Reducing the white spacingReducing the title spacingReducing white space above date in Letter ClassReducing spacing after headingsReducing the spaces before and after smallsetminusNon-uniform white spacing with vspaceReducing chapter and section spacing for scrbookReducing spacing between section headings and text in resumeAutomatically reducing spacing before punctuation in math modereducing the spacing between bib itemsReducing space in the Table of Contents

Should I simplify my writing in a foreign country?

It isn’t that you must stop now

Game artist computer workstation set-up – is this overkill?

Looking for sci-fi book based on Hinduism/Buddhism

GitLab account hacked and repo wiped

Sci-fi/fantasy book - ships on steel runners skating across ice sheets

Why would a military not separate its forces into different branches?

Dihedral group D4 composition with custom labels

Where to draw the line between quantum mechanics theory and its interpretation(s)?

What is a common way to tell if an academic is "above average," or outstanding in their field? Is their h-index (Hirsh index) one of them?

Is there precedent or are there procedures for a US president refusing to concede to an electoral defeat?

What is the closest airport to the center of the city it serves?

Piano: quaver triplets in RH v dotted quaver and semiquaver in LH

How did the Apollo guidance computer handle parity bit errors?

Is Iron Man stronger than the Hulk?

How to deal with employer who keeps me at work after working hours

Is 'contemporary' ambiguous and if so is there a better word?

Is there a word for food that's gone 'bad', but is still edible?

Make me a minimum magic sum

Should homeowners insurance cover the cost of the home?

Sparring against two opponents test

Counting the Number of Real Roots of A Polynomial

Constitutional limitation of criminalizing behavior in US law?

What to do when scriptures go against conscience?



Reducing the white spacing


Reducing the title spacingReducing white space above date in Letter ClassReducing spacing after headingsReducing the spaces before and after smallsetminusNon-uniform white spacing with vspaceReducing chapter and section spacing for scrbookReducing spacing between section headings and text in resumeAutomatically reducing spacing before punctuation in math modereducing the spacing between bib itemsReducing space in the Table of Contents













5















documentclass[11pt, a4paper]report
usepackagebm
usepackageamsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs
usepackagecolor
usepackagearray
usepackagesetspace% if you must (for double spacing thesis)
usepackagefancyhdr
usepackageenumitem
usepackagetikz
usepackageparskip
usepackagelipsum
usepackagefloatrow
begindocument
newcommandiuimkern1mu
beginalign*
setlengthextrarowheight3pt
noindentbegintabular c c c c c
& $0$ & $1$ & $2$ & $3$ & $4$\
cline1-6
$chi_0$ & $1$ & $1$ & $1$ & $1$ & $1$\
$chi_1$ & $1$ & $a$ & $a^2$ & $a^3$ & $a^4$\
$chi_2$ & $1$ & $a^2$ & $a^4$ & $a$ & $a^3$\
$chi_3$ & $1$ & $a^3$ & $a$ & $a^4$ & $a^2$\
$chi_4$ & $1$ & $a^4$ & $a^3$ & $a^2$ & $a$\
endtabular
endalign*

with $a = expfrac2piiu5$ hence $a^5=1$ with $|G|=5$.

Applying the definition of Fourier transform from definition 3.1.2 we have:
doublespacing
$hatf(chi_0)=f(0)+f(1)+f(2)+f(3)+f(4)$\
$hatf(chi_1)=f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)$\
$hatf(chi_2)=f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)$\
$hatf(chi_3)=f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)$\
$hatf(chi_4)=f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)$\

Using definition 3.1.3. we can compute the inverse Fourier transform $f(t)$:
beginalign*
f(0)
&=frac15[ hatf(chi_0)+hatf(chi_1)+hatf(chi_2)+hatf(chi_3)+hatf(chi_4)]\
&beginaligned[t]
=&frac15[f(0)+f(1)+f(2)+f(3)+f(4)]\
+&frac15[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)]\
+&frac15[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)]\
+&frac15[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)]\
+&frac15[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)]
endaligned
\
&beginaligned[t]
=&f(0)\
+&fracf(1)5[1+a+a^2+a^3+a^4]\
+&fracf(2)5[1+a+a^2+a^3+a^4]\
+&fracf(3)5[1+a+a^2+a^3+a^4]\
+&fracf(4)5[1+a+a^2+a^3+a^4]\
=&f(0)
endaligned
endalign*
Similarly
beginalign*
f(1)
&= frac15[hatf(chi_0)+frac1ahatf(chi_1)+frac1a^2hatf(chi_2)+frac1a^3hatf(chi_3)+frac1a^4hatf(chi_4)]\
&beginaligned[t]
=&f(1)
endaligned
endalign*
beginalign*
f(2)
&= frac15[hatf(chi_0)+a^2hatf(chi_1)+a^4hatf(chi_2)+ahatf(chi_3)+a^3hatf(chi_4)]\
&beginaligned[t]
=&f(2)
endaligned
endalign*
beginalign*
f(3)
&= frac15[hatf(chi_0)+a^3hatf(chi_1)+ahatf(chi_2)+a^4hatf(chi_3)+a^2hatf(chi_4)]\
&beginaligned[t]
=&f(3)
endaligned
endalign*
beginalign*
f(4)
&= frac15[hatf(chi_0)+a^4hatf(chi_1)+a^3hatf(chi_2)+a^2hatf(chi_3)+ahatf(chi_4)]\
&beginaligned[t]
=&f(4)
endaligned
endalign*
enddocument


How can I reduce the spacing in this? Where it says "using definition....." I would like to move this up to $hatf(chi_4)$. Also I want to reduce the spacing of $f(1) = ... = f(1)$ and $f(2) = ... = f(2)$ etc.



Edit: I've attached all 3 pages so you guys get the full picture of what the issue is.










share|improve this question
























  • Unrelated to the issue, but switching from tabular to array you can remove all the repeated $ signs.

    – leandriis
    May 1 at 16:37















5















documentclass[11pt, a4paper]report
usepackagebm
usepackageamsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs
usepackagecolor
usepackagearray
usepackagesetspace% if you must (for double spacing thesis)
usepackagefancyhdr
usepackageenumitem
usepackagetikz
usepackageparskip
usepackagelipsum
usepackagefloatrow
begindocument
newcommandiuimkern1mu
beginalign*
setlengthextrarowheight3pt
noindentbegintabular c c c c c
& $0$ & $1$ & $2$ & $3$ & $4$\
cline1-6
$chi_0$ & $1$ & $1$ & $1$ & $1$ & $1$\
$chi_1$ & $1$ & $a$ & $a^2$ & $a^3$ & $a^4$\
$chi_2$ & $1$ & $a^2$ & $a^4$ & $a$ & $a^3$\
$chi_3$ & $1$ & $a^3$ & $a$ & $a^4$ & $a^2$\
$chi_4$ & $1$ & $a^4$ & $a^3$ & $a^2$ & $a$\
endtabular
endalign*

with $a = expfrac2piiu5$ hence $a^5=1$ with $|G|=5$.

