Reducing the white spacingReducing the title spacingReducing white space above date in Letter ClassReducing spacing after headingsReducing the spaces before and after smallsetminusNon-uniform white spacing with vspaceReducing chapter and section spacing for scrbookReducing spacing between section headings and text in resumeAutomatically reducing spacing before punctuation in math modereducing the spacing between bib itemsReducing space in the Table of Contents
Should I simplify my writing in a foreign country?
It isn’t that you must stop now
Game artist computer workstation set-up – is this overkill?
Looking for sci-fi book based on Hinduism/Buddhism
GitLab account hacked and repo wiped
Sci-fi/fantasy book - ships on steel runners skating across ice sheets
Why would a military not separate its forces into different branches?
Dihedral group D4 composition with custom labels
Where to draw the line between quantum mechanics theory and its interpretation(s)?
What is a common way to tell if an academic is "above average," or outstanding in their field? Is their h-index (Hirsh index) one of them?
Is there precedent or are there procedures for a US president refusing to concede to an electoral defeat?
What is the closest airport to the center of the city it serves?
Piano: quaver triplets in RH v dotted quaver and semiquaver in LH
How did the Apollo guidance computer handle parity bit errors?
Is Iron Man stronger than the Hulk?
How to deal with employer who keeps me at work after working hours
Is 'contemporary' ambiguous and if so is there a better word?
Is there a word for food that's gone 'bad', but is still edible?
Make me a minimum magic sum
Should homeowners insurance cover the cost of the home?
Sparring against two opponents test
Counting the Number of Real Roots of A Polynomial
Constitutional limitation of criminalizing behavior in US law?
What to do when scriptures go against conscience?
Reducing the white spacing
Reducing the title spacingReducing white space above date in Letter ClassReducing spacing after headingsReducing the spaces before and after smallsetminusNon-uniform white spacing with vspaceReducing chapter and section spacing for scrbookReducing spacing between section headings and text in resumeAutomatically reducing spacing before punctuation in math modereducing the spacing between bib itemsReducing space in the Table of Contents
documentclass[11pt, a4paper]report
usepackagebm
usepackageamsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs
usepackagecolor
usepackagearray
usepackagesetspace% if you must (for double spacing thesis)
usepackagefancyhdr
usepackageenumitem
usepackagetikz
usepackageparskip
usepackagelipsum
usepackagefloatrow
begindocument
newcommandiuimkern1mu
beginalign*
setlengthextrarowheight3pt
noindentbegintabular c c c c c
& $0$ & $1$ & $2$ & $3$ & $4$\
cline1-6
$chi_0$ & $1$ & $1$ & $1$ & $1$ & $1$\
$chi_1$ & $1$ & $a$ & $a^2$ & $a^3$ & $a^4$\
$chi_2$ & $1$ & $a^2$ & $a^4$ & $a$ & $a^3$\
$chi_3$ & $1$ & $a^3$ & $a$ & $a^4$ & $a^2$\
$chi_4$ & $1$ & $a^4$ & $a^3$ & $a^2$ & $a$\
endtabular
endalign*
with $a = expfrac2piiu5$ hence $a^5=1$ with $|G|=5$.
Applying the definition of Fourier transform from definition 3.1.2 we have:
doublespacing
$hatf(chi_0)=f(0)+f(1)+f(2)+f(3)+f(4)$\
$hatf(chi_1)=f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)$\
$hatf(chi_2)=f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)$\
$hatf(chi_3)=f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)$\
$hatf(chi_4)=f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)$\
Using definition 3.1.3. we can compute the inverse Fourier transform $f(t)$:
beginalign*
f(0)
&=frac15[ hatf(chi_0)+hatf(chi_1)+hatf(chi_2)+hatf(chi_3)+hatf(chi_4)]\
&beginaligned[t]
=&frac15[f(0)+f(1)+f(2)+f(3)+f(4)]\
+&frac15[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)]\
+&frac15[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)]\
+&frac15[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)]\
+&frac15[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)]
endaligned
\
&beginaligned[t]
=&f(0)\
+&fracf(1)5[1+a+a^2+a^3+a^4]\
+&fracf(2)5[1+a+a^2+a^3+a^4]\
+&fracf(3)5[1+a+a^2+a^3+a^4]\
+&fracf(4)5[1+a+a^2+a^3+a^4]\
=&f(0)
endaligned
endalign*
Similarly
beginalign*
f(1)
&= frac15[hatf(chi_0)+frac1ahatf(chi_1)+frac1a^2hatf(chi_2)+frac1a^3hatf(chi_3)+frac1a^4hatf(chi_4)]\
&beginaligned[t]
=&f(1)
endaligned
endalign*
beginalign*
f(2)
&= frac15[hatf(chi_0)+a^2hatf(chi_1)+a^4hatf(chi_2)+ahatf(chi_3)+a^3hatf(chi_4)]\
&beginaligned[t]
=&f(2)
endaligned
endalign*
beginalign*
f(3)
&= frac15[hatf(chi_0)+a^3hatf(chi_1)+ahatf(chi_2)+a^4hatf(chi_3)+a^2hatf(chi_4)]\
&beginaligned[t]
=&f(3)
endaligned
endalign*
beginalign*
f(4)
&= frac15[hatf(chi_0)+a^4hatf(chi_1)+a^3hatf(chi_2)+a^2hatf(chi_3)+ahatf(chi_4)]\
&beginaligned[t]
=&f(4)
endaligned
endalign*
enddocument
How can I reduce the spacing in this? Where it says "using definition....." I would like to move this up to $hatf(chi_4)$. Also I want to reduce the spacing of $f(1) = ... = f(1)$ and $f(2) = ... = f(2)$ etc.
Edit: I've attached all 3 pages so you guys get the full picture of what the issue is.
spacing
add a comment |
documentclass[11pt, a4paper]report
usepackagebm
usepackageamsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs
usepackagecolor
usepackagearray
usepackagesetspace% if you must (for double spacing thesis)
usepackagefancyhdr
usepackageenumitem
usepackagetikz
usepackageparskip
usepackagelipsum
usepackagefloatrow
begindocument
newcommandiuimkern1mu
beginalign*
setlengthextrarowheight3pt
noindentbegintabular c c c c c
& $0$ & $1$ & $2$ & $3$ & $4$\
cline1-6
$chi_0$ & $1$ & $1$ & $1$ & $1$ & $1$\
$chi_1$ & $1$ & $a$ & $a^2$ & $a^3$ & $a^4$\
$chi_2$ & $1$ & $a^2$ & $a^4$ & $a$ & $a^3$\
$chi_3$ & $1$ & $a^3$ & $a$ & $a^4$ & $a^2$\
$chi_4$ & $1$ & $a^4$ & $a^3$ & $a^2$ & $a$\
endtabular
endalign*
with $a = expfrac2piiu5$ hence $a^5=1$ with $|G|=5$.
