Rank groups within a grouped sequence of TRUE/FALSE and NA The 2019 Stack Overflow Developer Survey Results Are InGrouping functions (tapply, by, aggregate) and the *apply familyCharacters counting and subletting specific patternsWhat is the purpose of setting a key in data.table?data.table vs dplyr: can one do something well the other can't or does poorly?how to make a bar plot for a list of dataframes?How to group by unique values in a list in RPandas - Alternative to rank() function that gives unique ordinal ranks for a columnRank within group in for loop in RData transformation: from dyadic to observational data in RGetting map from purrr to work with paste0

Did Scotland spend $250,000 for the slogan "Welcome to Scotland"?

How to translate "being like"?

Is it safe to harvest rainwater that fell on solar panels?

How to notate time signature switching consistently every measure

Accepted by European university, rejected by all American ones I applied to? Possible reasons?

Why does the nucleus not repel itself?

Correct punctuation for showing a character's confusion

The difference between dialogue marks

Star Trek - X-shaped Item on Regula/Orbital Office Starbases

How can I add encounters in the Lost Mine of Phandelver campaign without giving PCs too much XP?

What do hard-Brexiteers want with respect to the Irish border?

Can we generate random numbers using irrational numbers like π and e?

What does Linus Torvalds mean when he says that Git "never ever" tracks a file?

Deal with toxic manager when you can't quit

How to support a colleague who finds meetings extremely tiring?

Ubuntu Server install with full GUI

Why doesn't UInt have a toDouble()?

Getting crown tickets for Statue of Liberty

Is it a good practice to use a static variable in a Test Class and use that in the actual class instead of Test.isRunningTest()?

What to do when moving next to a bird sanctuary with a loosely-domesticated cat?

Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?

Can I have a signal generator on while it's not connected?

Does HR tell a hiring manager about salary negotiations?

Does adding complexity mean a more secure cipher?



Rank groups within a grouped sequence of TRUE/FALSE and NA



The 2019 Stack Overflow Developer Survey Results Are InGrouping functions (tapply, by, aggregate) and the *apply familyCharacters counting and subletting specific patternsWhat is the purpose of setting a key in data.table?data.table vs dplyr: can one do something well the other can't or does poorly?how to make a bar plot for a list of dataframes?How to group by unique values in a list in RPandas - Alternative to rank() function that gives unique ordinal ranks for a columnRank within group in for loop in RData transformation: from dyadic to observational data in RGetting map from purrr to work with paste0



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;








10















I have a little nut to crack.



I have a data.frame like this:



 group criterium
1 A NA
2 A TRUE
3 A TRUE
4 A TRUE
5 A FALSE
6 A FALSE
7 A TRUE
8 A TRUE
9 A FALSE
10 A TRUE
11 A TRUE
12 A TRUE
13 B NA
14 B FALSE
15 B TRUE
16 B TRUE
17 B TRUE
18 B FALSE

structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
"B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
-18L))



And I want to rank the groups of TRUE in column criterium in ascending order while disregarding the FALSEand NA. The goal is to have a unique group identifier inside each group of group.



So the result should look like:



 group criterium goal
1 A NA NA
2 A TRUE 1
3 A TRUE 1
4 A TRUE 1
5 A FALSE NA
6 A FALSE NA
7 A TRUE 2
8 A TRUE 2
9 A FALSE NA
10 A TRUE 3
11 A TRUE 3
12 A TRUE 3
13 B NA NA
14 B FALSE NA
15 B TRUE 1
16 B TRUE 1
17 B TRUE 1
18 B FALSE NA



I'm sure there is a relatively easy way to do this, I just can't think of one. I experimented with dense_rank() and other window functions of dplyr, but to no avail.



Thanks for the help!










share|improve this question



















  • 1





    you can just about grab what you need with this work of beauty; as.numeric(as.factor(cumsum(is.na(d$criterium^NA)) + d$criterium^NA)) -- just needs to be applied by group

    – user20650
    yesterday












  • that is a really funny solution. Very good job!

    – Humpelstielzchen
    yesterday











  • In your example all of group A comes first, then group B. We don't need to handle cases with group=A, criterium=TRUE interspersed with group=B, criterium=TRUE?

    – smci
    yesterday











  • No, when group A stops so stops the sequence for group A.

    – Humpelstielzchen
    yesterday












  • But I'm suggesting if you construct an example with group=A, criterium=TRUE followed by group=B, criterium=TRUE (with no FALSE's in-between), would that get a new 'goal' number or not? Some of the answers here will fail because they don't group-by group or consider the discontinuity in group.

    – smci
    yesterday


















10















I have a little nut to crack.



I have a data.frame like this:



 group criterium
1 A NA
2 A TRUE
3 A TRUE
4 A TRUE
5 A FALSE
6 A FALSE
7 A TRUE
8 A TRUE
9 A FALSE
10 A TRUE
11 A TRUE
12 A TRUE
13 B NA
14 B FALSE
15 B TRUE
16 B TRUE
17 B TRUE
18 B FALSE

structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
"B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
-18L))



And I want to rank the groups of TRUE in column criterium in ascending order while disregarding the FALSEand NA. The goal is to have a unique group identifier inside each group of group.



So the result should look like:



 group criterium goal
1 A NA NA
2 A TRUE 1
3 A TRUE 1
4 A TRUE 1
5 A FALSE NA
6 A FALSE NA
7 A TRUE 2
8 A TRUE 2
9 A FALSE NA
10 A TRUE 3
11 A TRUE 3
12 A TRUE 3
13 B NA NA
14 B FALSE NA
15 B TRUE 1
16 B TRUE 1
17 B TRUE 1
18 B FALSE NA



I'm sure there is a relatively easy way to do this, I just can't think of one. I experimented with dense_rank() and other window functions of dplyr, but to no avail.



