylcellulose (CMC), a tasteless and odorless stabilizer, is typically added to frozen food because it does not adulterate the quality of the product.[4]



History


Natural food freezing (using winter frosts) had been in use by tribes in cold climates for centuries.


In 1861 Thomas Sutcliffe Mort established at Darling Harbour in Sydney, Australia, the first freezing works in the world, which afterwards became the New South Wales Fresh Food and Ice Company. Mort financed experiments by Eugene Dominic Nicolle, a French born engineer who had arrived in Sydney in 1853 and registered his first ice-making patent in 1861. The first trial shipment of frozen meat to London was in 1868. Although their machinery was never used in the frozen meat trade, Mort and Nicolle developed commercially viable systems for domestic trade, although the financial return on that investment was not a great success for Mort.


By 1885 a small number of chicken and geese were being shipped from Russia to London in insulated cases using this technique. By March 1899, the "British Refrigeration and Allied Interests" reported that a food importing business, "Baerselman Bros", was shipping some 200,000 frozen geese and chickens per week from three Russian depots to New Star Wharf, Lower Shadwell, London over three or four winter months. This trade in frozen food was enabled by the introduction of Linde cold air freezing plants in three Russian depots and the London warehouse. The Shadwell warehouse stored the frozen goods until they were shipped to markets in London, Birmingham, Liverpool and Manchester. The techniques were later expanded into the meat packing industry.


From 1929, Clarence Birdseye introduced "flash freezing" to the American public. Birdseye first became interested in food freezing during fur-trapping expeditions to Labrador in 1912 and 1916, where he saw the natives use natural freezing to preserve foods.[5]
The Icelandic Fisheries Commission was created in 1934 to initiate innovation in the industry, and encouraged fishermen to start quick-freezing their catch.
Íshúsfélag Ísfirðinga, one of the first frozen fish companies, was formed in Ísafjörður, Iceland by a merger in 1937.[6]
More advanced attempts include food frozen for Eleanor Roosevelt on her trip to Russia. Other experiments, involving orange juice, ice cream and vegetables were conducted by the military near the end of World War II.



Technology


The freezing technique itself, just like the frozen food market, is developing to become faster, more efficient and more cost-effective.


Mechanical freezers were the first to be used in the food industry and are used in the vast majority of freezing / refrigerating lines. They function by circulating a refrigerant, normally ammonia, around the system, which withdraws heat from the food product. This heat is then transferred to a condenser and dissipated into air or water. The refrigerant itself, now a high pressure, hot liquid, is directed into an evaporator. As it passes through an expansion valve, it is cooled and then vaporises into a gaseous state. Now a low pressure, low temperature gas again, it can be reintroduced into the system.


Cryogenic or (flash freezing) of food is a more recent development, but is used by many leading food manufacturers all over the world. Cryogenic equipment uses very low temperature gases – usually liquid nitrogen or solid carbon dioxide – which are applied directly to the food product.[7]



Packaging


Frozen food packaging must maintain its integrity throughout filling, sealing, freezing, storage, transportation, thawing, and often cooking.[8] As many frozen foods are cooked in a microwave oven, manufacturers have developed packaging that can go straight from freezer to the microwave.


In 1974, the first differential heating container (DHC) was sold to the public. A DHC is a sleeve of metal designed to allow frozen foods to receive the correct amount of heat. Various sized apertures were positioned around the sleeve. The consumer would put the frozen dinner into the sleeve according to what needed the most heat. This ensured proper cooking.[9]


Today there are multiple options for packaging frozen foods. Boxes, cartons, bags, pouches, Boil-in-Bags, lidded trays and pans, crystallized PET trays, and composite and plastic cans.[10]


Scientists are continually researching new aspects of frozen food packaging. Active packaging offers a host of new technologies that can actively sense and then neutralize the presence of bacteria or other harmful species. Active packaging can extend shelf-life, maintain product safety, and help preserve the food over a longer period of time. Several functions of active packaging are being researched:


  • Oxygen scavengers


  • Time Temperature Indicators and digital temperature data loggers

  • Antimicrobials

  • Carbon Dioxide controllers

  • Microwave susceptors

  • Moisture control: Water activity, Moisture vapor transmission rate, etc.