Applying the definition of Fourier transform from definition 3.1.2 we have:
doublespacing
$hatf(chi_0)=f(0)+f(1)+f(2)+f(3)+f(4)$\
$hatf(chi_1)=f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)$\
$hatf(chi_2)=f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)$\
$hatf(chi_3)=f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)$\
$hatf(chi_4)=f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)$\

Using definition 3.1.3. we can compute the inverse Fourier transform $f(t)$:
beginalign*
f(0)
&=frac15[ hatf(chi_0)+hatf(chi_1)+hatf(chi_2)+hatf(chi_3)+hatf(chi_4)]\
&beginaligned[t]
=&frac15[f(0)+f(1)+f(2)+f(3)+f(4)]\
+&frac15[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)]\
+&frac15[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)]\
+&frac15[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)]\
+&frac15[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)]
endaligned
\
&beginaligned[t]
=&f(0)\
+&fracf(1)5[1+a+a^2+a^3+a^4]\
+&fracf(2)5[1+a+a^2+a^3+a^4]\
+&fracf(3)5[1+a+a^2+a^3+a^4]\
+&fracf(4)5[1+a+a^2+a^3+a^4]\
=&f(0)
endaligned
endalign*
Similarly
beginalign*
f(1)
&= frac15[hatf(chi_0)+frac1ahatf(chi_1)+frac1a^2hatf(chi_2)+frac1a^3hatf(chi_3)+frac1a^4hatf(chi_4)]\
&beginaligned[t]
=&f(1)
endaligned
endalign*
beginalign*
f(2)
&= frac15[hatf(chi_0)+a^2hatf(chi_1)+a^4hatf(chi_2)+ahatf(chi_3)+a^3hatf(chi_4)]\
&beginaligned[t]
=&f(2)
endaligned
endalign*
beginalign*
f(3)
&= frac15[hatf(chi_0)+a^3hatf(chi_1)+ahatf(chi_2)+a^4hatf(chi_3)+a^2hatf(chi_4)]\
&beginaligned[t]
=&f(3)
endaligned
endalign*
beginalign*
f(4)
&= frac15[hatf(chi_0)+a^4hatf(chi_1)+a^3hatf(chi_2)+a^2hatf(chi_3)+ahatf(chi_4)]\
&beginaligned[t]
=&f(4)
endaligned
endalign*
enddocument


How can I reduce the spacing in this? Where it says "using definition....." I would like to move this up to $hatf(chi_4)$. Also I want to reduce the spacing of $f(1) = ... = f(1)$ and $f(2) = ... = f(2)$ etc.



Edit: I've attached all 3 pages so you guys get the full picture of what the issue is.










share|improve this question
























  • Unrelated to the issue, but switching from tabular to array you can remove all the repeated $ signs.

    – leandriis
    May 1 at 16:37













5












5








5


1






documentclass[11pt, a4paper]report
usepackagebm
usepackageamsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs
usepackagecolor
usepackagearray
usepackagesetspace% if you must (for double spacing thesis)
usepackagefancyhdr
usepackageenumitem
usepackagetikz
usepackageparskip
usepackagelipsum
usepackagefloatrow
begindocument
newcommandiuimkern1mu
beginalign*
setlengthextrarowheight3pt
noindentbegintabular c c c c c
& $0$ & $1$ & $2$ & $3$ & $4$\
cline1-6
$chi_0$ & $1$ & $1$ & $1$ & $1$ & $1$\
$chi_1$ & $1$ & $a$ & $a^2$ & $a^3$ & $a^4$\
$chi_2$ & $1$ & $a^2$ & $a^4$ & $a$ & $a^3$\
$chi_3$ & $1$ & $a^3$ & $a$ & $a^4$ & $a^2$\
$chi_4$ & $1$ & $a^4$ & $a^3$ & $a^2$ & $a$\
endtabular
endalign*

with $a = expfrac2piiu5$ hence $a^5=1$ with $|G|=5$.

Applying the definition of Fourier transform from definition 3.1.2 we have:
doublespacing
$hatf(chi_0)=f(0)+f(1)+f(2)+f(3)+f(4)$\
$hatf(chi_1)=f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)$\
$hatf(chi_2)=f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)$\
$hatf(chi_3)=f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)$\
$hatf(chi_4)=f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)$\

Using definition 3.1.3. we can compute the inverse Fourier transform $f(t)$:
beginalign*
f(0)
&=frac15[ hatf(chi_0)+hatf(chi_1)+hatf(chi_2)+hatf(chi_3)+hatf(chi_4)]\
&beginaligned[t]
=&frac15[f(0)+f(1)+f(2)+f(3)+f(4)]\
+&frac15[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)]\
+&frac15[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)]\
+&frac15[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)]\
+&frac15[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)]
endaligned
\
&beginaligned[t]
=&f(0)\
+&fracf(1)5[1+a+a^2+a^3+a^4]\
+&fracf(2)5[1+a+a^2+a^3+a^4]\
+&fracf(3)5[1+a+a^2+a^3+a^4]\
+&fracf(4)5[1+a+a^2+a^3+a^4]\
=&f(0)
endaligned
endalign*
Similarly
beginalign*
f(1)
&= frac15[hatf(chi_0)+frac1ahatf(chi_1)+frac1a^2hatf(chi_2)+frac1a^3hatf(chi_3)+frac1a^4hatf(chi_4)]\
&beginaligned[t]
=&f(1)
endaligned
endalign*
beginalign*
f(2)
&= frac15[hatf(chi_0)+a^2hatf(chi_1)+a^4hatf(chi_2)+ahatf(chi_3)+a^3hatf(chi_4)]\
&beginaligned[t]
=&f(2)
endaligned
endalign*
beginalign*
f(3)
&= frac15[hatf(chi_0)+a^3hatf(chi_1)+ahatf(chi_2)+a^4hatf(chi_3)+a^2hatf(chi_4)]\
&beginaligned[t]
=&f(3)
endaligned
endalign*
beginalign*
f(4)
&= frac15[hatf(chi_0)+a^4hatf(chi_1)+a^3hatf(chi_2)+a^2hatf(chi_3)+ahatf(chi_4)]\
&beginaligned[t]
=&f(4)
endaligned
endalign*
enddocument


How can I reduce the spacing in this? Where it says "using definition....." I would like to move this up to $hatf(chi_4)$. Also I want to reduce the spacing of $f(1) = ... = f(1)$ and $f(2) = ... = f(2)$ etc.



Edit: I've attached all 3 pages so you guys get the full picture of what the issue is.










share|improve this question
















documentclass[11pt, a4paper]report
usepackagebm
usepackageamsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs
usepackagecolor
usepackagearray
usepackagesetspace% if you must (for double spacing thesis)
usepackagefancyhdr
usepackageenumitem
usepackagetikz
usepackageparskip
usepackagelipsum
usepackagefloatrow
begindocument
newcommandiuimkern1mu
beginalign*
setlengthextrarowheight3pt
noindentbegintabular c c c c c
& $0$ & $1$ & $2$ & $3$ & $4$\
cline1-6
$chi_0$ & $1$ & $1$ & $1$ & $1$ & $1$\
$chi_1$ & $1$ & $a$ & $a^2$ & $a^3$ & $a^4$\
$chi_2$ & $1$ & $a^2$ & $a^4$ & $a$ & $a^3$\
$chi_3$ & $1$ & $a^3$ & $a$ & $a^4$ & $a^2$\
$chi_4$ & $1$ & $a^4$ & $a^3$ & $a^2$ & $a$\
endtabular
endalign*

with $a = expfrac2piiu5$ hence $a^5=1$ with $|G|=5$.