Thanks for the help!










share|improve this question



















  • 1





    you can just about grab what you need with this work of beauty; as.numeric(as.factor(cumsum(is.na(d$criterium^NA)) + d$criterium^NA)) -- just needs to be applied by group

    – user20650
    yesterday












  • that is a really funny solution. Very good job!

    – Humpelstielzchen
    yesterday











  • In your example all of group A comes first, then group B. We don't need to handle cases with group=A, criterium=TRUE interspersed with group=B, criterium=TRUE?

    – smci
    yesterday











  • No, when group A stops so stops the sequence for group A.

    – Humpelstielzchen
    yesterday












  • But I'm suggesting if you construct an example with group=A, criterium=TRUE followed by group=B, criterium=TRUE (with no FALSE's in-between), would that get a new 'goal' number or not? Some of the answers here will fail because they don't group-by group or consider the discontinuity in group.

    – smci
    yesterday














10












10








10








I have a little nut to crack.



I have a data.frame like this:



 group criterium
1 A NA
2 A TRUE
3 A TRUE
4 A TRUE
5 A FALSE
6 A FALSE
7 A TRUE
8 A TRUE
9 A FALSE
10 A TRUE
11 A TRUE
12 A TRUE
13 B NA
14 B FALSE
15 B TRUE
16 B TRUE
17 B TRUE
18 B FALSE

structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
"B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
-18L))



And I want to rank the groups of TRUE in column criterium in ascending order while disregarding the FALSEand NA. The goal is to have a unique group identifier inside each group of group.



So the result should look like:



 group criterium goal
1 A NA NA
2 A TRUE 1
3 A TRUE 1
4 A TRUE 1
5 A FALSE NA
6 A FALSE NA
7 A TRUE 2
8 A TRUE 2
9 A FALSE NA
10 A TRUE 3
11 A TRUE 3
12 A TRUE 3
13 B NA NA
14 B FALSE NA
15 B TRUE 1
16 B TRUE 1
17 B TRUE 1
18 B FALSE NA



I'm sure there is a relatively easy way to do this, I just can't think of one. I experimented with dense_rank() and other window functions of dplyr, but to no avail.



Thanks for the help!










share|improve this question
















I have a little nut to crack.



I have a data.frame like this:



 group criterium
1 A NA
2 A TRUE
3 A TRUE
4 A TRUE
5 A FALSE
6 A FALSE
7 A TRUE
8 A TRUE
9 A FALSE
10 A TRUE
11 A TRUE
12 A TRUE
13 B NA
14 B FALSE
15 B TRUE
16 B TRUE
17 B TRUE
18 B FALSE

structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
"B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
-18L))



And I want to rank the groups of TRUE in column criterium in ascending order while disregarding the FALSEand NA. The goal is to have a unique group identifier inside each group of group.



So the result should look like:



 group criterium goal
1 A NA NA
2 A TRUE 1
3 A TRUE 1
4 A TRUE 1
5 A FALSE NA
6 A FALSE NA
7 A TRUE 2
8 A TRUE 2
9 A FALSE NA
10 A TRUE 3
11 A TRUE 3
12 A TRUE 3
13 B NA NA
14 B FALSE NA
15 B TRUE 1
16 B TRUE 1
17 B TRUE 1
18 B FALSE NA



I'm sure there is a relatively easy way to do this, I just can't think of one. I experimented with dense_rank() and other window functions of dplyr, but to no avail.



Thanks for the help!







r dplyr data.table rank






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited yesterday







Humpelstielzchen

















asked yesterday









HumpelstielzchenHumpelstielzchen

1,3801318




1,3801318







  • 1





    you can just about grab what you need with this work of beauty; as.numeric(as.factor(cumsum(is.na(d$criterium^NA)) + d$criterium^NA)) -- just needs to be applied by group

    – user20650
    yesterday












  • that is a really funny solution. Very good job!

    – Humpelstielzchen
    yesterday











  • In your example all of group A comes first, then group B. We don't need to handle cases with group=A, criterium=TRUE interspersed with group=B, criterium=TRUE?

    – smci
    yesterday











  • No, when group A stops so stops the sequence for group A.

    – Humpelstielzchen
    yesterday












  • But I'm suggesting if you construct an example with group=A, criterium=TRUE followed by group=B, criterium=TRUE (with no FALSE's in-between), would that get a new 'goal' number or not? Some of the answers here will fail because they don't group-by group or consider the discontinuity in group.

    – smci
    yesterday













  • 1





    you can just about grab what you need with this work of beauty; as.numeric(as.factor(cumsum(is.na(d$criterium^NA)) + d$criterium^NA)) -- just needs to be applied by group

    – user20650
    yesterday












  • that is a really funny solution. Very good job!

    – Humpelstielzchen
    yesterday











  • In your example all of group A comes first, then group B. We don't need to handle cases with group=A, criterium=TRUE interspersed with group=B, criterium=TRUE?

    – smci
    yesterday











  • No, when group A stops so stops the sequence for group A.

    – Humpelstielzchen
    yesterday












  • But I'm suggesting if you construct an example with group=A, criterium=TRUE followed by group=B, criterium=TRUE (with no FALSE's in-between), would that get a new 'goal' number or not? Some of the answers here will fail because they don't group-by group or consider the discontinuity in group.