  • Flavor enhancers

  • Odor generators

  • Oxygen-permeable films

  • Oxygen generators[11]


Effects on nutrients



Vitamin content of frozen foods



  • Vitamin C: Usually lost in a higher concentration than any other vitamin.[12] A study was performed on peas to determine the cause of vitamin C loss. A vitamin loss of ten percent occurred during the blanching phase with the rest of the loss occurring during the cooling and washing stages.[13] The vitamin loss was not actually accredited to the freezing process. Another experiment was performed involving peas and lima beans. Frozen and canned vegetables were both used in the experiment. The frozen vegetables were stored at −23 °C (−10 °F) and the canned vegetables were stored at room temperature 24 °C (75 °F). After 0, 3, 6, and 12 months of storage, the vegetables were analyzed with and without cooking. O'Hara, the scientist performing the experiment said, "From the view point of the vitamin content of the two vegetables when they were ready for the plate of the consumer, there did not appear to be any marked advantages attributable to method of preservation, frozen storage, processed in a tin, or processed in glass."[14]


  • Vitamin B1 (Thiamin): A vitamin loss of 25 percent is normal. Thiamin is easily soluble in water and is destroyed by heat.[15]


  • Vitamin B2 (Riboflavin): Not much research has been done to see how much freezing affects Riboflavin levels. Studies that have been performed are inconclusive; one study found an 18 percent vitamin loss in green vegetables, while another determined a 4 percent loss.[16] It is commonly accepted that the loss of Riboflavin has to do with the preparation for freezing rather than the actual freezing process itself.


  • Vitamin A (Carotene): There is little loss of carotene during preparation for freezing and freezing of most vegetables. Much of the vitamin loss is incurred during the extended storage period.[17]


Effectiveness




A frozen food warehouse at McMurdo Station, Antarctica


Freezing is an effective form of food preservation because the pathogens that cause food spoilage are killed or do not grow very rapidly at reduced temperatures. The process is less effective in food preservation than are thermal techniques, such as boiling, because pathogens are more likely to be able to survive cold temperatures rather than hot temperatures.[18] One of the problems surrounding the use of freezing as a method of food preservation is the danger that pathogens deactivated (but not killed) by the process will once again become active when the frozen food thaws.


Foods may be preserved for several months by freezing. Long-term frozen storage requires a constant temperature of −18 °C (0 °F) or less.[19]



Defrosting


To be used, many cooked foods that have been previously frozen require defrosting prior to consumption. Preferably, some frozen meats should be defrosted prior to cooking to achieve the best outcome: cooked through evenly and of good texture.


Ideally, most frozen foods should be defrosted in a refrigerator to avoid significant growth of pathogens. However, this can take considerable time.


Food is often defrosted in one of several ways:


  • at room temperature; this is dangerous since the outside may be defrosted while the inside remains frozen[20]

  • in a refrigerator[20]

  • in a microwave oven[20]

  • wrapped in plastic and placed in cold water[20] or under cold running water

People sometimes defrost frozen foods at room temperature because of time constraints or ignorance; such foods should be promptly consumed after cooking or discarded and never be refrozen or refrigerated since pathogens are not killed by the freezing process.



Quality


The speed of the freezing has a direct impact on the size and the number of ice crystals formed within a food product's cells and extracellular space. Slow freezing leads to fewer but larger ice crystals while fast freezing leads to smaller but more numerous ice crystals. Large ice crystals can puncture the walls of the cells of the food product which will cause a degradation of the texture of the product as well as the loss of its natural juices during thawing.[21] That is why there will be a qualitative difference observed between food products frozen by ventilated mechanical freezing, non-ventilated mechanical freezing or cryogenic freezing with liquid nitrogen.