Applying the definition of Fourier transform from definition 3.1.2 we have:
doublespacing
$hatf(chi_0)=f(0)+f(1)+f(2)+f(3)+f(4)$\
$hatf(chi_1)=f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)$\
$hatf(chi_2)=f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)$\
$hatf(chi_3)=f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)$\
$hatf(chi_4)=f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)$\
Using definition 3.1.3. we can compute the inverse Fourier transform $f(t)$:
beginalign*
f(0)
&=frac15[ hatf(chi_0)+hatf(chi_1)+hatf(chi_2)+hatf(chi_3)+hatf(chi_4)]\
&beginaligned[t]
=&frac15[f(0)+f(1)+f(2)+f(3)+f(4)]\
+&frac15[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)]\
+&frac15[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)]\
+&frac15[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)]\
+&frac15[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)]
endaligned
\
&beginaligned[t]
=&f(0)\
+&fracf(1)5[1+a+a^2+a^3+a^4]\
+&fracf(2)5[1+a+a^2+a^3+a^4]\
+&fracf(3)5[1+a+a^2+a^3+a^4]\
+&fracf(4)5[1+a+a^2+a^3+a^4]\
=&f(0)
endaligned
endalign*
Similarly
beginalign*
f(1)
&= frac15[hatf(chi_0)+frac1ahatf(chi_1)+frac1a^2hatf(chi_2)+frac1a^3hatf(chi_3)+frac1a^4hatf(chi_4)]\
&beginaligned[t]
=&f(1)
endaligned
endalign*
beginalign*
f(2)
&= frac15[hatf(chi_0)+a^2hatf(chi_1)+a^4hatf(chi_2)+ahatf(chi_3)+a^3hatf(chi_4)]\
&beginaligned[t]
=&f(2)
endaligned
endalign*
beginalign*
f(3)
&= frac15[hatf(chi_0)+a^3hatf(chi_1)+ahatf(chi_2)+a^4hatf(chi_3)+a^2hatf(chi_4)]\
&beginaligned[t]
=&f(3)
endaligned
endalign*
beginalign*
f(4)
&= frac15[hatf(chi_0)+a^4hatf(chi_1)+a^3hatf(chi_2)+a^2hatf(chi_3)+ahatf(chi_4)]\
&beginaligned[t]
=&f(4)
endaligned
endalign*
enddocument
How can I reduce the spacing in this? Where it says "using definition....." I would like to move this up to $hatf(chi_4)$. Also I want to reduce the spacing of $f(1) = ... = f(1)$ and $f(2) = ... = f(2)$ etc.
Edit: I've attached all 3 pages so you guys get the full picture of what the issue is.
spacing
Unrelated to the issue, but switching from tabular to array you can remove all the repeated $ signs.
– leandriis
May 1 at 16:37
add a comment |
documentclass[11pt, a4paper]report
usepackagebm
usepackageamsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs
usepackagecolor
usepackagearray
usepackagesetspace% if you must (for double spacing thesis)
usepackagefancyhdr
usepackageenumitem
usepackagetikz
usepackageparskip
usepackagelipsum
usepackagefloatrow
begindocument
newcommandiuimkern1mu
beginalign*
setlengthextrarowheight3pt
noindentbegintabular c c c c c
& $0$ & $1$ & $2$ & $3$ & $4$\
cline1-6
$chi_0$ & $1$ & $1$ & $1$ & $1$ & $1$\
$chi_1$ & $1$ & $a$ & $a^2$ & $a^3$ & $a^4$\
$chi_2$ & $1$ & $a^2$ & $a^4$ & $a$ & $a^3$\
$chi_3$ & $1$ & $a^3$ & $a$ & $a^4$ & $a^2$\
$chi_4$ & $1$ & $a^4$ & $a^3$ & $a^2$ & $a$\
endtabular
endalign*
with $a = expfrac2piiu5$ hence $a^5=1$ with $|G|=5$.
Applying the definition of Fourier transform from definition 3.1.2 we have:
doublespacing
$hatf(chi_0)=f(0)+f(1)+f(2)+f(3)+f(4)$\
$hatf(chi_1)=f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)$\
$hatf(chi_2)=f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)$\
$hatf(chi_3)=f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)$\
$hatf(chi_4)=f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)$\
Using definition 3.1.3. we can compute the inverse Fourier transform $f(t)$:
beginalign*
f(0)
&=frac15[ hatf(chi_0)+hatf(chi_1)+hatf(chi_2)+hatf(chi_3)+hatf(chi_4)]\
&beginaligned[t]
=&frac15[f(0)+f(1)+f(2)+f(3)+f(4)]\
+&frac15[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)]\
+&frac15[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)]\
+&frac15[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)]\
+&frac15[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)]
endaligned
\
&beginaligned[t]
=&f(0)\
+&fracf(1)5[1+a+a^2+a^3+a^4]\
+&fracf(2)5[1+a+a^2+a^3+a^4]\
+&fracf(3)5[1+a+a^2+a^3+a^4]\
+&fracf(4)5[1+a+a^2+a^3+a^4]\
=&f(0)
endaligned
endalign*
Similarly
beginalign*
f(1)
&= frac15[hatf(chi_0)+frac1ahatf(chi_1)+frac1a^2hatf(chi_2)+frac1a^3hatf(chi_3)+frac1a^4hatf(chi_4)]\
&beginaligned[t]
=&f(1)
endaligned
endalign*
beginalign*
f(2)
&= frac15[hatf(chi_0)+a^2hatf(chi_1)+a^4hatf(chi_2)+ahatf(chi_3)+a^3hatf(chi_4)]\
&beginaligned[t]
=&f(2)
endaligned
endalign*
beginalign*
f(3)
&= frac15[hatf(chi_0)+a^3hatf(chi_1)+ahatf(chi_2)+a^4hatf(chi_3)+a^2hatf(chi_4)]\
&beginaligned[t]
=&f(3)
endaligned
endalign*
beginalign*
f(4)
&= frac15[hatf(chi_0)+a^4hatf(chi_1)+a^3hatf(chi_2)+a^2hatf(chi_3)+ahatf(chi_4)]\
&beginaligned[t]
=&f(4)
endaligned
endalign*
enddocument
How can I reduce the spacing in this? Where it says "using definition....." I would like to move this up to $hatf(chi_4)$. Also I want to reduce the spacing of $f(1) = ... = f(1)$ and $f(2) = ... = f(2)$ etc.
Edit: I've attached all 3 pages so you guys get the full picture of what the issue is.
spacing
documentclass[11pt, a4paper]report
usepackagebm
usepackageamsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs
usepackagecolor
usepackagearray
usepackagesetspace% if you must (for double spacing thesis)
usepackagefancyhdr
usepackageenumitem
usepackagetikz
usepackageparskip
usepackagelipsum
usepackagefloatrow
begindocument
newcommandiuimkern1mu
beginalign*
setlengthextrarowheight3pt
noindentbegintabular c c c c c
& $0$ & $1$ & $2$ & $3$ & $4$\
cline1-6
$chi_0$ & $1$ & $1$ & $1$ & $1$ & $1$\
$chi_1$ & $1$ & $a$ & $a^2$ & $a^3$ & $a^4$\
$chi_2$ & $1$ & $a^2$ & $a^4$ & $a$ & $a^3$\
$chi_3$ & $1$ & $a^3$ & $a$ & $a^4$ & $a^2$\
$chi_4$ & $1$ & $a^4$ & $a^3$ & $a^2$ & $a$\
endtabular
endalign*
with $a = expfrac2piiu5$ hence $a^5=1$ with $|G|=5$.