    – smci
    yesterday








1




1





you can just about grab what you need with this work of beauty; as.numeric(as.factor(cumsum(is.na(d$criterium^NA)) + d$criterium^NA)) -- just needs to be applied by group

– user20650
yesterday






you can just about grab what you need with this work of beauty; as.numeric(as.factor(cumsum(is.na(d$criterium^NA)) + d$criterium^NA)) -- just needs to be applied by group

– user20650
yesterday














that is a really funny solution. Very good job!

– Humpelstielzchen
yesterday





that is a really funny solution. Very good job!

– Humpelstielzchen
yesterday













In your example all of group A comes first, then group B. We don't need to handle cases with group=A, criterium=TRUE interspersed with group=B, criterium=TRUE?

– smci
yesterday





In your example all of group A comes first, then group B. We don't need to handle cases with group=A, criterium=TRUE interspersed with group=B, criterium=TRUE?

– smci
yesterday













No, when group A stops so stops the sequence for group A.

– Humpelstielzchen
yesterday






No, when group A stops so stops the sequence for group A.

– Humpelstielzchen
yesterday














But I'm suggesting if you construct an example with group=A, criterium=TRUE followed by group=B, criterium=TRUE (with no FALSE's in-between), would that get a new 'goal' number or not? Some of the answers here will fail because they don't group-by group or consider the discontinuity in group.

– smci
yesterday






But I'm suggesting if you construct an example with group=A, criterium=TRUE followed by group=B, criterium=TRUE (with no FALSE's in-between), would that get a new 'goal' number or not? Some of the answers here will fail because they don't group-by group or consider the discontinuity in group.

– smci
yesterday













4 Answers
4






active

oldest

votes


















7














Another data.table approach:



library(data.table)
setDT(dt)
dt[, cr := rleid(criterium)][
(criterium), goal := rleid(cr), by=.(group)]





share|improve this answer


















  • 1





    Tried with rleid but didn't get it to work. (+1)

    – markus
    yesterday











  • works for me. And seems to be the most elegant answer.

    – Humpelstielzchen
    yesterday


















6














Maybe I have over-complicated this but one way with dplyr is



library(dplyr)

df %>%
mutate(temp = replace(criterium, is.na(criterium), FALSE),
temp1 = cumsum(!temp)) %>%
group_by(temp1) %>%
mutate(goal = +(row_number() == which.max(temp) & any(temp))) %>%
group_by(group) %>%
mutate(goal = ifelse(temp, cumsum(goal), NA)) %>%
select(-temp, -temp1)

# group criterium goal
# <fct> <lgl> <int>
# 1 A NA NA
# 2 A TRUE 1
# 3 A TRUE 1
# 4 A TRUE 1
# 5 A FALSE NA
# 6 A FALSE NA
# 7 A TRUE 2
# 8 A TRUE 2
# 9 A FALSE NA
#10 A TRUE 3
#11 A TRUE 3
#12 A TRUE 3
#13 B NA NA
#14 B FALSE NA
#15 B TRUE 1
#16 B TRUE 1
#17 B TRUE 1
#18 B FALSE NA


We first replace NAs in criterium column to FALSE and take cumulative sum over the negation of it (temp1). We group_by temp1 and assign 1 to every first TRUE value in the group. Finally grouping by group we take a cumulative sum for TRUE values or return NA for FALSE and NA values.






share|improve this answer






























    4














    A pure Base R solution, we can create a custom function via rle, and use it per group, i.e.



    f1 <- function(x) 
    x[is.na(x)] <- FALSE
    rle1 <- rle(x)
    y <- rle1$values
    rle1$values[!y] <- 0
    rle1$values[y] <- cumsum(rle1$values[y])
    return(inverse.rle(rle1))



    do.call(rbind,
    lapply(split(df, df$group), function(i)i$goal <- f1(i$criterium);
    i$goal <- replace(i$goal, is.na(i$criterium)))


    Of course, If you want you can apply it via dplyr, i.e.



    library(dplyr)

    df %>%
    group_by(group) %>%
    mutate(goal = f1(criterium),
    goal = replace(goal, is.na(criterium)|!criterium, NA))


    which gives,




    # A tibble: 18 x 3
    # Groups: group [2]
    group criterium goal
    <fct> <lgl> <dbl>
    1 A NA NA
    2 A TRUE 1
    3 A TRUE 1
    4 A TRUE 1
    5 A FALSE NA
    6 A FALSE NA
    7 A TRUE 2
    8 A TRUE 2
    9 A FALSE NA
    10 A TRUE 3
    11 A TRUE 3
    12 A TRUE 3
    13 B NA NA
    14 B FALSE NA
    15 B TRUE 1
    16 B TRUE 1
    17 B TRUE 1
    18 B FALSE NA






    share|improve this answer
































      4














      A data.table option using rle



      library(data.table)
      DT <- as.data.table(dat)
      DT[, goal :=
      r <- rle(replace(criterium, is.na(criterium), FALSE))
      r$values <- with(r, cumsum(values) * values)
      out <- inverse.rle(r)
      replace(out, out == 0, NA)
      , by = group]
      DT
      # group criterium goal
      # 1: A NA NA
      # 2: A TRUE 1
      # 3: A TRUE 1
      # 4: A TRUE 1
      # 5: A FALSE NA
      # 6: A FALSE NA
      # 7: A TRUE 2
      # 8: A TRUE 2
      # 9: A FALSE NA
      #10: A TRUE 3
      #11: A TRUE 3
      #12: A TRUE 3
      #13: B NA NA
      #14: B FALSE NA
      #15: B TRUE 1
      #16: B TRUE 1
      #17: B TRUE 1
      #18: B FALSE NA


      step by step



      When we call r <- rle(replace(criterium, is.na(criterium), FALSE)) we get an object of class rle



      r
      #Run Length Encoding
      # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
      # values : logi [1:9] FALSE TRUE FALSE TRUE FALSE TRUE ...