Applying the definition of Fourier transform from definition 3.1.2 we have:
doublespacing
$hatf(chi_0)=f(0)+f(1)+f(2)+f(3)+f(4)$\
$hatf(chi_1)=f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)$\
$hatf(chi_2)=f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)$\
$hatf(chi_3)=f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)$\
$hatf(chi_4)=f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)$\

Using definition 3.1.3. we can compute the inverse Fourier transform $f(t)$:
beginalign*
f(0)
&=frac15[ hatf(chi_0)+hatf(chi_1)+hatf(chi_2)+hatf(chi_3)+hatf(chi_4)]\
&beginaligned[t]
=&frac15[f(0)+f(1)+f(2)+f(3)+f(4)]\
+&frac15[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)]\
+&frac15[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)]\
+&frac15[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)]\
+&frac15[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)]
endaligned
\
&beginaligned[t]
=&f(0)\
+&fracf(1)5[1+a+a^2+a^3+a^4]\
+&fracf(2)5[1+a+a^2+a^3+a^4]\
+&fracf(3)5[1+a+a^2+a^3+a^4]\
+&fracf(4)5[1+a+a^2+a^3+a^4]\
=&f(0)
endaligned
endalign*
Similarly
beginalign*
f(1)
&= frac15[hatf(chi_0)+frac1ahatf(chi_1)+frac1a^2hatf(chi_2)+frac1a^3hatf(chi_3)+frac1a^4hatf(chi_4)]\
&beginaligned[t]
=&f(1)
endaligned
endalign*
beginalign*
f(2)
&= frac15[hatf(chi_0)+a^2hatf(chi_1)+a^4hatf(chi_2)+ahatf(chi_3)+a^3hatf(chi_4)]\
&beginaligned[t]
=&f(2)
endaligned
endalign*
beginalign*
f(3)
&= frac15[hatf(chi_0)+a^3hatf(chi_1)+ahatf(chi_2)+a^4hatf(chi_3)+a^2hatf(chi_4)]\
&beginaligned[t]
=&f(3)
endaligned
endalign*
beginalign*
f(4)
&= frac15[hatf(chi_0)+a^4hatf(chi_1)+a^3hatf(chi_2)+a^2hatf(chi_3)+ahatf(chi_4)]\
&beginaligned[t]
=&f(4)
endaligned
endalign*
enddocument


How can I reduce the spacing in this? Where it says "using definition....." I would like to move this up to $hatf(chi_4)$. Also I want to reduce the spacing of $f(1) = ... = f(1)$ and $f(2) = ... = f(2)$ etc.



Edit: I've attached all 3 pages so you guys get the full picture of what the issue is.







spacing






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited May 1 at 14:53







Maths

















asked May 1 at 14:25









MathsMaths

47011




47011












  • Unrelated to the issue, but switching from tabular to array you can remove all the repeated $ signs.

    – leandriis
    May 1 at 16:37

















  • Unrelated to the issue, but switching from tabular to array you can remove all the repeated $ signs.

    – leandriis
    May 1 at 16:37
















Unrelated to the issue, but switching from tabular to array you can remove all the repeated $ signs.

– leandriis
May 1 at 16:37





Unrelated to the issue, but switching from tabular to array you can remove all the repeated $ signs.

– leandriis
May 1 at 16:37










2 Answers
2






active

oldest

votes


















4














With this simpler code, it can all fit on a single page. I loaded nccmath for its medium-sized fractions, which look better for coefficients, in my opinion:



documentclass[11pt, a4paper]report
usepackage[utf8]inputenc
usepackage[T1]fontenc
usepackagebm
usepackagenccmath
usepackageamsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs
usepackagecolor
usepackagearray
usepackagesetspace% if you must (for double spacing thesis)
usepackagefancyhdr
usepackageenumitem
usepackagetikz
usepackageparskip
usepackagelipsum
usepackagefloatrow

begindocument

newcommandiuimkern1mu
[
setlengthextrarowheight3pt
beginarray c c c c c
& 0 & 1 & 2 & 3 & 4\
cline1-6
chi_0 & 1 & 1 & 1 & 1 & 1\
chi_1 & 1 & a & a^2 & a^3 & a^4\
chi_2 & 1 & a^2 & a^4 & a & a^3\
chi_3 & 1 & a^3 & a & a^4 & a^2\
chi_4 & 1 & a^4 & a^3 & a^2 & a\
endarray
]

with $a = expbiglfrac2pi iu5bigr$, hence $a^5=1$ with $|G|=5$.

Applying the definition of Fourier transform from definition 3.1.2 we have:
beginfleqn
beginalign*
hatf(chi_0) & =f(0)+f(1)+f(2)+f(3)+f(4) \
hatf(chi_1) & =f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4) \
hatf(chi_2) & =f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4) \
hatf(chi_3) & =f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4) \
hatf(chi_4) & =f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)
endalign*
endfleqn
Using definition 3.1.3. we can compute the inverse Fourier transform $f(t)$:
allowdisplaybreaks
beginalign*
f(0)
&=mfrac15bigl[ hatf(chi_0)+hatf(chi_1)+hatf(chi_2)+hatf(chi_3)+hatf(chi_4)bigr]\
& = beginaligned[t]
&mfrac15bigl[f(0)+f(1)+f(2)+f(3)+f(4)]\
& + mfrac15bigl[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)bigr]\
& + mfrac15bigl[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)bigr]\
& + mfrac15bigl[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)bigr]\
& + mfrac15bigl[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)bigr]
endaligned\
& =f(0) beginaligned[t]
& + mfracf(1)5[1+a+a^2+a^3+a^4]\
& + mfracf(2)5[1+a+a^2+a^3+a^4]\
& + mfracf(3)5[1+a+a^2+a^3+a^4]\
& + mfracf(4)5[1+a+a^2+a^3+a^4]
endaligned\
& = f(0)
shortintertextSimilarly:
f(1)
&= mfrac15Bigl[hatf(chi_0)+mfrac1ahatf(chi_1)+mfrac1a^2hatf(chi_2)+mfrac1a^3hatf(chi_3)+mfrac1a^4hatf(chi_4)Bigr]\
& = f(1) \[1.5ex]
f(2)
&= mfrac15bigl[hatf(chi_0)+a^2hatf(chi_1)+a^4hatf(chi_2)+ahatf(chi_3)+a^3hatf(chi_4)bigr] \
& = f(2) \[1.5ex]
f(3)
&= mfrac15bigl[hatf(chi_0)+a^3hatf(chi_1)+ahatf(chi_2)+a^4hatf(chi_3)+a^2hatf(chi_4)bigr] \
& = f(3) \[1.5ex]
f(4)
&= mfrac15bigl[hatf(chi_0)+a^4hatf(chi_1)+a^3hatf(chi_2)+a^2hatf(chi_3)+ahatf(chi_4)bigr] \
& = f(4)
endalign*

enddocument


enter image description here






share|improve this answer

























  • this is nice however you missed out the remaining section for $f(0)$ aha!

    – Maths
    2 days ago











  • Oh! yes. I'll fix it in a moment

    – Bernard
    2 days ago











  • I had to slightly modify the code to make it fit on a single page (replaced intertext with shortintertext, and loading nccmath before mathtools to make it work).