Applying the definition of Fourier transform from definition 3.1.2 we have:
doublespacing
$hatf(chi_0)=f(0)+f(1)+f(2)+f(3)+f(4)$\
$hatf(chi_1)=f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)$\
$hatf(chi_2)=f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)$\
$hatf(chi_3)=f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)$\
$hatf(chi_4)=f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)$\
Using definition 3.1.3. we can compute the inverse Fourier transform $f(t)$:
beginalign*
f(0)
&=frac15[ hatf(chi_0)+hatf(chi_1)+hatf(chi_2)+hatf(chi_3)+hatf(chi_4)]\
&beginaligned[t]
=&frac15[f(0)+f(1)+f(2)+f(3)+f(4)]\
+&frac15[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)]\
+&frac15[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)]\
+&frac15[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)]\
+&frac15[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)]
endaligned
\
&beginaligned[t]
=&f(0)\
+&fracf(1)5[1+a+a^2+a^3+a^4]\
+&fracf(2)5[1+a+a^2+a^3+a^4]\
+&fracf(3)5[1+a+a^2+a^3+a^4]\
+&fracf(4)5[1+a+a^2+a^3+a^4]\
=&f(0)
endaligned
endalign*
Similarly
beginalign*
f(1)
&= frac15[hatf(chi_0)+frac1ahatf(chi_1)+frac1a^2hatf(chi_2)+frac1a^3hatf(chi_3)+frac1a^4hatf(chi_4)]\
&beginaligned[t]
=&f(1)
endaligned
endalign*
beginalign*
f(2)
&= frac15[hatf(chi_0)+a^2hatf(chi_1)+a^4hatf(chi_2)+ahatf(chi_3)+a^3hatf(chi_4)]\
&beginaligned[t]
=&f(2)
endaligned
endalign*
beginalign*
f(3)
&= frac15[hatf(chi_0)+a^3hatf(chi_1)+ahatf(chi_2)+a^4hatf(chi_3)+a^2hatf(chi_4)]\
&beginaligned[t]
=&f(3)
endaligned
endalign*
beginalign*
f(4)
&= frac15[hatf(chi_0)+a^4hatf(chi_1)+a^3hatf(chi_2)+a^2hatf(chi_3)+ahatf(chi_4)]\
&beginaligned[t]
=&f(4)
endaligned
endalign*
enddocument
How can I reduce the spacing in this? Where it says "using definition....." I would like to move this up to $hatf(chi_4)$. Also I want to reduce the spacing of $f(1) = ... = f(1)$ and $f(2) = ... = f(2)$ etc.
Edit: I've attached all 3 pages so you guys get the full picture of what the issue is.
spacing
spacing
edited May 1 at 14:53
Maths
asked May 1 at 14:25
MathsMaths
47011
47011
Unrelated to the issue, but switching from tabular to array you can remove all the repeated $ signs.
– leandriis
May 1 at 16:37
add a comment |
Unrelated to the issue, but switching from tabular to array you can remove all the repeated $ signs.
– leandriis
May 1 at 16:37
Unrelated to the issue, but switching from tabular to array you can remove all the repeated $ signs.
– leandriis
May 1 at 16:37
Unrelated to the issue, but switching from tabular to array you can remove all the repeated $ signs.
– leandriis
May 1 at 16:37
add a comment |
2 Answers
2
active
oldest
votes
With this simpler code, it can all fit on a single page. I loaded nccmath
for its medium-sized fractions, which look better for coefficients, in my opinion:
documentclass[11pt, a4paper]report
usepackage[utf8]inputenc
usepackage[T1]fontenc
usepackagebm
usepackagenccmath
usepackageamsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs
usepackagecolor
usepackagearray
usepackagesetspace% if you must (for double spacing thesis)
usepackagefancyhdr
usepackageenumitem
usepackagetikz
usepackageparskip
usepackagelipsum
usepackagefloatrow
begindocument
newcommandiuimkern1mu
[
setlengthextrarowheight3pt
beginarray c c c c c
& 0 & 1 & 2 & 3 & 4\
cline1-6
chi_0 & 1 & 1 & 1 & 1 & 1\
chi_1 & 1 & a & a^2 & a^3 & a^4\
chi_2 & 1 & a^2 & a^4 & a & a^3\
chi_3 & 1 & a^3 & a & a^4 & a^2\
chi_4 & 1 & a^4 & a^3 & a^2 & a\
endarray
]
with $a = expbiglfrac2pi iu5bigr$, hence $a^5=1$ with $|G|=5$.
Applying the definition of Fourier transform from definition 3.1.2 we have:
beginfleqn
beginalign*
hatf(chi_0) & =f(0)+f(1)+f(2)+f(3)+f(4) \
hatf(chi_1) & =f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4) \
hatf(chi_2) & =f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4) \
hatf(chi_3) & =f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4) \
hatf(chi_4) & =f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)
endalign*
endfleqn
Using definition 3.1.3. we can compute the inverse Fourier transform $f(t)$:
allowdisplaybreaks
beginalign*
f(0)
&=mfrac15bigl[ hatf(chi_0)+hatf(chi_1)+hatf(chi_2)+hatf(chi_3)+hatf(chi_4)bigr]\
& = beginaligned[t]
&mfrac15bigl[f(0)+f(1)+f(2)+f(3)+f(4)]\
& + mfrac15bigl[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)bigr]\
& + mfrac15bigl[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)bigr]\
& + mfrac15bigl[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)bigr]\
& + mfrac15bigl[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)bigr]
endaligned\
& =f(0) beginaligned[t]
& + mfracf(1)5[1+a+a^2+a^3+a^4]\
& + mfracf(2)5[1+a+a^2+a^3+a^4]\
& + mfracf(3)5[1+a+a^2+a^3+a^4]\
& + mfracf(4)5[1+a+a^2+a^3+a^4]
endaligned\
& = f(0)
shortintertextSimilarly:
f(1)
&= mfrac15Bigl[hatf(chi_0)+mfrac1ahatf(chi_1)+mfrac1a^2hatf(chi_2)+mfrac1a^3hatf(chi_3)+mfrac1a^4hatf(chi_4)Bigr]\
& = f(1) \[1.5ex]
f(2)
&= mfrac15bigl[hatf(chi_0)+a^2hatf(chi_1)+a^4hatf(chi_2)+ahatf(chi_3)+a^3hatf(chi_4)bigr] \
& = f(2) \[1.5ex]
f(3)
&= mfrac15bigl[hatf(chi_0)+a^3hatf(chi_1)+ahatf(chi_2)+a^4hatf(chi_3)+a^2hatf(chi_4)bigr] \
& = f(3) \[1.5ex]
f(4)
&= mfrac15bigl[hatf(chi_0)+a^4hatf(chi_1)+a^3hatf(chi_2)+a^2hatf(chi_3)+ahatf(chi_4)bigr] \
& = f(4)
endalign*
enddocument
this is nice however you missed out the remaining section for $f(0)$ aha!
– Maths
2 days ago
Oh! yes. I'll fix it in a moment
– Bernard
2 days ago
I had to slightly modify the code to make it fit on a single page (replacedintertext
withshortintertext
, and loadingnccmath
beforemathtools
to make it work).