      We manipulate the values compenent in the following way



      r$values <- with(r, cumsum(values) * values)
      r
      #Run Length Encoding
      # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
      # values : int [1:9] 0 1 0 2 0 3 0 4 0


      That is, we replaced TRUEs with the cumulative sum of values and set the FALSEs to 0. Now inverse.rle returns a vector in which values will repeated lenghts times



      out <- inverse.rle(r)
      out
      # [1] 0 1 1 1 0 0 2 2 0 3 3 3 0 0 4 4 4 0


      This is almost what OP wants but we need to replace the 0s with NA



      replace(out, out == 0, NA)


      This is done for each group.



      data



      dat <- structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
      1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
      "B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
      FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
      TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
      -18L))





      share|improve this answer

























      • Wow, impressive. Thanks for introducing me to rleand inverse.rle. Gruß nach Leipzig.

        – Humpelstielzchen
        yesterday






      • 1





        @Humpelstielzchen Gern geschehen. Will try to simplify and explain the logic a bit.

        – markus
        yesterday












      • Thanks! I was dissecting your answer just like that. Your answer taught me the most. But chinsoon12 is just a Teufelskerl. ^^

        – Humpelstielzchen
        yesterday











      Your Answer






      StackExchange.ifUsing("editor", function ()
      StackExchange.using("externalEditor", function ()
      StackExchange.using("snippets", function ()
      StackExchange.snippets.init();
      );
      );
      , "code-snippets");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "1"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );













      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55606323%2frank-groups-within-a-grouped-sequence-of-true-false-and-na%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      4 Answers
      4






      active

      oldest

      votes








      4 Answers
      4






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      7














      Another data.table approach:



      library(data.table)
      setDT(dt)
      dt[, cr := rleid(criterium)][
      (criterium), goal := rleid(cr), by=.(group)]





      share|improve this answer


















      • 1





        Tried with rleid but didn't get it to work. (+1)

        – markus
        yesterday











      • works for me. And seems to be the most elegant answer.

        – Humpelstielzchen
        yesterday















      7














      Another data.table approach:



      library(data.table)
      setDT(dt)
      dt[, cr := rleid(criterium)][
      (criterium), goal := rleid(cr), by=.(group)]





      share|improve this answer


















      • 1





        Tried with rleid but didn't get it to work. (+1)

        – markus
        yesterday











      • works for me. And seems to be the most elegant answer.

        – Humpelstielzchen
        yesterday













      7












      7








      7







      Another data.table approach:



      library(data.table)
      setDT(dt)
      dt[, cr := rleid(criterium)][
      (criterium), goal := rleid(cr), by=.(group)]





      share|improve this answer













      Another data.table approach:



      library(data.table)
      setDT(dt)
      dt[, cr := rleid(criterium)][
      (criterium), goal := rleid(cr), by=.(group)]






      share|improve this answer












      share|improve this answer



      share|improve this answer










      answered yesterday









      chinsoon12chinsoon12

      9,93611420




      9,93611420







      • 1





        Tried with rleid but didn't get it to work. (+1)

        – markus
        yesterday











      • works for me. And seems to be the most elegant answer.

        – Humpelstielzchen
        yesterday












      • 1





        Tried with rleid but didn't get it to work. (+1)

        – markus
        yesterday











      • works for me. And seems to be the most elegant answer.

        – Humpelstielzchen
        yesterday







      1




      1





      Tried with rleid but didn't get it to work. (+1)

      – markus
      yesterday





      Tried with rleid but didn't get it to work. (+1)

      – markus
      yesterday













      works for me. And seems to be the most elegant answer.

      – Humpelstielzchen
      yesterday





      works for me. And seems to be the most elegant answer.

      – Humpelstielzchen
      yesterday













      6














      Maybe I have over-complicated this but one way with dplyr is



      library(dplyr)

      df %>%
      mutate(temp = replace(criterium, is.na(criterium), FALSE),
      temp1 = cumsum(!temp)) %>%
      group_by(temp1) %>%
      mutate(goal = +(row_number() == which.max(temp) & any(temp))) %>%
      group_by(group) %>%
      mutate(goal = ifelse(temp, cumsum(goal), NA)) %>%
      select(-temp, -temp1)

      # group criterium goal
      # <fct> <lgl> <int>
      # 1 A NA NA
      # 2 A TRUE 1
      # 3 A TRUE 1
      # 4 A TRUE 1
      # 5 A FALSE NA
      # 6 A FALSE NA
      # 7 A TRUE 2
      # 8 A TRUE 2
      # 9 A FALSE NA
      #10 A TRUE 3
      #11 A TRUE 3
      #12 A TRUE 3
      #13 B NA NA
      #14 B FALSE NA
      #15 B TRUE 1
      #16 B TRUE 1
      #17 B TRUE 1
      #18 B FALSE NA


      We first replace NAs in criterium column to FALSE and take cumulative sum over the negation of it (temp1). We group_by temp1 and assign 1 to every first TRUE value in the group. Finally grouping by group we take a cumulative sum for TRUE values or return NA for FALSE and NA values.