Reaction


According to a study, an American consumes on average 71 frozen foods a year, most of which are pre-cooked frozen meals.[22]



See also




  • List of frozen food brands
    • List of frozen dessert brands

    • List of ice cream brands


  • Refrigerator


Notes




  1. ^ Tressler, Evers. The Freezing Preservation of Foods pp. 213-217


  2. ^ Sun, Da-Wen (2001). Advances in food refrigeration. Leatherhead Food Research Association Publishing. p.318. (Cryogenic refrigeration)


  3. ^ Smithers, Rebecca (February 10, 2012). "Sainsbury's changes food freezing advice in bid to cut food waste". The Guardian. Retrieved February 10, 2012. Long-standing advice to consumers to freeze food on the day of purchase is to be changed by a leading supermarket chain, as part of a national initiative to further reduce food waste. [...] instead advise customers to freeze food as soon as possible up to the product's 'use by' date. The initiative is backed by the government's waste advisory body, the Waste and Resources Action Programme (Wrap) [...] Bob Martin, food safety expert at the Food Standards Agency, said: "Freezing after the day of purchase shouldn't pose a food safety risk as long as food has been stored in accordance with any instructions provided. [...]".mw-parser-output cite.citationfont-style:inherit.mw-parser-output .citation qquotes:"""""""'""'".mw-parser-output .citation .cs1-lock-free abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .citation .cs1-lock-subscription abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registrationcolor:#555.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration spanborder-bottom:1px dotted;cursor:help.mw-parser-output .cs1-ws-icon abackground:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center.mw-parser-output code.cs1-codecolor:inherit;background:inherit;border:inherit;padding:inherit.mw-parser-output .cs1-hidden-errordisplay:none;font-size:100%.mw-parser-output .cs1-visible-errorfont-size:100%.mw-parser-output .cs1-maintdisplay:none;color:#33aa33;margin-left:0.3em.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-formatfont-size:95%.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-leftpadding-left:0.2em.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-rightpadding-right:0.2em


  4. ^ Arsdel, Michael, Robert. Quality and Stability of Frozen Foods: TIme-Temperature Tolerance and its Significance. pp. 67-69


  5. ^ "Frozen Foods". Massachusetts Institute of Technology.


  6. ^ Hraðfrystihúsið - Gunnvör hf. (10 January 2012), Öld frá stofnun Íshúsfélags Ísfirðinga hf. (in Icelandic), retrieved 2017-05-31


  7. ^ W.B.Bald, Food Freezing: Today and Tomorrow, J.P.Miller, The Use of Liquid Nitrogen in Food Freezing, p.157-170, Institute for Applied Biology, Springer-Verlag


  8. ^ Decareau, Robert. Microwave Foods: New Product Development. pp. 45-48


  9. ^ Whelan, Stare. Panic in the Pantry: Facts and Fallacies About the Food You Buy


  10. ^ Russell, Gould. Food Preservatves. pp. 314


  11. ^ Sun, Da-Wen. Handbook of Frozen Food Processing and Packaging. pp. 786-792


  12. ^ Tressler, Evers. The Freezing Preservation of Foods. pp. 620-624


  13. ^ Tressler, Evers. The Freezing Preservation of Foods. pp. 961-964


  14. ^ Tressler, Evers. The Freezing Preservation of Foods. p. 627


  15. ^ Gould, Grahame. New Methods of Food Preservation. pp. 237-239


  16. ^ Tressler, Evers. pp. 973-976


  17. ^ Tressler, Evers. The Freezing Preservation of Foods. pp. 976-978


  18. ^ Mathlouthi, M. Food Packaging and Preservation. pp. 112-115


  19. ^ Tressler, Evers, Evers. Into the Freezer - and Out. pp. 56-82


  20. ^ abcd "Consumer Resources - NSF International". www.nsf.org.


  21. ^ W.F.Stoecker,Industrial Refrigeration Handbook, 2000, Chapter 17 Refrigeration and freezing of foods, 17.10 The freezing process


  22. ^ Harris, J. Michael and Rimma Shipstova, Consumer Demand for Convenience Foods: Demographics and Expenditures (PDF), AgEcon, p. 26, retrieved 16 July 2011



References


  • Arsdel, Wallace, B. Van, Michael, J Copley, and Robert, L. Olson. Quality and Stability of Frozen Foods: TIme-Temperature Tolerance and its Significance. New York, NY: John Wiley & Sons,INC, 1968.