    – Bernard
    2 days ago











  • there's still some code of f(0) missing aha. its where I group f(1) ... f(4) as f(1)[1+a+...+a^4] etc. Also, I don't mind if it runs over two pages. I don't want the text to be squashed, all I wanted is to make use of the empty white space :)

    – Maths
    2 days ago












  • Refer to my code in the question, you'll see the part you missed :)

    – Maths
    2 days ago


















4














You should avoid \ on the last line of alignments. Perhaps the following is closer to what you want:



Sample output



documentclass[11pt, a4paper]report

usepackageamsmath,array

begindocument

newcommandiuimkern1mu
beginequation*
setlengthextrarowheight3pt
begintabular c c c c c
& $0$ & $1$ & $2$ & $3$ & $4$\
cline1-6
$chi_0$ & $1$ & $1$ & $1$ & $1$ & $1$\
$chi_1$ & $1$ & $a$ & $a^2$ & $a^3$ & $a^4$\
$chi_2$ & $1$ & $a^2$ & $a^4$ & $a$ & $a^3$\
$chi_3$ & $1$ & $a^3$ & $a$ & $a^4$ & $a^2$\
$chi_4$ & $1$ & $a^4$ & $a^3$ & $a^2$ & $a$\
endtabular
endequation*
with $a = expfrac2piiu5$ hence $a^5=1$ with $|G|=5$.

Applying the definition of Fourier transform from Definition~3.1.2 we
have:
beginalign*
hatf(chi_0) &=f(0)+f(1)+f(2)+f(3)+f(4),\
hatf(chi_1) &=f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4),\
hatf(chi_2) &=f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4),\
hatf(chi_3) &=f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4),\
hatf(chi_4) &=f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4).
endalign*
Using Definition~3.1.3 we can compute the inverse Fourier transform
$f(t)$:
beginalign*
f(0)
&=frac15[ hatf(chi_0) + hatf(chi_1) + hatf(chi_2) +
hatf(chi_3) + hatf(chi_4)]\
&=frac15[f(0)+f(1)+f(2)+f(3)+f(4)]\
&qquad + frac15[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)]\
&qquad + frac15[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)]\
&qquad + frac15[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)]\
&qquad + frac15[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)]
\
&= f(0)\
&qquad + fracf(1)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(2)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(3)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(4)5[1+a+a^2+a^3+a^4]\
&=f(0).
endalign*
Similarly
beginalign*
f(1)
&= frac15Bigl[hatf(chi_0) + frac1ahatf(chi_1) +
frac1a^2hatf(chi_2) + frac1a^3hatf(chi_3) +
frac1a^4hatf(chi_4)Bigr]\
&=f(1),\
f(2)
&= frac15[hatf(chi_0) + a^2hatf(chi_1) +
a^4hatf(chi_2) + ahatf(chi_3) + a^3hatf(chi_4)]\
&=f(2), \
f(3)
&= frac15[hatf(chi_0) + a^3hatf(chi_1) +
ahatf(chi_2) + a^4hatf(chi_3) + a^2hatf(chi_4)]\
&=f(3),\
f(4)
&= frac15[hatf(chi_0) + a^4hatf(chi_1) +
a^3hatf(chi_2) + a^2hatf(chi_3) + ahatf(chi_4)]\
& =f(4).
endalign*
enddocument





share|improve this answer

























  • why did you push f(0) outwards? it wasn't necessary. but thanks for your solution

    – Maths
    May 1 at 15:42







  • 1





    The +'s should not be under the =, but to the right of it as they belong to that side of the equation. Whether you want to indent by qquad as I did, or the smaller quad is a matter of taste.

    – Andrew Swann
    May 1 at 18:28











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "85"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f488606%2freducing-the-white-spacing%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









4














With this simpler code, it can all fit on a single page. I loaded nccmath for its medium-sized fractions, which look better for coefficients, in my opinion:



documentclass[11pt, a4paper]report
usepackage[utf8]inputenc
usepackage[T1]fontenc
usepackagebm
usepackagenccmath
usepackageamsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs
usepackagecolor
usepackagearray
usepackagesetspace% if you must (for double spacing thesis)
usepackagefancyhdr
usepackageenumitem
usepackagetikz
usepackageparskip
usepackagelipsum
usepackagefloatrow

begindocument

newcommandiuimkern1mu
[
setlengthextrarowheight3pt
beginarray c c c c c
& 0 & 1 & 2 & 3 & 4\
cline1-6
chi_0 & 1 & 1 & 1 & 1 & 1\
chi_1 & 1 & a & a^2 & a^3 & a^4\
chi_2 & 1 & a^2 & a^4 & a & a^3\
chi_3 & 1 & a^3 & a & a^4 & a^2\
chi_4 & 1 & a^4 & a^3 & a^2 & a\
endarray
]

with $a = expbiglfrac2pi iu5bigr$, hence $a^5=1$ with $|G|=5$.

Applying the definition of Fourier transform from definition 3.1.2 we have:
beginfleqn
beginalign*
hatf(chi_0) & =f(0)+f(1)+f(2)+f(3)+f(4) \
hatf(chi_1) & =f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4) \
hatf(chi_2) & =f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4) \
hatf(chi_3) & =f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4) \
hatf(chi_4) & =f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)
endalign*
endfleqn
Using definition 3.1.3. we can compute the inverse Fourier transform $f(t)$:
allowdisplaybreaks
beginalign*
f(0)
&=mfrac15bigl[ hatf(chi_0)+hatf(chi_1)+hatf(chi_2)+hatf(chi_3)+hatf(chi_4)bigr]\
& = beginaligned[t]
&mfrac15bigl[f(0)+f(1)+f(2)+f(3)+f(4)]\
& + mfrac15bigl[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)bigr]\
& + mfrac15bigl[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)bigr]\
& + mfrac15bigl[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)bigr]\
& + mfrac15bigl[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)bigr]
endaligned\
& =f(0) beginaligned[t]
& + mfracf(1)5[1+a+a^2+a^3+a^4]\
& + mfracf(2)5[1+a+a^2+a^3+a^4]\
& + mfracf(3)5[1+a+a^2+a^3+a^4]\
& + mfracf(4)5[1+a+a^2+a^3+a^4]
endaligned\
& = f(0)
shortintertextSimilarly:
f(1)
&= mfrac15Bigl[hatf(chi_0)+mfrac1ahatf(chi_1)+mfrac1a^2hatf(chi_2)+mfrac1a^3hatf(chi_3)+mfrac1a^4hatf(chi_4)Bigr]\
& = f(1) \[1.5ex]
f(2)
&= mfrac15bigl[hatf(chi_0)+a^2hatf(chi_1)+a^4hatf(chi_2)+ahatf(chi_3)+a^3hatf(chi_4)bigr] \
& = f(2) \[1.5ex]
f(3)
&= mfrac15bigl[hatf(chi_0)+a^3hatf(chi_1)+ahatf(chi_2)+a^4hatf(chi_3)+a^2hatf(chi_4)bigr] \
& = f(3) \[1.5ex]
f(4)
&= mfrac15bigl[hatf(chi_0)+a^4hatf(chi_1)+a^3hatf(chi_2)+a^2hatf(chi_3)+ahatf(chi_4)bigr] \
& = f(4)
endalign*

enddocument


enter image description here






share|improve this answer

























  • this is nice however you missed out the remaining section for $f(0)$ aha!

    – Maths
    2 days ago











  • Oh! yes. I'll fix it in a moment

    – Bernard
    2 days ago











  • I had to slightly modify the code to make it fit on a single page (replaced intertext with shortintertext, and loading nccmath before mathtools to make it work).