      share|improve this answer



























        6














        Maybe I have over-complicated this but one way with dplyr is



        library(dplyr)

        df %>%
        mutate(temp = replace(criterium, is.na(criterium), FALSE),
        temp1 = cumsum(!temp)) %>%
        group_by(temp1) %>%
        mutate(goal = +(row_number() == which.max(temp) & any(temp))) %>%
        group_by(group) %>%
        mutate(goal = ifelse(temp, cumsum(goal), NA)) %>%
        select(-temp, -temp1)

        # group criterium goal
        # <fct> <lgl> <int>
        # 1 A NA NA
        # 2 A TRUE 1
        # 3 A TRUE 1
        # 4 A TRUE 1
        # 5 A FALSE NA
        # 6 A FALSE NA
        # 7 A TRUE 2
        # 8 A TRUE 2
        # 9 A FALSE NA
        #10 A TRUE 3
        #11 A TRUE 3
        #12 A TRUE 3
        #13 B NA NA
        #14 B FALSE NA
        #15 B TRUE 1
        #16 B TRUE 1
        #17 B TRUE 1
        #18 B FALSE NA


        We first replace NAs in criterium column to FALSE and take cumulative sum over the negation of it (temp1). We group_by temp1 and assign 1 to every first TRUE value in the group. Finally grouping by group we take a cumulative sum for TRUE values or return NA for FALSE and NA values.






        share|improve this answer

























          6












          6








          6







          Maybe I have over-complicated this but one way with dplyr is



          library(dplyr)

          df %>%
          mutate(temp = replace(criterium, is.na(criterium), FALSE),
          temp1 = cumsum(!temp)) %>%
          group_by(temp1) %>%
          mutate(goal = +(row_number() == which.max(temp) & any(temp))) %>%
          group_by(group) %>%
          mutate(goal = ifelse(temp, cumsum(goal), NA)) %>%
          select(-temp, -temp1)

          # group criterium goal
          # <fct> <lgl> <int>
          # 1 A NA NA
          # 2 A TRUE 1
          # 3 A TRUE 1
          # 4 A TRUE 1
          # 5 A FALSE NA
          # 6 A FALSE NA
          # 7 A TRUE 2
          # 8 A TRUE 2
          # 9 A FALSE NA
          #10 A TRUE 3
          #11 A TRUE 3
          #12 A TRUE 3
          #13 B NA NA
          #14 B FALSE NA
          #15 B TRUE 1
          #16 B TRUE 1
          #17 B TRUE 1
          #18 B FALSE NA


          We first replace NAs in criterium column to FALSE and take cumulative sum over the negation of it (temp1). We group_by temp1 and assign 1 to every first TRUE value in the group. Finally grouping by group we take a cumulative sum for TRUE values or return NA for FALSE and NA values.






          share|improve this answer













          Maybe I have over-complicated this but one way with dplyr is



          library(dplyr)

          df %>%
          mutate(temp = replace(criterium, is.na(criterium), FALSE),
          temp1 = cumsum(!temp)) %>%
          group_by(temp1) %>%
          mutate(goal = +(row_number() == which.max(temp) & any(temp))) %>%
          group_by(group) %>%
          mutate(goal = ifelse(temp, cumsum(goal), NA)) %>%
          select(-temp, -temp1)

          # group criterium goal
          # <fct> <lgl> <int>
          # 1 A NA NA
          # 2 A TRUE 1
          # 3 A TRUE 1
          # 4 A TRUE 1
          # 5 A FALSE NA
          # 6 A FALSE NA
          # 7 A TRUE 2
          # 8 A TRUE 2
          # 9 A FALSE NA
          #10 A TRUE 3
          #11 A TRUE 3
          #12 A TRUE 3
          #13 B NA NA
          #14 B FALSE NA
          #15 B TRUE 1
          #16 B TRUE 1
          #17 B TRUE 1
          #18 B FALSE NA


          We first replace NAs in criterium column to FALSE and take cumulative sum over the negation of it (temp1). We group_by temp1 and assign 1 to every first TRUE value in the group. Finally grouping by group we take a cumulative sum for TRUE values or return NA for FALSE and NA values.







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered yesterday









          Ronak ShahRonak Shah

          46.3k104268




          46.3k104268





















              4














              A pure Base R solution, we can create a custom function via rle, and use it per group, i.e.



              f1 <- function(x) 
              x[is.na(x)] <- FALSE
              rle1 <- rle(x)
              y <- rle1$values
              rle1$values[!y] <- 0
              rle1$values[y] <- cumsum(rle1$values[y])
              return(inverse.rle(rle1))



              do.call(rbind,
              lapply(split(df, df$group), function(i)i$goal <- f1(i$criterium);
              i$goal <- replace(i$goal, is.na(i$criterium)))


              Of course, If you want you can apply it via dplyr, i.e.



              library(dplyr)

              df %>%
              group_by(group) %>%
              mutate(goal = f1(criterium),
              goal = replace(goal, is.na(criterium)|!criterium, NA))


              which gives,




              # A tibble: 18 x 3
              # Groups: group [2]
              group criterium goal
              <fct> <lgl> <dbl>
              1 A NA NA
              2 A TRUE 1
              3 A TRUE 1
              4 A TRUE 1
              5 A FALSE NA
              6 A FALSE NA
              7 A TRUE 2
              8 A TRUE 2
              9 A FALSE NA
              10 A TRUE 3
              11 A TRUE 3
              12 A TRUE 3
              13 B NA NA
              14 B FALSE NA
              15 B TRUE 1
              16 B TRUE 1
              17 B TRUE 1
              18 B FALSE NA






              share|improve this answer





























                4














                A pure Base R solution, we can create a custom function via rle, and use it per group, i.e.