– Bernard
2 days ago
there's still some code of f(0) missing aha. its where I group f(1) ... f(4) as f(1)[1+a+...+a^4] etc. Also, I don't mind if it runs over two pages. I don't want the text to be squashed, all I wanted is to make use of the empty white space :)
– Maths
2 days ago
Refer to my code in the question, you'll see the part you missed :)
– Maths
2 days ago
|
show 5 more comments
You should avoid \
on the last line of alignments. Perhaps the following is closer to what you want:
documentclass[11pt, a4paper]report
usepackageamsmath,array
begindocument
newcommandiuimkern1mu
beginequation*
setlengthextrarowheight3pt
begintabular c c c c c
& $0$ & $1$ & $2$ & $3$ & $4$\
cline1-6
$chi_0$ & $1$ & $1$ & $1$ & $1$ & $1$\
$chi_1$ & $1$ & $a$ & $a^2$ & $a^3$ & $a^4$\
$chi_2$ & $1$ & $a^2$ & $a^4$ & $a$ & $a^3$\
$chi_3$ & $1$ & $a^3$ & $a$ & $a^4$ & $a^2$\
$chi_4$ & $1$ & $a^4$ & $a^3$ & $a^2$ & $a$\
endtabular
endequation*
with $a = expfrac2piiu5$ hence $a^5=1$ with $|G|=5$.
Applying the definition of Fourier transform from Definition~3.1.2 we
have:
beginalign*
hatf(chi_0) &=f(0)+f(1)+f(2)+f(3)+f(4),\
hatf(chi_1) &=f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4),\
hatf(chi_2) &=f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4),\
hatf(chi_3) &=f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4),\
hatf(chi_4) &=f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4).
endalign*
Using Definition~3.1.3 we can compute the inverse Fourier transform
$f(t)$:
beginalign*
f(0)
&=frac15[ hatf(chi_0) + hatf(chi_1) + hatf(chi_2) +
hatf(chi_3) + hatf(chi_4)]\
&=frac15[f(0)+f(1)+f(2)+f(3)+f(4)]\
&qquad + frac15[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)]\
&qquad + frac15[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)]\
&qquad + frac15[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)]\
&qquad + frac15[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)]
\
&= f(0)\
&qquad + fracf(1)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(2)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(3)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(4)5[1+a+a^2+a^3+a^4]\
&=f(0).
endalign*
Similarly
beginalign*
f(1)
&= frac15Bigl[hatf(chi_0) + frac1ahatf(chi_1) +
frac1a^2hatf(chi_2) + frac1a^3hatf(chi_3) +
frac1a^4hatf(chi_4)Bigr]\
&=f(1),\
f(2)
&= frac15[hatf(chi_0) + a^2hatf(chi_1) +
a^4hatf(chi_2) + ahatf(chi_3) + a^3hatf(chi_4)]\
&=f(2), \
f(3)
&= frac15[hatf(chi_0) + a^3hatf(chi_1) +
ahatf(chi_2) + a^4hatf(chi_3) + a^2hatf(chi_4)]\
&=f(3),\
f(4)
&= frac15[hatf(chi_0) + a^4hatf(chi_1) +
a^3hatf(chi_2) + a^2hatf(chi_3) + ahatf(chi_4)]\
& =f(4).
endalign*
enddocument
why did you push f(0) outwards? it wasn't necessary. but thanks for your solution
– Maths
May 1 at 15:42
1
The+
's should not be under the=
, but to the right of it as they belong to that side of the equation. Whether you want to indent byqquad
as I did, or the smallerquad
is a matter of taste.
– Andrew Swann
May 1 at 18:28
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "85"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f488606%2freducing-the-white-spacing%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
With this simpler code, it can all fit on a single page. I loaded nccmath
for its medium-sized fractions, which look better for coefficients, in my opinion:
documentclass[11pt, a4paper]report
usepackage[utf8]inputenc
usepackage[T1]fontenc
usepackagebm
usepackagenccmath
usepackageamsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs
usepackagecolor
usepackagearray
usepackagesetspace% if you must (for double spacing thesis)
usepackagefancyhdr
usepackageenumitem
usepackagetikz
usepackageparskip
usepackagelipsum
usepackagefloatrow
begindocument
newcommandiuimkern1mu
[
setlengthextrarowheight3pt
beginarray c c c c c
& 0 & 1 & 2 & 3 & 4\
cline1-6
chi_0 & 1 & 1 & 1 & 1 & 1\
chi_1 & 1 & a & a^2 & a^3 & a^4\
chi_2 & 1 & a^2 & a^4 & a & a^3\
chi_3 & 1 & a^3 & a & a^4 & a^2\
chi_4 & 1 & a^4 & a^3 & a^2 & a\
endarray
]
with $a = expbiglfrac2pi iu5bigr$, hence $a^5=1$ with $|G|=5$.
Applying the definition of Fourier transform from definition 3.1.2 we have:
beginfleqn
beginalign*
hatf(chi_0) & =f(0)+f(1)+f(2)+f(3)+f(4) \
hatf(chi_1) & =f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4) \
hatf(chi_2) & =f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4) \
hatf(chi_3) & =f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4) \
hatf(chi_4) & =f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)
endalign*
endfleqn
Using definition 3.1.3. we can compute the inverse Fourier transform $f(t)$:
allowdisplaybreaks
beginalign*
f(0)
&=mfrac15bigl[ hatf(chi_0)+hatf(chi_1)+hatf(chi_2)+hatf(chi_3)+hatf(chi_4)bigr]\
& = beginaligned[t]
&mfrac15bigl[f(0)+f(1)+f(2)+f(3)+f(4)]\
& + mfrac15bigl[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)bigr]\
& + mfrac15bigl[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)bigr]\
& + mfrac15bigl[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)bigr]\
& + mfrac15bigl[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)bigr]
endaligned\
& =f(0) beginaligned[t]
& + mfracf(1)5[1+a+a^2+a^3+a^4]\
& + mfracf(2)5[1+a+a^2+a^3+a^4]\
& + mfracf(3)5[1+a+a^2+a^3+a^4]\
& + mfracf(4)5[1+a+a^2+a^3+a^4]
endaligned\
& = f(0)
shortintertextSimilarly:
f(1)
&= mfrac15Bigl[hatf(chi_0)+mfrac1ahatf(chi_1)+mfrac1a^2hatf(chi_2)+mfrac1a^3hatf(chi_3)+mfrac1a^4hatf(chi_4)Bigr]\
& = f(1) \[1.5ex]
f(2)
&= mfrac15bigl[hatf(chi_0)+a^2hatf(chi_1)+a^4hatf(chi_2)+ahatf(chi_3)+a^3hatf(chi_4)bigr] \
& = f(2) \[1.5ex]
f(3)
&= mfrac15bigl[hatf(chi_0)+a^3hatf(chi_1)+ahatf(chi_2)+a^4hatf(chi_3)+a^2hatf(chi_4)bigr] \
& = f(3) \[1.5ex]
f(4)
&= mfrac15bigl[hatf(chi_0)+a^4hatf(chi_1)+a^3hatf(chi_2)+a^2hatf(chi_3)+ahatf(chi_4)bigr] \
& = f(4)
endalign*
enddocument
this is nice however you missed out the remaining section for $f(0)$ aha!
– Maths
2 days ago
Oh! yes. I'll fix it in a moment
– Bernard
2 days ago
I had to slightly modify the code to make it fit on a single page (replacedintertext
withshortintertext
, and loadingnccmath
beforemathtools
to make it work).