    – Bernard
    2 days ago











  • there's still some code of f(0) missing aha. its where I group f(1) ... f(4) as f(1)[1+a+...+a^4] etc. Also, I don't mind if it runs over two pages. I don't want the text to be squashed, all I wanted is to make use of the empty white space :)

    – Maths
    2 days ago












  • Refer to my code in the question, you'll see the part you missed :)

    – Maths
    2 days ago















4














With this simpler code, it can all fit on a single page. I loaded nccmath for its medium-sized fractions, which look better for coefficients, in my opinion:



documentclass[11pt, a4paper]report
usepackage[utf8]inputenc
usepackage[T1]fontenc
usepackagebm
usepackagenccmath
usepackageamsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs
usepackagecolor
usepackagearray
usepackagesetspace% if you must (for double spacing thesis)
usepackagefancyhdr
usepackageenumitem
usepackagetikz
usepackageparskip
usepackagelipsum
usepackagefloatrow

begindocument

newcommandiuimkern1mu
[
setlengthextrarowheight3pt
beginarray c c c c c
& 0 & 1 & 2 & 3 & 4\
cline1-6
chi_0 & 1 & 1 & 1 & 1 & 1\
chi_1 & 1 & a & a^2 & a^3 & a^4\
chi_2 & 1 & a^2 & a^4 & a & a^3\
chi_3 & 1 & a^3 & a & a^4 & a^2\
chi_4 & 1 & a^4 & a^3 & a^2 & a\
endarray
]

with $a = expbiglfrac2pi iu5bigr$, hence $a^5=1$ with $|G|=5$.

Applying the definition of Fourier transform from definition 3.1.2 we have:
beginfleqn
beginalign*
hatf(chi_0) & =f(0)+f(1)+f(2)+f(3)+f(4) \
hatf(chi_1) & =f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4) \
hatf(chi_2) & =f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4) \
hatf(chi_3) & =f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4) \
hatf(chi_4) & =f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)
endalign*
endfleqn
Using definition 3.1.3. we can compute the inverse Fourier transform $f(t)$:
allowdisplaybreaks
beginalign*
f(0)
&=mfrac15bigl[ hatf(chi_0)+hatf(chi_1)+hatf(chi_2)+hatf(chi_3)+hatf(chi_4)bigr]\
& = beginaligned[t]
&mfrac15bigl[f(0)+f(1)+f(2)+f(3)+f(4)]\
& + mfrac15bigl[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)bigr]\
& + mfrac15bigl[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)bigr]\
& + mfrac15bigl[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)bigr]\
& + mfrac15bigl[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)bigr]
endaligned\
& =f(0) beginaligned[t]
& + mfracf(1)5[1+a+a^2+a^3+a^4]\
& + mfracf(2)5[1+a+a^2+a^3+a^4]\
& + mfracf(3)5[1+a+a^2+a^3+a^4]\
& + mfracf(4)5[1+a+a^2+a^3+a^4]
endaligned\
& = f(0)
shortintertextSimilarly:
f(1)
&= mfrac15Bigl[hatf(chi_0)+mfrac1ahatf(chi_1)+mfrac1a^2hatf(chi_2)+mfrac1a^3hatf(chi_3)+mfrac1a^4hatf(chi_4)Bigr]\
& = f(1) \[1.5ex]
f(2)
&= mfrac15bigl[hatf(chi_0)+a^2hatf(chi_1)+a^4hatf(chi_2)+ahatf(chi_3)+a^3hatf(chi_4)bigr] \
& = f(2) \[1.5ex]
f(3)
&= mfrac15bigl[hatf(chi_0)+a^3hatf(chi_1)+ahatf(chi_2)+a^4hatf(chi_3)+a^2hatf(chi_4)bigr] \
& = f(3) \[1.5ex]
f(4)
&= mfrac15bigl[hatf(chi_0)+a^4hatf(chi_1)+a^3hatf(chi_2)+a^2hatf(chi_3)+ahatf(chi_4)bigr] \
& = f(4)
endalign*

enddocument


enter image description here






share|improve this answer

























  • this is nice however you missed out the remaining section for $f(0)$ aha!

    – Maths
    2 days ago











  • Oh! yes. I'll fix it in a moment

    – Bernard
    2 days ago











  • I had to slightly modify the code to make it fit on a single page (replaced intertext with shortintertext, and loading nccmath before mathtools to make it work).

    – Bernard
    2 days ago











  • there's still some code of f(0) missing aha. its where I group f(1) ... f(4) as f(1)[1+a+...+a^4] etc. Also, I don't mind if it runs over two pages. I don't want the text to be squashed, all I wanted is to make use of the empty white space :)

    – Maths
    2 days ago












  • Refer to my code in the question, you'll see the part you missed :)

    – Maths
    2 days ago













4












4








4







With this simpler code, it can all fit on a single page. I loaded nccmath for its medium-sized fractions, which look better for coefficients, in my opinion:



documentclass[11pt, a4paper]report
usepackage[utf8]inputenc
usepackage[T1]fontenc
usepackagebm
usepackagenccmath
usepackageamsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs
usepackagecolor
usepackagearray
usepackagesetspace% if you must (for double spacing thesis)
usepackagefancyhdr
usepackageenumitem
usepackagetikz
usepackageparskip
usepackagelipsum
usepackagefloatrow

begindocument

newcommandiuimkern1mu
[
setlengthextrarowheight3pt
beginarray c c c c c
& 0 & 1 & 2 & 3 & 4\
cline1-6
chi_0 & 1 & 1 & 1 & 1 & 1\
chi_1 & 1 & a & a^2 & a^3 & a^4\
chi_2 & 1 & a^2 & a^4 & a & a^3\
chi_3 & 1 & a^3 & a & a^4 & a^2\
chi_4 & 1 & a^4 & a^3 & a^2 & a\
endarray
]

with $a = expbiglfrac2pi iu5bigr$, hence $a^5=1$ with $|G|=5$.

Applying the definition of Fourier transform from definition 3.1.2 we have:
beginfleqn
beginalign*
hatf(chi_0) & =f(0)+f(1)+f(2)+f(3)+f(4) \
hatf(chi_1) & =f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4) \
hatf(chi_2) & =f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4) \
hatf(chi_3) & =f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4) \
hatf(chi_4) & =f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)
endalign*
endfleqn
Using definition 3.1.3. we can compute the inverse Fourier transform $f(t)$:
allowdisplaybreaks
beginalign*
f(0)
&=mfrac15bigl[ hatf(chi_0)+hatf(chi_1)+hatf(chi_2)+hatf(chi_3)+hatf(chi_4)bigr]\
& = beginaligned[t]
&mfrac15bigl[f(0)+f(1)+f(2)+f(3)+f(4)]\
& + mfrac15bigl[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)bigr]\
& + mfrac15bigl[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)bigr]\
& + mfrac15bigl[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)bigr]\
& + mfrac15bigl[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)bigr]
endaligned\
& =f(0) beginaligned[t]
& + mfracf(1)5[1+a+a^2+a^3+a^4]\
& + mfracf(2)5[1+a+a^2+a^3+a^4]\
& + mfracf(3)5[1+a+a^2+a^3+a^4]\
& + mfracf(4)5[1+a+a^2+a^3+a^4]
endaligned\
& = f(0)
shortintertextSimilarly:
f(1)
&= mfrac15Bigl[hatf(chi_0)+mfrac1ahatf(chi_1)+mfrac1a^2hatf(chi_2)+mfrac1a^3hatf(chi_3)+mfrac1a^4hatf(chi_4)Bigr]\
& = f(1) \[1.5ex]
f(2)
&= mfrac15bigl[hatf(chi_0)+a^2hatf(chi_1)+a^4hatf(chi_2)+ahatf(chi_3)+a^3hatf(chi_4)bigr] \
& = f(2) \[1.5ex]
f(3)
&= mfrac15bigl[hatf(chi_0)+a^3hatf(chi_1)+ahatf(chi_2)+a^4hatf(chi_3)+a^2hatf(chi_4)bigr] \
& = f(3) \[1.5ex]
f(4)
&= mfrac15bigl[hatf(chi_0)+a^4hatf(chi_1)+a^3hatf(chi_2)+a^2hatf(chi_3)+ahatf(chi_4)bigr] \
& = f(4)
endalign*