                f1 <- function(x) 
                x[is.na(x)] <- FALSE
                rle1 <- rle(x)
                y <- rle1$values
                rle1$values[!y] <- 0
                rle1$values[y] <- cumsum(rle1$values[y])
                return(inverse.rle(rle1))



                do.call(rbind,
                lapply(split(df, df$group), function(i)i$goal <- f1(i$criterium);
                i$goal <- replace(i$goal, is.na(i$criterium)))


                Of course, If you want you can apply it via dplyr, i.e.



                library(dplyr)

                df %>%
                group_by(group) %>%
                mutate(goal = f1(criterium),
                goal = replace(goal, is.na(criterium)|!criterium, NA))


                which gives,




                # A tibble: 18 x 3
                # Groups: group [2]
                group criterium goal
                <fct> <lgl> <dbl>
                1 A NA NA
                2 A TRUE 1
                3 A TRUE 1
                4 A TRUE 1
                5 A FALSE NA
                6 A FALSE NA
                7 A TRUE 2
                8 A TRUE 2
                9 A FALSE NA
                10 A TRUE 3
                11 A TRUE 3
                12 A TRUE 3
                13 B NA NA
                14 B FALSE NA
                15 B TRUE 1
                16 B TRUE 1
                17 B TRUE 1
                18 B FALSE NA






                share|improve this answer



























                  4












                  4








                  4







                  A pure Base R solution, we can create a custom function via rle, and use it per group, i.e.



                  f1 <- function(x) 
                  x[is.na(x)] <- FALSE
                  rle1 <- rle(x)
                  y <- rle1$values
                  rle1$values[!y] <- 0
                  rle1$values[y] <- cumsum(rle1$values[y])
                  return(inverse.rle(rle1))



                  do.call(rbind,
                  lapply(split(df, df$group), function(i)i$goal <- f1(i$criterium);
                  i$goal <- replace(i$goal, is.na(i$criterium)))


                  Of course, If you want you can apply it via dplyr, i.e.



                  library(dplyr)

                  df %>%
                  group_by(group) %>%
                  mutate(goal = f1(criterium),
                  goal = replace(goal, is.na(criterium)|!criterium, NA))


                  which gives,




                  # A tibble: 18 x 3
                  # Groups: group [2]
                  group criterium goal
                  <fct> <lgl> <dbl>
                  1 A NA NA
                  2 A TRUE 1
                  3 A TRUE 1
                  4 A TRUE 1
                  5 A FALSE NA
                  6 A FALSE NA
                  7 A TRUE 2
                  8 A TRUE 2
                  9 A FALSE NA
                  10 A TRUE 3
                  11 A TRUE 3
                  12 A TRUE 3
                  13 B NA NA
                  14 B FALSE NA
                  15 B TRUE 1
                  16 B TRUE 1
                  17 B TRUE 1
                  18 B FALSE NA






                  share|improve this answer















                  A pure Base R solution, we can create a custom function via rle, and use it per group, i.e.



                  f1 <- function(x) 
                  x[is.na(x)] <- FALSE
                  rle1 <- rle(x)
                  y <- rle1$values
                  rle1$values[!y] <- 0
                  rle1$values[y] <- cumsum(rle1$values[y])
                  return(inverse.rle(rle1))



                  do.call(rbind,
                  lapply(split(df, df$group), function(i)i$goal <- f1(i$criterium);
                  i$goal <- replace(i$goal, is.na(i$criterium)))


                  Of course, If you want you can apply it via dplyr, i.e.



                  library(dplyr)

                  df %>%
                  group_by(group) %>%
                  mutate(goal = f1(criterium),
                  goal = replace(goal, is.na(criterium)|!criterium, NA))


                  which gives,




                  # A tibble: 18 x 3
                  # Groups: group [2]
                  group criterium goal
                  <fct> <lgl> <dbl>
                  1 A NA NA
                  2 A TRUE 1
                  3 A TRUE 1
                  4 A TRUE 1
                  5 A FALSE NA
                  6 A FALSE NA
                  7 A TRUE 2
                  8 A TRUE 2
                  9 A FALSE NA
                  10 A TRUE 3
                  11 A TRUE 3
                  12 A TRUE 3
                  13 B NA NA
                  14 B FALSE NA
                  15 B TRUE 1
                  16 B TRUE 1
                  17 B TRUE 1
                  18 B FALSE NA







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited yesterday

























                  answered yesterday









                  SotosSotos

                  31.4k51741




                  31.4k51741





















                      4














                      A data.table option using rle



                      library(data.table)
                      DT <- as.data.table(dat)
                      DT[, goal :=
                      r <- rle(replace(criterium, is.na(criterium), FALSE))
                      r$values <- with(r, cumsum(values) * values)
                      out <- inverse.rle(r)
                      replace(out, out == 0, NA)
                      , by = group]
                      DT
                      # group criterium goal
                      # 1: A NA NA
                      # 2: A TRUE 1
                      # 3: A TRUE 1
                      # 4: A TRUE 1
                      # 5: A FALSE NA
                      # 6: A FALSE NA
                      # 7: A TRUE 2
                      # 8: A TRUE 2
                      # 9: A FALSE NA
                      #10: A TRUE 3
                      #11: A TRUE 3
                      #12: A TRUE 3
                      #13: B NA NA
                      #14: B FALSE NA
                      #15: B TRUE 1
                      #16: B TRUE 1
                      #17: B TRUE 1
                      #18: B FALSE NA


                      step by step



                      When we call r <- rle(replace(criterium, is.na(criterium), FALSE)) we get an object of class rle



                      r
                      #Run Length Encoding
                      # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
                      # values : logi [1:9] FALSE TRUE FALSE TRUE FALSE TRUE ...