– Bernard
2 days ago
there's still some code of f(0) missing aha. its where I group f(1) ... f(4) as f(1)[1+a+...+a^4] etc. Also, I don't mind if it runs over two pages. I don't want the text to be squashed, all I wanted is to make use of the empty white space :)
– Maths
2 days ago
Refer to my code in the question, you'll see the part you missed :)
– Maths
2 days ago
|
show 5 more comments
With this simpler code, it can all fit on a single page. I loaded nccmath
for its medium-sized fractions, which look better for coefficients, in my opinion:
documentclass[11pt, a4paper]report
usepackage[utf8]inputenc
usepackage[T1]fontenc
usepackagebm
usepackagenccmath
usepackageamsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs
usepackagecolor
usepackagearray
usepackagesetspace% if you must (for double spacing thesis)
usepackagefancyhdr
usepackageenumitem
usepackagetikz
usepackageparskip
usepackagelipsum
usepackagefloatrow
begindocument
newcommandiuimkern1mu
[
setlengthextrarowheight3pt
beginarray c c c c c
& 0 & 1 & 2 & 3 & 4\
cline1-6
chi_0 & 1 & 1 & 1 & 1 & 1\
chi_1 & 1 & a & a^2 & a^3 & a^4\
chi_2 & 1 & a^2 & a^4 & a & a^3\
chi_3 & 1 & a^3 & a & a^4 & a^2\
chi_4 & 1 & a^4 & a^3 & a^2 & a\
endarray
]
with $a = expbiglfrac2pi iu5bigr$, hence $a^5=1$ with $|G|=5$.
Applying the definition of Fourier transform from definition 3.1.2 we have:
beginfleqn
beginalign*
hatf(chi_0) & =f(0)+f(1)+f(2)+f(3)+f(4) \
hatf(chi_1) & =f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4) \
hatf(chi_2) & =f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4) \
hatf(chi_3) & =f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4) \
hatf(chi_4) & =f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)
endalign*
endfleqn
Using definition 3.1.3. we can compute the inverse Fourier transform $f(t)$:
allowdisplaybreaks
beginalign*
f(0)
&=mfrac15bigl[ hatf(chi_0)+hatf(chi_1)+hatf(chi_2)+hatf(chi_3)+hatf(chi_4)bigr]\
& = beginaligned[t]
&mfrac15bigl[f(0)+f(1)+f(2)+f(3)+f(4)]\
& + mfrac15bigl[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)bigr]\
& + mfrac15bigl[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)bigr]\
& + mfrac15bigl[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)bigr]\
& + mfrac15bigl[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)bigr]
endaligned\
& =f(0) beginaligned[t]
& + mfracf(1)5[1+a+a^2+a^3+a^4]\
& + mfracf(2)5[1+a+a^2+a^3+a^4]\
& + mfracf(3)5[1+a+a^2+a^3+a^4]\
& + mfracf(4)5[1+a+a^2+a^3+a^4]
endaligned\
& = f(0)
shortintertextSimilarly:
f(1)
&= mfrac15Bigl[hatf(chi_0)+mfrac1ahatf(chi_1)+mfrac1a^2hatf(chi_2)+mfrac1a^3hatf(chi_3)+mfrac1a^4hatf(chi_4)Bigr]\
& = f(1) \[1.5ex]
f(2)
&= mfrac15bigl[hatf(chi_0)+a^2hatf(chi_1)+a^4hatf(chi_2)+ahatf(chi_3)+a^3hatf(chi_4)bigr] \
& = f(2) \[1.5ex]
f(3)
&= mfrac15bigl[hatf(chi_0)+a^3hatf(chi_1)+ahatf(chi_2)+a^4hatf(chi_3)+a^2hatf(chi_4)bigr] \
& = f(3) \[1.5ex]
f(4)
&= mfrac15bigl[hatf(chi_0)+a^4hatf(chi_1)+a^3hatf(chi_2)+a^2hatf(chi_3)+ahatf(chi_4)bigr] \
& = f(4)
endalign*
enddocument
this is nice however you missed out the remaining section for $f(0)$ aha!
– Maths
2 days ago
Oh! yes. I'll fix it in a moment
– Bernard
2 days ago
I had to slightly modify the code to make it fit on a single page (replacedintertext
withshortintertext
, and loadingnccmath
beforemathtools
to make it work).
– Bernard
2 days ago
there's still some code of f(0) missing aha. its where I group f(1) ... f(4) as f(1)[1+a+...+a^4] etc. Also, I don't mind if it runs over two pages. I don't want the text to be squashed, all I wanted is to make use of the empty white space :)
– Maths
2 days ago
Refer to my code in the question, you'll see the part you missed :)
– Maths
2 days ago
|
show 5 more comments
With this simpler code, it can all fit on a single page. I loaded nccmath
for its medium-sized fractions, which look better for coefficients, in my opinion:
documentclass[11pt, a4paper]report
usepackage[utf8]inputenc
usepackage[T1]fontenc
usepackagebm
usepackagenccmath
usepackageamsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs
usepackagecolor
usepackagearray
usepackagesetspace% if you must (for double spacing thesis)
usepackagefancyhdr
usepackageenumitem
usepackagetikz
usepackageparskip
usepackagelipsum
usepackagefloatrow
begindocument
newcommandiuimkern1mu
[
setlengthextrarowheight3pt
beginarray c c c c c
& 0 & 1 & 2 & 3 & 4\
cline1-6
chi_0 & 1 & 1 & 1 & 1 & 1\
chi_1 & 1 & a & a^2 & a^3 & a^4\
chi_2 & 1 & a^2 & a^4 & a & a^3\
chi_3 & 1 & a^3 & a & a^4 & a^2\
chi_4 & 1 & a^4 & a^3 & a^2 & a\
endarray
]
with $a = expbiglfrac2pi iu5bigr$, hence $a^5=1$ with $|G|=5$.