enddocument


enter image description here






share|improve this answer















With this simpler code, it can all fit on a single page. I loaded nccmath for its medium-sized fractions, which look better for coefficients, in my opinion:



documentclass[11pt, a4paper]report
usepackage[utf8]inputenc
usepackage[T1]fontenc
usepackagebm
usepackagenccmath
usepackageamsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs
usepackagecolor
usepackagearray
usepackagesetspace% if you must (for double spacing thesis)
usepackagefancyhdr
usepackageenumitem
usepackagetikz
usepackageparskip
usepackagelipsum
usepackagefloatrow

begindocument

newcommandiuimkern1mu
[
setlengthextrarowheight3pt
beginarray c c c c c
& 0 & 1 & 2 & 3 & 4\
cline1-6
chi_0 & 1 & 1 & 1 & 1 & 1\
chi_1 & 1 & a & a^2 & a^3 & a^4\
chi_2 & 1 & a^2 & a^4 & a & a^3\
chi_3 & 1 & a^3 & a & a^4 & a^2\
chi_4 & 1 & a^4 & a^3 & a^2 & a\
endarray
]

with $a = expbiglfrac2pi iu5bigr$, hence $a^5=1$ with $|G|=5$.

Applying the definition of Fourier transform from definition 3.1.2 we have:
beginfleqn
beginalign*
hatf(chi_0) & =f(0)+f(1)+f(2)+f(3)+f(4) \
hatf(chi_1) & =f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4) \
hatf(chi_2) & =f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4) \
hatf(chi_3) & =f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4) \
hatf(chi_4) & =f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)
endalign*
endfleqn
Using definition 3.1.3. we can compute the inverse Fourier transform $f(t)$:
allowdisplaybreaks
beginalign*
f(0)
&=mfrac15bigl[ hatf(chi_0)+hatf(chi_1)+hatf(chi_2)+hatf(chi_3)+hatf(chi_4)bigr]\
& = beginaligned[t]
&mfrac15bigl[f(0)+f(1)+f(2)+f(3)+f(4)]\
& + mfrac15bigl[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)bigr]\
& + mfrac15bigl[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)bigr]\
& + mfrac15bigl[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)bigr]\
& + mfrac15bigl[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)bigr]
endaligned\
& =f(0) beginaligned[t]
& + mfracf(1)5[1+a+a^2+a^3+a^4]\
& + mfracf(2)5[1+a+a^2+a^3+a^4]\
& + mfracf(3)5[1+a+a^2+a^3+a^4]\
& + mfracf(4)5[1+a+a^2+a^3+a^4]
endaligned\
& = f(0)
shortintertextSimilarly:
f(1)
&= mfrac15Bigl[hatf(chi_0)+mfrac1ahatf(chi_1)+mfrac1a^2hatf(chi_2)+mfrac1a^3hatf(chi_3)+mfrac1a^4hatf(chi_4)Bigr]\
& = f(1) \[1.5ex]
f(2)
&= mfrac15bigl[hatf(chi_0)+a^2hatf(chi_1)+a^4hatf(chi_2)+ahatf(chi_3)+a^3hatf(chi_4)bigr] \
& = f(2) \[1.5ex]
f(3)
&= mfrac15bigl[hatf(chi_0)+a^3hatf(chi_1)+ahatf(chi_2)+a^4hatf(chi_3)+a^2hatf(chi_4)bigr] \
& = f(3) \[1.5ex]
f(4)
&= mfrac15bigl[hatf(chi_0)+a^4hatf(chi_1)+a^3hatf(chi_2)+a^2hatf(chi_3)+ahatf(chi_4)bigr] \
& = f(4)
endalign*

enddocument


enter image description here







share|improve this answer














share|improve this answer



share|improve this answer








edited 2 days ago

























answered May 1 at 16:54









BernardBernard

178k779211




178k779211












  • this is nice however you missed out the remaining section for $f(0)$ aha!

    – Maths
    2 days ago











  • Oh! yes. I'll fix it in a moment

    – Bernard
    2 days ago











  • I had to slightly modify the code to make it fit on a single page (replaced intertext with shortintertext, and loading nccmath before mathtools to make it work).

    – Bernard
    2 days ago











  • there's still some code of f(0) missing aha. its where I group f(1) ... f(4) as f(1)[1+a+...+a^4] etc. Also, I don't mind if it runs over two pages. I don't want the text to be squashed, all I wanted is to make use of the empty white space :)

    – Maths
    2 days ago












  • Refer to my code in the question, you'll see the part you missed :)

    – Maths
    2 days ago

















  • this is nice however you missed out the remaining section for $f(0)$ aha!

    – Maths
    2 days ago











  • Oh! yes. I'll fix it in a moment

    – Bernard
    2 days ago











  • I had to slightly modify the code to make it fit on a single page (replaced intertext with shortintertext, and loading nccmath before mathtools to make it work).

    – Bernard
    2 days ago











  • there's still some code of f(0) missing aha. its where I group f(1) ... f(4) as f(1)[1+a+...+a^4] etc. Also, I don't mind if it runs over two pages. I don't want the text to be squashed, all I wanted is to make use of the empty white space :)

    – Maths
    2 days ago












  • Refer to my code in the question, you'll see the part you missed :)

    – Maths
    2 days ago
















this is nice however you missed out the remaining section for $f(0)$ aha!

– Maths
2 days ago





this is nice however you missed out the remaining section for $f(0)$ aha!

– Maths
2 days ago













Oh! yes. I'll fix it in a moment

– Bernard
2 days ago





Oh! yes. I'll fix it in a moment

– Bernard
2 days ago













I had to slightly modify the code to make it fit on a single page (replaced intertext with shortintertext, and loading nccmath before mathtools to make it work).

– Bernard
2 days ago





I had to slightly modify the code to make it fit on a single page (replaced intertext with shortintertext, and loading nccmath before mathtools to make it work).