                      We manipulate the values compenent in the following way



                      r$values <- with(r, cumsum(values) * values)
                      r
                      #Run Length Encoding
                      # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
                      # values : int [1:9] 0 1 0 2 0 3 0 4 0


                      That is, we replaced TRUEs with the cumulative sum of values and set the FALSEs to 0. Now inverse.rle returns a vector in which values will repeated lenghts times



                      out <- inverse.rle(r)
                      out
                      # [1] 0 1 1 1 0 0 2 2 0 3 3 3 0 0 4 4 4 0


                      This is almost what OP wants but we need to replace the 0s with NA



                      replace(out, out == 0, NA)


                      This is done for each group.



                      data



                      dat <- structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
                      1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
                      "B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
                      FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
                      TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
                      -18L))





                      share|improve this answer

























                      • Wow, impressive. Thanks for introducing me to rleand inverse.rle. Gruß nach Leipzig.

                        – Humpelstielzchen
                        yesterday






                      • 1





                        @Humpelstielzchen Gern geschehen. Will try to simplify and explain the logic a bit.

                        – markus
                        yesterday












                      • Thanks! I was dissecting your answer just like that. Your answer taught me the most. But chinsoon12 is just a Teufelskerl. ^^

                        – Humpelstielzchen
                        yesterday















                      4














                      A data.table option using rle



                      library(data.table)
                      DT <- as.data.table(dat)
                      DT[, goal :=
                      r <- rle(replace(criterium, is.na(criterium), FALSE))
                      r$values <- with(r, cumsum(values) * values)
                      out <- inverse.rle(r)
                      replace(out, out == 0, NA)
                      , by = group]
                      DT
                      # group criterium goal
                      # 1: A NA NA
                      # 2: A TRUE 1
                      # 3: A TRUE 1
                      # 4: A TRUE 1
                      # 5: A FALSE NA
                      # 6: A FALSE NA
                      # 7: A TRUE 2
                      # 8: A TRUE 2
                      # 9: A FALSE NA
                      #10: A TRUE 3
                      #11: A TRUE 3
                      #12: A TRUE 3
                      #13: B NA NA
                      #14: B FALSE NA
                      #15: B TRUE 1
                      #16: B TRUE 1
                      #17: B TRUE 1
                      #18: B FALSE NA


                      step by step



                      When we call r <- rle(replace(criterium, is.na(criterium), FALSE)) we get an object of class rle



                      r
                      #Run Length Encoding
                      # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
                      # values : logi [1:9] FALSE TRUE FALSE TRUE FALSE TRUE ...


                      We manipulate the values compenent in the following way



                      r$values <- with(r, cumsum(values) * values)
                      r
                      #Run Length Encoding
                      # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
                      # values : int [1:9] 0 1 0 2 0 3 0 4 0


                      That is, we replaced TRUEs with the cumulative sum of values and set the FALSEs to 0. Now inverse.rle returns a vector in which values will repeated lenghts times



                      out <- inverse.rle(r)
                      out
                      # [1] 0 1 1 1 0 0 2 2 0 3 3 3 0 0 4 4 4 0


                      This is almost what OP wants but we need to replace the 0s with NA



                      replace(out, out == 0, NA)


                      This is done for each group.



                      data



                      dat <- structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
                      1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
                      "B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
                      FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
                      TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
                      -18L))





                      share|improve this answer

























                      • Wow, impressive. Thanks for introducing me to rleand inverse.rle. Gruß nach Leipzig.

                        – Humpelstielzchen
                        yesterday






                      • 1





                        @Humpelstielzchen Gern geschehen. Will try to simplify and explain the logic a bit.

                        – markus
                        yesterday












                      • Thanks! I was dissecting your answer just like that. Your answer taught me the most. But chinsoon12 is just a Teufelskerl. ^^

                        – Humpelstielzchen
                        yesterday













                      4












                      4








                      4







                      A data.table option using rle



                      library(data.table)
                      DT <- as.data.table(dat)
                      DT[, goal :=
                      r <- rle(replace(criterium, is.na(criterium), FALSE))
                      r$values <- with(r, cumsum(values) * values)
                      out <- inverse.rle(r)
                      replace(out, out == 0, NA)
                      , by = group]
                      DT
                      # group criterium goal
                      # 1: A NA NA
                      # 2: A TRUE 1
                      # 3: A TRUE 1
                      # 4: A TRUE 1
                      # 5: A FALSE NA
                      # 6: A FALSE NA
                      # 7: A TRUE 2
                      # 8: A TRUE 2
                      # 9: A FALSE NA
                      #10: A TRUE 3
                      #11: A TRUE 3
                      #12: A TRUE 3
                      #13: B NA NA
                      #14: B FALSE NA
                      #15: B TRUE 1
                      #16: B TRUE 1
                      #17: B TRUE 1
                      #18: B FALSE NA


                      step by step



                      When we call r <- rle(replace(criterium, is.na(criterium), FALSE)) we get an object of class rle



                      r
                      #Run Length Encoding
                      # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
                      # values : logi [1:9] FALSE TRUE FALSE TRUE FALSE TRUE ...