Applying the definition of Fourier transform from definition 3.1.2 we have:
beginfleqn
beginalign*
hatf(chi_0) & =f(0)+f(1)+f(2)+f(3)+f(4) \
hatf(chi_1) & =f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4) \
hatf(chi_2) & =f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4) \
hatf(chi_3) & =f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4) \
hatf(chi_4) & =f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)
endalign*
endfleqn
Using definition 3.1.3. we can compute the inverse Fourier transform $f(t)$:
allowdisplaybreaks
beginalign*
f(0)
&=mfrac15bigl[ hatf(chi_0)+hatf(chi_1)+hatf(chi_2)+hatf(chi_3)+hatf(chi_4)bigr]\
& = beginaligned[t]
&mfrac15bigl[f(0)+f(1)+f(2)+f(3)+f(4)]\
& + mfrac15bigl[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)bigr]\
& + mfrac15bigl[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)bigr]\
& + mfrac15bigl[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)bigr]\
& + mfrac15bigl[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)bigr]
endaligned\
& =f(0) beginaligned[t]
& + mfracf(1)5[1+a+a^2+a^3+a^4]\
& + mfracf(2)5[1+a+a^2+a^3+a^4]\
& + mfracf(3)5[1+a+a^2+a^3+a^4]\
& + mfracf(4)5[1+a+a^2+a^3+a^4]
endaligned\
& = f(0)
shortintertextSimilarly:
f(1)
&= mfrac15Bigl[hatf(chi_0)+mfrac1ahatf(chi_1)+mfrac1a^2hatf(chi_2)+mfrac1a^3hatf(chi_3)+mfrac1a^4hatf(chi_4)Bigr]\
& = f(1) \[1.5ex]
f(2)
&= mfrac15bigl[hatf(chi_0)+a^2hatf(chi_1)+a^4hatf(chi_2)+ahatf(chi_3)+a^3hatf(chi_4)bigr] \
& = f(2) \[1.5ex]
f(3)
&= mfrac15bigl[hatf(chi_0)+a^3hatf(chi_1)+ahatf(chi_2)+a^4hatf(chi_3)+a^2hatf(chi_4)bigr] \
& = f(3) \[1.5ex]
f(4)
&= mfrac15bigl[hatf(chi_0)+a^4hatf(chi_1)+a^3hatf(chi_2)+a^2hatf(chi_3)+ahatf(chi_4)bigr] \
& = f(4)
endalign*
enddocument
With this simpler code, it can all fit on a single page. I loaded nccmath
for its medium-sized fractions, which look better for coefficients, in my opinion:
documentclass[11pt, a4paper]report
usepackage[utf8]inputenc
usepackage[T1]fontenc
usepackagebm
usepackagenccmath
usepackageamsfonts, graphicx, verbatim, mathtools,amssymb, amsthm, mathrsfs
usepackagecolor
usepackagearray
usepackagesetspace% if you must (for double spacing thesis)
usepackagefancyhdr
usepackageenumitem
usepackagetikz
usepackageparskip
usepackagelipsum
usepackagefloatrow
begindocument
newcommandiuimkern1mu
[
setlengthextrarowheight3pt
beginarray c c c c c
& 0 & 1 & 2 & 3 & 4\
cline1-6
chi_0 & 1 & 1 & 1 & 1 & 1\
chi_1 & 1 & a & a^2 & a^3 & a^4\
chi_2 & 1 & a^2 & a^4 & a & a^3\
chi_3 & 1 & a^3 & a & a^4 & a^2\
chi_4 & 1 & a^4 & a^3 & a^2 & a\
endarray
]
with $a = expbiglfrac2pi iu5bigr$, hence $a^5=1$ with $|G|=5$.
Applying the definition of Fourier transform from definition 3.1.2 we have:
beginfleqn
beginalign*
hatf(chi_0) & =f(0)+f(1)+f(2)+f(3)+f(4) \
hatf(chi_1) & =f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4) \
hatf(chi_2) & =f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4) \
hatf(chi_3) & =f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4) \
hatf(chi_4) & =f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)
endalign*
endfleqn
Using definition 3.1.3. we can compute the inverse Fourier transform $f(t)$:
allowdisplaybreaks
beginalign*
f(0)
&=mfrac15bigl[ hatf(chi_0)+hatf(chi_1)+hatf(chi_2)+hatf(chi_3)+hatf(chi_4)bigr]\
& = beginaligned[t]
&mfrac15bigl[f(0)+f(1)+f(2)+f(3)+f(4)]\
& + mfrac15bigl[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)bigr]\
& + mfrac15bigl[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)bigr]\
& + mfrac15bigl[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)bigr]\
& + mfrac15bigl[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)bigr]
endaligned\
& =f(0) beginaligned[t]
& + mfracf(1)5[1+a+a^2+a^3+a^4]\
& + mfracf(2)5[1+a+a^2+a^3+a^4]\
& + mfracf(3)5[1+a+a^2+a^3+a^4]\
& + mfracf(4)5[1+a+a^2+a^3+a^4]
endaligned\
& = f(0)
shortintertextSimilarly:
f(1)
&= mfrac15Bigl[hatf(chi_0)+mfrac1ahatf(chi_1)+mfrac1a^2hatf(chi_2)+mfrac1a^3hatf(chi_3)+mfrac1a^4hatf(chi_4)Bigr]\
& = f(1) \[1.5ex]
f(2)
&= mfrac15bigl[hatf(chi_0)+a^2hatf(chi_1)+a^4hatf(chi_2)+ahatf(chi_3)+a^3hatf(chi_4)bigr] \
& = f(2) \[1.5ex]
f(3)
&= mfrac15bigl[hatf(chi_0)+a^3hatf(chi_1)+ahatf(chi_2)+a^4hatf(chi_3)+a^2hatf(chi_4)bigr] \
& = f(3) \[1.5ex]
f(4)
&= mfrac15bigl[hatf(chi_0)+a^4hatf(chi_1)+a^3hatf(chi_2)+a^2hatf(chi_3)+ahatf(chi_4)bigr] \
& = f(4)
endalign*
enddocument
edited 2 days ago
answered May 1 at 16:54
BernardBernard
178k779211
178k779211
this is nice however you missed out the remaining section for $f(0)$ aha!
– Maths
2 days ago
Oh! yes. I'll fix it in a moment
– Bernard
2 days ago
I had to slightly modify the code to make it fit on a single page (replacedintertext
withshortintertext
, and loadingnccmath
beforemathtools
to make it work).
– Bernard
2 days ago
there's still some code of f(0) missing aha. its where I group f(1) ... f(4) as f(1)[1+a+...+a^4] etc. Also, I don't mind if it runs over two pages. I don't want the text to be squashed, all I wanted is to make use of the empty white space :)
– Maths
2 days ago
Refer to my code in the question, you'll see the part you missed :)
– Maths
2 days ago
|
show 5 more comments
this is nice however you missed out the remaining section for $f(0)$ aha!
– Maths
2 days ago
Oh! yes. I'll fix it in a moment
– Bernard
2 days ago
I had to slightly modify the code to make it fit on a single page (replacedintertext
withshortintertext
, and loadingnccmath
beforemathtools
to make it work).
– Bernard
2 days ago
there's still some code of f(0) missing aha. its where I group f(1) ... f(4) as f(1)[1+a+...+a^4] etc. Also, I don't mind if it runs over two pages. I don't want the text to be squashed, all I wanted is to make use of the empty white space :)
– Maths
2 days ago
Refer to my code in the question, you'll see the part you missed :)
– Maths
2 days ago
this is nice however you missed out the remaining section for $f(0)$ aha!
– Maths
2 days ago
this is nice however you missed out the remaining section for $f(0)$ aha!