– Bernard
2 days ago













there's still some code of f(0) missing aha. its where I group f(1) ... f(4) as f(1)[1+a+...+a^4] etc. Also, I don't mind if it runs over two pages. I don't want the text to be squashed, all I wanted is to make use of the empty white space :)

– Maths
2 days ago






there's still some code of f(0) missing aha. its where I group f(1) ... f(4) as f(1)[1+a+...+a^4] etc. Also, I don't mind if it runs over two pages. I don't want the text to be squashed, all I wanted is to make use of the empty white space :)

– Maths
2 days ago














Refer to my code in the question, you'll see the part you missed :)

– Maths
2 days ago





Refer to my code in the question, you'll see the part you missed :)

– Maths
2 days ago











4














You should avoid \ on the last line of alignments. Perhaps the following is closer to what you want:



Sample output



documentclass[11pt, a4paper]report

usepackageamsmath,array

begindocument

newcommandiuimkern1mu
beginequation*
setlengthextrarowheight3pt
begintabular c c c c c
& $0$ & $1$ & $2$ & $3$ & $4$\
cline1-6
$chi_0$ & $1$ & $1$ & $1$ & $1$ & $1$\
$chi_1$ & $1$ & $a$ & $a^2$ & $a^3$ & $a^4$\
$chi_2$ & $1$ & $a^2$ & $a^4$ & $a$ & $a^3$\
$chi_3$ & $1$ & $a^3$ & $a$ & $a^4$ & $a^2$\
$chi_4$ & $1$ & $a^4$ & $a^3$ & $a^2$ & $a$\
endtabular
endequation*
with $a = expfrac2piiu5$ hence $a^5=1$ with $|G|=5$.

Applying the definition of Fourier transform from Definition~3.1.2 we
have:
beginalign*
hatf(chi_0) &=f(0)+f(1)+f(2)+f(3)+f(4),\
hatf(chi_1) &=f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4),\
hatf(chi_2) &=f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4),\
hatf(chi_3) &=f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4),\
hatf(chi_4) &=f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4).
endalign*
Using Definition~3.1.3 we can compute the inverse Fourier transform
$f(t)$:
beginalign*
f(0)
&=frac15[ hatf(chi_0) + hatf(chi_1) + hatf(chi_2) +
hatf(chi_3) + hatf(chi_4)]\
&=frac15[f(0)+f(1)+f(2)+f(3)+f(4)]\
&qquad + frac15[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)]\
&qquad + frac15[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)]\
&qquad + frac15[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)]\
&qquad + frac15[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)]
\
&= f(0)\
&qquad + fracf(1)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(2)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(3)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(4)5[1+a+a^2+a^3+a^4]\
&=f(0).
endalign*
Similarly
beginalign*
f(1)
&= frac15Bigl[hatf(chi_0) + frac1ahatf(chi_1) +
frac1a^2hatf(chi_2) + frac1a^3hatf(chi_3) +
frac1a^4hatf(chi_4)Bigr]\
&=f(1),\
f(2)
&= frac15[hatf(chi_0) + a^2hatf(chi_1) +
a^4hatf(chi_2) + ahatf(chi_3) + a^3hatf(chi_4)]\
&=f(2), \
f(3)
&= frac15[hatf(chi_0) + a^3hatf(chi_1) +
ahatf(chi_2) + a^4hatf(chi_3) + a^2hatf(chi_4)]\
&=f(3),\
f(4)
&= frac15[hatf(chi_0) + a^4hatf(chi_1) +
a^3hatf(chi_2) + a^2hatf(chi_3) + ahatf(chi_4)]\
& =f(4).
endalign*
enddocument





share|improve this answer

























  • why did you push f(0) outwards? it wasn't necessary. but thanks for your solution

    – Maths
    May 1 at 15:42







  • 1





    The +'s should not be under the =, but to the right of it as they belong to that side of the equation. Whether you want to indent by qquad as I did, or the smaller quad is a matter of taste.

    – Andrew Swann
    May 1 at 18:28















4














You should avoid \ on the last line of alignments. Perhaps the following is closer to what you want:



Sample output



documentclass[11pt, a4paper]report

usepackageamsmath,array

begindocument

newcommandiuimkern1mu
beginequation*
setlengthextrarowheight3pt
begintabular c c c c c
& $0$ & $1$ & $2$ & $3$ & $4$\
cline1-6
$chi_0$ & $1$ & $1$ & $1$ & $1$ & $1$\
$chi_1$ & $1$ & $a$ & $a^2$ & $a^3$ & $a^4$\
$chi_2$ & $1$ & $a^2$ & $a^4$ & $a$ & $a^3$\
$chi_3$ & $1$ & $a^3$ & $a$ & $a^4$ & $a^2$\
$chi_4$ & $1$ & $a^4$ & $a^3$ & $a^2$ & $a$\
endtabular
endequation*
with $a = expfrac2piiu5$ hence $a^5=1$ with $|G|=5$.

Applying the definition of Fourier transform from Definition~3.1.2 we
have:
beginalign*
hatf(chi_0) &=f(0)+f(1)+f(2)+f(3)+f(4),\
hatf(chi_1) &=f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4),\
hatf(chi_2) &=f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4),\
hatf(chi_3) &=f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4),\
hatf(chi_4) &=f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4).
endalign*
Using Definition~3.1.3 we can compute the inverse Fourier transform
$f(t)$:
beginalign*
f(0)
&=frac15[ hatf(chi_0) + hatf(chi_1) + hatf(chi_2) +
hatf(chi_3) + hatf(chi_4)]\
&=frac15[f(0)+f(1)+f(2)+f(3)+f(4)]\
&qquad + frac15[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)]\
&qquad + frac15[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)]\
&qquad + frac15[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)]\
&qquad + frac15[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)]
\
&= f(0)\
&qquad + fracf(1)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(2)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(3)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(4)5[1+a+a^2+a^3+a^4]\
&=f(0).
endalign*
Similarly
beginalign*
f(1)
&= frac15Bigl[hatf(chi_0) + frac1ahatf(chi_1) +
frac1a^2hatf(chi_2) + frac1a^3hatf(chi_3) +
frac1a^4hatf(chi_4)Bigr]\
&=f(1),\
f(2)
&= frac15[hatf(chi_0) + a^2hatf(chi_1) +
a^4hatf(chi_2) + ahatf(chi_3) + a^3hatf(chi_4)]\
&=f(2), \
f(3)
&= frac15[hatf(chi_0) + a^3hatf(chi_1) +
ahatf(chi_2) + a^4hatf(chi_3) + a^2hatf(chi_4)]\
&=f(3),\
f(4)
&= frac15[hatf(chi_0) + a^4hatf(chi_1) +
a^3hatf(chi_2) + a^2hatf(chi_3) + ahatf(chi_4)]\
& =f(4).
endalign*
enddocument





share|improve this answer

























  • why did you push f(0) outwards? it wasn't necessary. but thanks for your solution

    – Maths
    May 1 at 15:42







  • 1





    The +'s should not be under the =, but to the right of it as they belong to that side of the equation. Whether you want to indent by qquad as I did, or the smaller quad is a matter of taste.

    – Andrew Swann
    May 1 at 18:28













4












4








4







You should avoid \ on the last line of alignments. Perhaps the following is closer to what you want:



Sample output



documentclass[11pt, a4paper]report

usepackageamsmath,array

begindocument

newcommandiuimkern1mu
beginequation*
setlengthextrarowheight3pt
begintabular c c c c c
& $0$ & $1$ & $2$ & $3$ & $4$\
cline1-6
$chi_0$ & $1$ & $1$ & $1$ & $1$ & $1$\
$chi_1$ & $1$ & $a$ & $a^2$ & $a^3$ & $a^4$\
$chi_2$ & $1$ & $a^2$ & $a^4$ & $a$ & $a^3$\
$chi_3$ & $1$ & $a^3$ & $a$ & $a^4$ & $a^2$\
$chi_4$ & $1$ & $a^4$ & $a^3$ & $a^2$ & $a$\
endtabular
endequation*
with $a = expfrac2piiu5$ hence $a^5=1$ with $|G|=5$.