                      We manipulate the values compenent in the following way



                      r$values <- with(r, cumsum(values) * values)
                      r
                      #Run Length Encoding
                      # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
                      # values : int [1:9] 0 1 0 2 0 3 0 4 0


                      That is, we replaced TRUEs with the cumulative sum of values and set the FALSEs to 0. Now inverse.rle returns a vector in which values will repeated lenghts times



                      out <- inverse.rle(r)
                      out
                      # [1] 0 1 1 1 0 0 2 2 0 3 3 3 0 0 4 4 4 0


                      This is almost what OP wants but we need to replace the 0s with NA



                      replace(out, out == 0, NA)


                      This is done for each group.



                      data



                      dat <- structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
                      1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
                      "B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
                      FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
                      TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
                      -18L))





                      share|improve this answer















                      A data.table option using rle



                      library(data.table)
                      DT <- as.data.table(dat)
                      DT[, goal :=
                      r <- rle(replace(criterium, is.na(criterium), FALSE))
                      r$values <- with(r, cumsum(values) * values)
                      out <- inverse.rle(r)
                      replace(out, out == 0, NA)
                      , by = group]
                      DT
                      # group criterium goal
                      # 1: A NA NA
                      # 2: A TRUE 1
                      # 3: A TRUE 1
                      # 4: A TRUE 1
                      # 5: A FALSE NA
                      # 6: A FALSE NA
                      # 7: A TRUE 2
                      # 8: A TRUE 2
                      # 9: A FALSE NA
                      #10: A TRUE 3
                      #11: A TRUE 3
                      #12: A TRUE 3
                      #13: B NA NA
                      #14: B FALSE NA
                      #15: B TRUE 1
                      #16: B TRUE 1
                      #17: B TRUE 1
                      #18: B FALSE NA


                      step by step



                      When we call r <- rle(replace(criterium, is.na(criterium), FALSE)) we get an object of class rle



                      r
                      #Run Length Encoding
                      # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
                      # values : logi [1:9] FALSE TRUE FALSE TRUE FALSE TRUE ...


                      We manipulate the values compenent in the following way



                      r$values <- with(r, cumsum(values) * values)
                      r
                      #Run Length Encoding
                      # lengths: int [1:9] 1 3 2 2 1 3 2 3 1
                      # values : int [1:9] 0 1 0 2 0 3 0 4 0


                      That is, we replaced TRUEs with the cumulative sum of values and set the FALSEs to 0. Now inverse.rle returns a vector in which values will repeated lenghts times



                      out <- inverse.rle(r)
                      out
                      # [1] 0 1 1 1 0 0 2 2 0 3 3 3 0 0 4 4 4 0


                      This is almost what OP wants but we need to replace the 0s with NA



                      replace(out, out == 0, NA)


                      This is done for each group.



                      data



                      dat <- structure(list(group = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
                      1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("A",
                      "B"), class = "factor"), criterium = c(NA, TRUE, TRUE, TRUE,
                      FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, NA, FALSE,
                      TRUE, TRUE, TRUE, FALSE)), class = "data.frame", row.names = c(NA,
                      -18L))






                      share|improve this answer














                      share|improve this answer



                      share|improve this answer








                      edited yesterday

























                      answered yesterday









                      markusmarkus

                      15.5k11336




                      15.5k11336












                      • Wow, impressive. Thanks for introducing me to rleand inverse.rle. Gruß nach Leipzig.

                        – Humpelstielzchen
                        yesterday






                      • 1





                        @Humpelstielzchen Gern geschehen. Will try to simplify and explain the logic a bit.

                        – markus
                        yesterday












                      • Thanks! I was dissecting your answer just like that. Your answer taught me the most. But chinsoon12 is just a Teufelskerl. ^^

                        – Humpelstielzchen
                        yesterday

















                      • Wow, impressive. Thanks for introducing me to rleand inverse.rle. Gruß nach Leipzig.

                        – Humpelstielzchen
                        yesterday






                      • 1





                        @Humpelstielzchen Gern geschehen. Will try to simplify and explain the logic a bit.

                        – markus
                        yesterday












                      • Thanks! I was dissecting your answer just like that. Your answer taught me the most. But chinsoon12 is just a Teufelskerl. ^^

                        – Humpelstielzchen
                        yesterday
















                      Wow, impressive. Thanks for introducing me to rleand inverse.rle. Gruß nach Leipzig.

                      – Humpelstielzchen
                      yesterday





                      Wow, impressive. Thanks for introducing me to rleand inverse.rle. Gruß nach Leipzig.

                      – Humpelstielzchen
                      yesterday




                      1




                      1





                      @Humpelstielzchen Gern geschehen. Will try to simplify and explain the logic a bit.

                      – markus
                      yesterday






                      @Humpelstielzchen Gern geschehen. Will try to simplify and explain the logic a bit.

                      – markus
                      yesterday














                      Thanks! I was dissecting your answer just like that. Your answer taught me the most. But chinsoon12 is just a Teufelskerl. ^^

                      – Humpelstielzchen
                      yesterday





                      Thanks! I was dissecting your answer just like that. Your answer taught me the most. But chinsoon12 is just a Teufelskerl. ^^

                      – Humpelstielzchen
                      yesterday

















                      draft saved

                      draft discarded
















































                      Thanks for contributing an answer to Stack Overflow!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55606323%2frank-groups-within-a-grouped-sequence-of-true-false-and-na%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

                      Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation

                      Magento 2 “No Payment Methods” in Admin New OrderHow to integrate Paypal Express Checkout with the Magento APIMagento 1.5 - Sales > Order > edit order and shipping methods disappearAuto Invoice Check/Money Order Payment methodAdd more simple payment methods?Shipping methods not showingWhat should I do to change payment methods if changing the configuration has no effects?1.9 - No Payment Methods showing upMy Payment Methods not Showing for downloadable/virtual product when checkout?Magento2 API to access internal payment methodHow to call an existing payment methods in the registration form?