– Maths
2 days ago
Oh! yes. I'll fix it in a moment
– Bernard
2 days ago
Oh! yes. I'll fix it in a moment
– Bernard
2 days ago
I had to slightly modify the code to make it fit on a single page (replaced
intertext
with shortintertext
, and loading nccmath
before mathtools
to make it work).– Bernard
2 days ago
I had to slightly modify the code to make it fit on a single page (replaced
intertext
with shortintertext
, and loading nccmath
before mathtools
to make it work).– Bernard
2 days ago
there's still some code of f(0) missing aha. its where I group f(1) ... f(4) as f(1)[1+a+...+a^4] etc. Also, I don't mind if it runs over two pages. I don't want the text to be squashed, all I wanted is to make use of the empty white space :)
– Maths
2 days ago
there's still some code of f(0) missing aha. its where I group f(1) ... f(4) as f(1)[1+a+...+a^4] etc. Also, I don't mind if it runs over two pages. I don't want the text to be squashed, all I wanted is to make use of the empty white space :)
– Maths
2 days ago
Refer to my code in the question, you'll see the part you missed :)
– Maths
2 days ago
Refer to my code in the question, you'll see the part you missed :)
– Maths
2 days ago
|
show 5 more comments
You should avoid \
on the last line of alignments. Perhaps the following is closer to what you want:
documentclass[11pt, a4paper]report
usepackageamsmath,array
begindocument
newcommandiuimkern1mu
beginequation*
setlengthextrarowheight3pt
begintabular c c c c c
& $0$ & $1$ & $2$ & $3$ & $4$\
cline1-6
$chi_0$ & $1$ & $1$ & $1$ & $1$ & $1$\
$chi_1$ & $1$ & $a$ & $a^2$ & $a^3$ & $a^4$\
$chi_2$ & $1$ & $a^2$ & $a^4$ & $a$ & $a^3$\
$chi_3$ & $1$ & $a^3$ & $a$ & $a^4$ & $a^2$\
$chi_4$ & $1$ & $a^4$ & $a^3$ & $a^2$ & $a$\
endtabular
endequation*
with $a = expfrac2piiu5$ hence $a^5=1$ with $|G|=5$.
Applying the definition of Fourier transform from Definition~3.1.2 we
have:
beginalign*
hatf(chi_0) &=f(0)+f(1)+f(2)+f(3)+f(4),\
hatf(chi_1) &=f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4),\
hatf(chi_2) &=f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4),\
hatf(chi_3) &=f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4),\
hatf(chi_4) &=f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4).
endalign*
Using Definition~3.1.3 we can compute the inverse Fourier transform
$f(t)$:
beginalign*
f(0)
&=frac15[ hatf(chi_0) + hatf(chi_1) + hatf(chi_2) +
hatf(chi_3) + hatf(chi_4)]\
&=frac15[f(0)+f(1)+f(2)+f(3)+f(4)]\
&qquad + frac15[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)]\
&qquad + frac15[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)]\
&qquad + frac15[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)]\
&qquad + frac15[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)]
\
&= f(0)\
&qquad + fracf(1)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(2)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(3)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(4)5[1+a+a^2+a^3+a^4]\
&=f(0).
endalign*
Similarly
beginalign*
f(1)
&= frac15Bigl[hatf(chi_0) + frac1ahatf(chi_1) +
frac1a^2hatf(chi_2) + frac1a^3hatf(chi_3) +
frac1a^4hatf(chi_4)Bigr]\
&=f(1),\
f(2)
&= frac15[hatf(chi_0) + a^2hatf(chi_1) +
a^4hatf(chi_2) + ahatf(chi_3) + a^3hatf(chi_4)]\
&=f(2), \
f(3)
&= frac15[hatf(chi_0) + a^3hatf(chi_1) +
ahatf(chi_2) + a^4hatf(chi_3) + a^2hatf(chi_4)]\
&=f(3),\
f(4)
&= frac15[hatf(chi_0) + a^4hatf(chi_1) +
a^3hatf(chi_2) + a^2hatf(chi_3) + ahatf(chi_4)]\
& =f(4).
endalign*
enddocument
why did you push f(0) outwards? it wasn't necessary. but thanks for your solution
– Maths
May 1 at 15:42
1
The+
's should not be under the=
, but to the right of it as they belong to that side of the equation. Whether you want to indent byqquad
as I did, or the smallerquad
is a matter of taste.
– Andrew Swann
May 1 at 18:28
add a comment |
You should avoid \
on the last line of alignments. Perhaps the following is closer to what you want:
documentclass[11pt, a4paper]report
usepackageamsmath,array
begindocument
newcommandiuimkern1mu
beginequation*
setlengthextrarowheight3pt
begintabular c c c c c
& $0$ & $1$ & $2$ & $3$ & $4$\
cline1-6
$chi_0$ & $1$ & $1$ & $1$ & $1$ & $1$\
$chi_1$ & $1$ & $a$ & $a^2$ & $a^3$ & $a^4$\
$chi_2$ & $1$ & $a^2$ & $a^4$ & $a$ & $a^3$\
$chi_3$ & $1$ & $a^3$ & $a$ & $a^4$ & $a^2$\
$chi_4$ & $1$ & $a^4$ & $a^3$ & $a^2$ & $a$\
endtabular
endequation*
with $a = expfrac2piiu5$ hence $a^5=1$ with $|G|=5$.
Applying the definition of Fourier transform from Definition~3.1.2 we
have:
beginalign*
hatf(chi_0) &=f(0)+f(1)+f(2)+f(3)+f(4),\
hatf(chi_1) &=f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4),\
hatf(chi_2) &=f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4),\
hatf(chi_3) &=f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4),\
hatf(chi_4) &=f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4).
endalign*
Using Definition~3.1.3 we can compute the inverse Fourier transform
$f(t)$:
beginalign*
f(0)
&=frac15[ hatf(chi_0) + hatf(chi_1) + hatf(chi_2) +
hatf(chi_3) + hatf(chi_4)]\
&=frac15[f(0)+f(1)+f(2)+f(3)+f(4)]\
&qquad + frac15[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)]\
&qquad + frac15[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)]\
&qquad + frac15[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)]\
&qquad + frac15[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)]
\
&= f(0)\
&qquad + fracf(1)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(2)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(3)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(4)5[1+a+a^2+a^3+a^4]\
&=f(0).
endalign*
Similarly
beginalign*
f(1)
&= frac15Bigl[hatf(chi_0) + frac1ahatf(chi_1) +
frac1a^2hatf(chi_2) + frac1a^3hatf(chi_3) +
frac1a^4hatf(chi_4)Bigr]\
&=f(1),\
f(2)
&= frac15[hatf(chi_0) + a^2hatf(chi_1) +
a^4hatf(chi_2) + ahatf(chi_3) + a^3hatf(chi_4)]\
&=f(2), \
f(3)
&= frac15[hatf(chi_0) + a^3hatf(chi_1) +
ahatf(chi_2) + a^4hatf(chi_3) + a^2hatf(chi_4)]\
&=f(3),\
f(4)
&= frac15[hatf(chi_0) + a^4hatf(chi_1) +
a^3hatf(chi_2) + a^2hatf(chi_3) + ahatf(chi_4)]\
& =f(4).
endalign*
enddocument
why did you push f(0) outwards? it wasn't necessary. but thanks for your solution
– Maths
May 1 at 15:42
1
The+
's should not be under the=
, but to the right of it as they belong to that side of the equation. Whether you want to indent byqquad
as I did, or the smallerquad
is a matter of taste.
– Andrew Swann
May 1 at 18:28
add a comment |
You should avoid \
on the last line of alignments. Perhaps the following is closer to what you want:
documentclass[11pt, a4paper]report
usepackageamsmath,array
begindocument
newcommandiuimkern1mu
beginequation*
setlengthextrarowheight3pt
begintabular c c c c c
& $0$ & $1$ & $2$ & $3$ & $4$\
cline1-6
$chi_0$ & $1$ & $1$ & $1$ & $1$ & $1$\
$chi_1$ & $1$ & $a$ & $a^2$ & $a^3$ & $a^4$\
$chi_2$ & $1$ & $a^2$ & $a^4$ & $a$ & $a^3$\
$chi_3$ & $1$ & $a^3$ & $a$ & $a^4$ & $a^2$\
$chi_4$ & $1$ & $a^4$ & $a^3$ & $a^2$ & $a$\
endtabular
endequation*
with $a = expfrac2piiu5$ hence $a^5=1$ with $|G|=5$.