  • "Clarence Birdseye." Encyclopedia of World Biography. Vol. 19. 2nd ed. Detroit: Gale, 2004. 25-27. Gale Virtual Reference Library. Gale. Brigham Young University - Utah. Nov. 3 2009. (subscription required)

  • Copson, David. Microwave Heating. 2nd ed.. Westport, CT: The AVI Publishing Company, INC., 1975.

  • Decareau, Robert. Microwave Foods: New Product Development. Trumbull, CT: Food & Nutrition Press, INC., 1992.

  • Gould, Grahame. New Methods of Food Preservation. New York, NY: Chapman & Hall, 2000.

  • Mathlouthi, Mohamed. Food Packaging and Preservation. New York, NY: Chapman & Hall, 1994.*^Robinson, Richard. Microbiology of Frozen Foods. New York, NY: Elsevier Applied Science Publishers LTD, 1985.

  • Russell, Nicholas J., and Grahame W. Gould. Food Preservatives. 2nd ed. New York, NY: Kluwer Academic/Plenum Publishers, New York, 2003.

  • Sun, Da-Wen. Handbook of Frozen Food Processing and Packaging. Boca Raton, Fl: Taylor & Francis Group, LLC, 2006.

  • Tressler, Donald K., Clifford F. Evers, and Barbara, Hutchings Evers. Into the Freezer - and Out. 2nd ed. New York, NY: The AVI Publishing Company, INC., 1953.

  • Tressler, Donald K., and Clifford F. Evers. The Freezing Preservation of Foods. 3rd ed. 1st volume. Westport, CT: The AVI Publishing Company, INC., 1957.

  • Whelan, Elizabeth M., and Fredrick J. Stare. Panic in the Pantry: Facts and Fallacies About the Food You Buy. Buffalo, NY: Prometheus Books, 1998.


External links



  • Media related to Frozen food at Wikimedia Commons

  • Frozen Meat Packaging










Retrieved from "https://en.wikipedia.org/w/index.php?title=Frozen_food&oldid=885385163"










Navigation menu



























(window.RLQ=window.RLQ||[]).push(function()mw.config.set("wgPageParseReport":"limitreport":"cputime":"0.376","walltime":"0.480","ppvisitednodes":"value":845,"limit":1000000,"ppgeneratednodes":"value":0,"limit":1500000,"postexpandincludesize":"value":24256,"limit":2097152,"templateargumentsize":"value":309,"limit":2097152,"expansiondepth":"value":8,"limit":40,"expensivefunctioncount":"value":5,"limit":500,"unstrip-depth":"value":1,"limit":20,"unstrip-size":"value":21183,"limit":5000000,"entityaccesscount":"value":1,"limit":400,"timingprofile":["100.00% 402.288 1 -total"," 37.00% 148.847 1 Template:Reflist"," 23.60% 94.959 1 Template:Cite_news"," 16.53% 66.504 5 Template:Convert"," 15.65% 62.955 1 Template:Commonscat-inline"," 10.17% 40.908 1 Template:Authority_control"," 10.05% 40.434 1 Template:Food_preservation"," 9.35% 37.622 1 Template:Navbox"," 3.87% 15.573 2 Template:Citation"," 3.78% 15.220 1 Template:Portal"],"scribunto":"limitreport-timeusage":"value":"0.195","limit":"10.000","limitreport-memusage":"value":4457350,"limit":52428800,"limitreport-logs":"table#1 n ["size"] = "tiny",nn","cachereport":"origin":"mw1270","timestamp":"20190331154840","ttl":2592000,"transientcontent":false);mw.config.set("wgBackendResponseTime":100,"wgHostname":"mw1261"););

Popular posts from this blog

Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation

Magento 2 “No Payment Methods” in Admin New OrderHow to integrate Paypal Express Checkout with the Magento APIMagento 1.5 - Sales > Order > edit order and shipping methods disappearAuto Invoice Check/Money Order Payment methodAdd more simple payment methods?Shipping methods not showingWhat should I do to change payment methods if changing the configuration has no effects?1.9 - No Payment Methods showing upMy Payment Methods not Showing for downloadable/virtual product when checkout?Magento2 API to access internal payment methodHow to call an existing payment methods in the registration form?