Applying the definition of Fourier transform from Definition~3.1.2 we
have:
beginalign*
hatf(chi_0) &=f(0)+f(1)+f(2)+f(3)+f(4),\
hatf(chi_1) &=f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4),\
hatf(chi_2) &=f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4),\
hatf(chi_3) &=f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4),\
hatf(chi_4) &=f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4).
endalign*
Using Definition~3.1.3 we can compute the inverse Fourier transform
$f(t)$:
beginalign*
f(0)
&=frac15[ hatf(chi_0) + hatf(chi_1) + hatf(chi_2) +
hatf(chi_3) + hatf(chi_4)]\
&=frac15[f(0)+f(1)+f(2)+f(3)+f(4)]\
&qquad + frac15[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)]\
&qquad + frac15[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)]\
&qquad + frac15[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)]\
&qquad + frac15[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)]
\
&= f(0)\
&qquad + fracf(1)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(2)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(3)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(4)5[1+a+a^2+a^3+a^4]\
&=f(0).
endalign*
Similarly
beginalign*
f(1)
&= frac15Bigl[hatf(chi_0) + frac1ahatf(chi_1) +
frac1a^2hatf(chi_2) + frac1a^3hatf(chi_3) +
frac1a^4hatf(chi_4)Bigr]\
&=f(1),\
f(2)
&= frac15[hatf(chi_0) + a^2hatf(chi_1) +
a^4hatf(chi_2) + ahatf(chi_3) + a^3hatf(chi_4)]\
&=f(2), \
f(3)
&= frac15[hatf(chi_0) + a^3hatf(chi_1) +
ahatf(chi_2) + a^4hatf(chi_3) + a^2hatf(chi_4)]\
&=f(3),\
f(4)
&= frac15[hatf(chi_0) + a^4hatf(chi_1) +
a^3hatf(chi_2) + a^2hatf(chi_3) + ahatf(chi_4)]\
& =f(4).
endalign*
enddocument





share|improve this answer















You should avoid \ on the last line of alignments. Perhaps the following is closer to what you want:



Sample output



documentclass[11pt, a4paper]report

usepackageamsmath,array

begindocument

newcommandiuimkern1mu
beginequation*
setlengthextrarowheight3pt
begintabular c c c c c
& $0$ & $1$ & $2$ & $3$ & $4$\
cline1-6
$chi_0$ & $1$ & $1$ & $1$ & $1$ & $1$\
$chi_1$ & $1$ & $a$ & $a^2$ & $a^3$ & $a^4$\
$chi_2$ & $1$ & $a^2$ & $a^4$ & $a$ & $a^3$\
$chi_3$ & $1$ & $a^3$ & $a$ & $a^4$ & $a^2$\
$chi_4$ & $1$ & $a^4$ & $a^3$ & $a^2$ & $a$\
endtabular
endequation*
with $a = expfrac2piiu5$ hence $a^5=1$ with $|G|=5$.

Applying the definition of Fourier transform from Definition~3.1.2 we
have:
beginalign*
hatf(chi_0) &=f(0)+f(1)+f(2)+f(3)+f(4),\
hatf(chi_1) &=f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4),\
hatf(chi_2) &=f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4),\
hatf(chi_3) &=f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4),\
hatf(chi_4) &=f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4).
endalign*
Using Definition~3.1.3 we can compute the inverse Fourier transform
$f(t)$:
beginalign*
f(0)
&=frac15[ hatf(chi_0) + hatf(chi_1) + hatf(chi_2) +
hatf(chi_3) + hatf(chi_4)]\
&=frac15[f(0)+f(1)+f(2)+f(3)+f(4)]\
&qquad + frac15[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)]\
&qquad + frac15[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)]\
&qquad + frac15[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)]\
&qquad + frac15[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)]
\
&= f(0)\
&qquad + fracf(1)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(2)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(3)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(4)5[1+a+a^2+a^3+a^4]\
&=f(0).
endalign*
Similarly
beginalign*
f(1)
&= frac15Bigl[hatf(chi_0) + frac1ahatf(chi_1) +
frac1a^2hatf(chi_2) + frac1a^3hatf(chi_3) +
frac1a^4hatf(chi_4)Bigr]\
&=f(1),\
f(2)
&= frac15[hatf(chi_0) + a^2hatf(chi_1) +
a^4hatf(chi_2) + ahatf(chi_3) + a^3hatf(chi_4)]\
&=f(2), \
f(3)
&= frac15[hatf(chi_0) + a^3hatf(chi_1) +
ahatf(chi_2) + a^4hatf(chi_3) + a^2hatf(chi_4)]\
&=f(3),\
f(4)
&= frac15[hatf(chi_0) + a^4hatf(chi_1) +
a^3hatf(chi_2) + a^2hatf(chi_3) + ahatf(chi_4)]\
& =f(4).
endalign*
enddocument






share|improve this answer














share|improve this answer



share|improve this answer








edited May 1 at 18:25

























answered May 1 at 15:09









Andrew SwannAndrew Swann

78.8k9138336




78.8k9138336












  • why did you push f(0) outwards? it wasn't necessary. but thanks for your solution

    – Maths
    May 1 at 15:42







  • 1





    The +'s should not be under the =, but to the right of it as they belong to that side of the equation. Whether you want to indent by qquad as I did, or the smaller quad is a matter of taste.

    – Andrew Swann
    May 1 at 18:28

















  • why did you push f(0) outwards? it wasn't necessary. but thanks for your solution

    – Maths
    May 1 at 15:42







  • 1





    The +'s should not be under the =, but to the right of it as they belong to that side of the equation. Whether you want to indent by qquad as I did, or the smaller quad is a matter of taste.

    – Andrew Swann
    May 1 at 18:28
















why did you push f(0) outwards? it wasn't necessary. but thanks for your solution

– Maths
May 1 at 15:42






why did you push f(0) outwards? it wasn't necessary. but thanks for your solution

– Maths
May 1 at 15:42





1




1





The +'s should not be under the =, but to the right of it as they belong to that side of the equation. Whether you want to indent by qquad as I did, or the smaller quad is a matter of taste.

– Andrew Swann
May 1 at 18:28





The +'s should not be under the =, but to the right of it as they belong to that side of the equation. Whether you want to indent by qquad as I did, or the smaller quad is a matter of taste.

– Andrew Swann
May 1 at 18:28

















draft saved

draft discarded
















































Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f488606%2freducing-the-white-spacing%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation

Magento 2 “No Payment Methods” in Admin New OrderHow to integrate Paypal Express Checkout with the Magento APIMagento 1.5 - Sales > Order > edit order and shipping methods disappearAuto Invoice Check/Money Order Payment methodAdd more simple payment methods?Shipping methods not showingWhat should I do to change payment methods if changing the configuration has no effects?1.9 - No Payment Methods showing upMy Payment Methods not Showing for downloadable/virtual product when checkout?Magento2 API to access internal payment methodHow to call an existing payment methods in the registration form?