Applying the definition of Fourier transform from Definition~3.1.2 we
have:
beginalign*
hatf(chi_0) &=f(0)+f(1)+f(2)+f(3)+f(4),\
hatf(chi_1) &=f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4),\
hatf(chi_2) &=f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4),\
hatf(chi_3) &=f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4),\
hatf(chi_4) &=f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4).
endalign*
Using Definition~3.1.3 we can compute the inverse Fourier transform
$f(t)$:
beginalign*
f(0)
&=frac15[ hatf(chi_0) + hatf(chi_1) + hatf(chi_2) +
hatf(chi_3) + hatf(chi_4)]\
&=frac15[f(0)+f(1)+f(2)+f(3)+f(4)]\
&qquad + frac15[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)]\
&qquad + frac15[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)]\
&qquad + frac15[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)]\
&qquad + frac15[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)]
\
&= f(0)\
&qquad + fracf(1)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(2)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(3)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(4)5[1+a+a^2+a^3+a^4]\
&=f(0).
endalign*
Similarly
beginalign*
f(1)
&= frac15Bigl[hatf(chi_0) + frac1ahatf(chi_1) +
frac1a^2hatf(chi_2) + frac1a^3hatf(chi_3) +
frac1a^4hatf(chi_4)Bigr]\
&=f(1),\
f(2)
&= frac15[hatf(chi_0) + a^2hatf(chi_1) +
a^4hatf(chi_2) + ahatf(chi_3) + a^3hatf(chi_4)]\
&=f(2), \
f(3)
&= frac15[hatf(chi_0) + a^3hatf(chi_1) +
ahatf(chi_2) + a^4hatf(chi_3) + a^2hatf(chi_4)]\
&=f(3),\
f(4)
&= frac15[hatf(chi_0) + a^4hatf(chi_1) +
a^3hatf(chi_2) + a^2hatf(chi_3) + ahatf(chi_4)]\
& =f(4).
endalign*
enddocument
You should avoid \
on the last line of alignments. Perhaps the following is closer to what you want:
documentclass[11pt, a4paper]report
usepackageamsmath,array
begindocument
newcommandiuimkern1mu
beginequation*
setlengthextrarowheight3pt
begintabular c c c c c
& $0$ & $1$ & $2$ & $3$ & $4$\
cline1-6
$chi_0$ & $1$ & $1$ & $1$ & $1$ & $1$\
$chi_1$ & $1$ & $a$ & $a^2$ & $a^3$ & $a^4$\
$chi_2$ & $1$ & $a^2$ & $a^4$ & $a$ & $a^3$\
$chi_3$ & $1$ & $a^3$ & $a$ & $a^4$ & $a^2$\
$chi_4$ & $1$ & $a^4$ & $a^3$ & $a^2$ & $a$\
endtabular
endequation*
with $a = expfrac2piiu5$ hence $a^5=1$ with $|G|=5$.
Applying the definition of Fourier transform from Definition~3.1.2 we
have:
beginalign*
hatf(chi_0) &=f(0)+f(1)+f(2)+f(3)+f(4),\
hatf(chi_1) &=f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4),\
hatf(chi_2) &=f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4),\
hatf(chi_3) &=f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4),\
hatf(chi_4) &=f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4).
endalign*
Using Definition~3.1.3 we can compute the inverse Fourier transform
$f(t)$:
beginalign*
f(0)
&=frac15[ hatf(chi_0) + hatf(chi_1) + hatf(chi_2) +
hatf(chi_3) + hatf(chi_4)]\
&=frac15[f(0)+f(1)+f(2)+f(3)+f(4)]\
&qquad + frac15[f(0)+af(1)+a^2f(2)+a^3f(3)+a^4f(4)]\
&qquad + frac15[f(0)+a^2f(1)+a^4f(2)+af(3)+a^3f(4)]\
&qquad + frac15[f(0)+a^3f(1)+af(2)+a^4f(3)+a^2f(4)]\
&qquad + frac15[f(0)+a^4f(1)+a^3f(2)+a^2f(3)+af(4)]
\
&= f(0)\
&qquad + fracf(1)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(2)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(3)5[1+a+a^2+a^3+a^4]\
&qquad +fracf(4)5[1+a+a^2+a^3+a^4]\
&=f(0).
endalign*
Similarly
beginalign*
f(1)
&= frac15Bigl[hatf(chi_0) + frac1ahatf(chi_1) +
frac1a^2hatf(chi_2) + frac1a^3hatf(chi_3) +
frac1a^4hatf(chi_4)Bigr]\
&=f(1),\
f(2)
&= frac15[hatf(chi_0) + a^2hatf(chi_1) +
a^4hatf(chi_2) + ahatf(chi_3) + a^3hatf(chi_4)]\
&=f(2), \
f(3)
&= frac15[hatf(chi_0) + a^3hatf(chi_1) +
ahatf(chi_2) + a^4hatf(chi_3) + a^2hatf(chi_4)]\
&=f(3),\
f(4)
&= frac15[hatf(chi_0) + a^4hatf(chi_1) +
a^3hatf(chi_2) + a^2hatf(chi_3) + ahatf(chi_4)]\
& =f(4).
endalign*
enddocument
edited May 1 at 18:25
answered May 1 at 15:09
Andrew SwannAndrew Swann
78.8k9138336
78.8k9138336
why did you push f(0) outwards? it wasn't necessary. but thanks for your solution
– Maths
May 1 at 15:42
1
The+
's should not be under the=
, but to the right of it as they belong to that side of the equation. Whether you want to indent byqquad
as I did, or the smallerquad
is a matter of taste.
– Andrew Swann
May 1 at 18:28
add a comment |
why did you push f(0) outwards? it wasn't necessary. but thanks for your solution
– Maths
May 1 at 15:42
1
The+
's should not be under the=
, but to the right of it as they belong to that side of the equation. Whether you want to indent byqquad
as I did, or the smallerquad
is a matter of taste.
– Andrew Swann
May 1 at 18:28
why did you push f(0) outwards? it wasn't necessary. but thanks for your solution
– Maths
May 1 at 15:42
why did you push f(0) outwards? it wasn't necessary. but thanks for your solution
– Maths
May 1 at 15:42
1
1
The
+
's should not be under the =
, but to the right of it as they belong to that side of the equation. Whether you want to indent by qquad
as I did, or the smaller quad
is a matter of taste.– Andrew Swann
May 1 at 18:28
The
+
's should not be under the =
, but to the right of it as they belong to that side of the equation. Whether you want to indent by qquad
as I did, or the smaller quad
is a matter of taste.– Andrew Swann
May 1 at 18:28
add a comment |
Thanks for contributing an answer to TeX - LaTeX Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f488606%2freducing-the-white-spacing%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Unrelated to the issue, but switching from tabular to array you can remove all the repeated $ signs.
– leandriis
May 1 at 16:37