Isn't this a trivial corollary?Calculus on surfaces and chain ruleConstructing submanifolds. Did I understand this right?Some trivial questions about Tangent SpacesHow to see this is a normal vector field?Finding tangent plane to $2$ dimensional submanifold of $mathbbR^4$Generic condition for vector fields/normal sectionsHow to recover the tangent space from the metricInequality for gradients under different metricsShow that if $f$ is a smooth function, $M$ is a manifold and $x$ is a local extremum of $f$ on $M$, then $D_f(x)(v) = 0$ in the tangent space.Why $dim(ker T_z f)=dim(T_z(f^-1(c)))$?
What prevents a US state from colonizing a smaller state?
Why are symbols not written in words?
What verb for taking advantage fits in "I don't want to ________ on the friendship"?
How did they film the Invisible Man being invisible in 1933?
Why was Pan Am Flight 103 flying over Lockerbie?
Having to constantly redo everything because I don't know how to do it
"I am [the / an] owner of a bookstore"?
Perform mirror symmetry transformation of 3D model (in OBJ)
I just started; should I accept a farewell lunch for a coworker I don't know?
Why isn't UDP with reliability (implemented at Application layer) a substitute of TCP?
English idiomatic equivalents of 能骗就骗 (if you can cheat, then cheat)
How far can gerrymandering go?
Why are examinees often not allowed to leave during the start and end of an exam?
Checkmate in 1 on a Tangled Board
The alcoholic village festival
How to track mail undetectably?
Is leaving out prefixes like "rauf", "rüber", "rein" when describing movement considered a big mistake in spoken German?
Could you fall off a planet if it was being accelerated by engines?
A quine of sorts
Does a lens with a bigger max. aperture focus faster than a lens with a smaller max. aperture?
Where can I find my serialized Sitecore items?
Why do movie directors use brown tint on Mexico cities?
Copy group of files (Filename*) to backup (Filename*.bak)
Is it OK to throw pebbles and stones in streams, waterfalls, ponds, etc.?
Isn't this a trivial corollary?
Calculus on surfaces and chain ruleConstructing submanifolds. Did I understand this right?Some trivial questions about Tangent SpacesHow to see this is a normal vector field?Finding tangent plane to $2$ dimensional submanifold of $mathbbR^4$Generic condition for vector fields/normal sectionsHow to recover the tangent space from the metricInequality for gradients under different metricsShow that if $f$ is a smooth function, $M$ is a manifold and $x$ is a local extremum of $f$ on $M$, then $D_f(x)(v) = 0$ in the tangent space.Why $dim(ker T_z f)=dim(T_z(f^-1(c)))$?
$begingroup$
Let $U subseteq mathbb R^n$ be an open subset and let $M subseteq U$ be a $k$-dimensional submanifold of $mathbb R^n$. Consider a differentiable function $f: U longrightarrow mathbb R$. There's a corollary that states, that if $f big|_M$ takes on a local extremum at a point $p in M$, then the gradient $nabla f(p)$ is normal to $M$ at $p$, i.e. $nabla f(p) perp T_pM$, where $T_pM$ is the tangent space. I've studied and understood the (short) proof, but isn't this statement absolutely trivial or have I got things mixed up? Let me explain: Assuming $p$ is an extremum, it follows that the differential vanishes, i.e. $nabla f(p) = 0$, since this is a necessary condition. But the zero vector is orthogonal to everything. So what's the point of this corollary?
derivatives differential-geometry orthogonality submanifold tangent-spaces
$endgroup$
add a comment |
$begingroup$
Let $U subseteq mathbb R^n$ be an open subset and let $M subseteq U$ be a $k$-dimensional submanifold of $mathbb R^n$. Consider a differentiable function $f: U longrightarrow mathbb R$. There's a corollary that states, that if $f big|_M$ takes on a local extremum at a point $p in M$, then the gradient $nabla f(p)$ is normal to $M$ at $p$, i.e. $nabla f(p) perp T_pM$, where $T_pM$ is the tangent space. I've studied and understood the (short) proof, but isn't this statement absolutely trivial or have I got things mixed up? Let me explain: Assuming $p$ is an extremum, it follows that the differential vanishes, i.e. $nabla f(p) = 0$, since this is a necessary condition. But the zero vector is orthogonal to everything. So what's the point of this corollary?
derivatives differential-geometry orthogonality submanifold tangent-spaces
$endgroup$
2
$begingroup$
Please make the title more informative.
$endgroup$
– YuiTo Cheng
Jun 22 at 4:07
add a comment |
$begingroup$
Let $U subseteq mathbb R^n$ be an open subset and let $M subseteq U$ be a $k$-dimensional submanifold of $mathbb R^n$. Consider a differentiable function $f: U longrightarrow mathbb R$. There's a corollary that states, that if $f big|_M$ takes on a local extremum at a point $p in M$, then the gradient $nabla f(p)$ is normal to $M$ at $p$, i.e. $nabla f(p) perp T_pM$, where $T_pM$ is the tangent space. I've studied and understood the (short) proof, but isn't this statement absolutely trivial or have I got things mixed up? Let me explain: Assuming $p$ is an extremum, it follows that the differential vanishes, i.e. $nabla f(p) = 0$, since this is a necessary condition. But the zero vector is orthogonal to everything. So what's the point of this corollary?
derivatives differential-geometry orthogonality submanifold tangent-spaces
$endgroup$
Let $U subseteq mathbb R^n$ be an open subset and let $M subseteq U$ be a $k$-dimensional submanifold of $mathbb R^n$. Consider a differentiable function $f: U longrightarrow mathbb R$. There's a corollary that states, that if $f big|_M$ takes on a local extremum at a point $p in M$, then the gradient $nabla f(p)$ is normal to $M$ at $p$, i.e. $nabla f(p) perp T_pM$, where $T_pM$ is the tangent space. I've studied and understood the (short) proof, but isn't this statement absolutely trivial or have I got things mixed up? Let me explain: Assuming $p$ is an extremum, it follows that the differential vanishes, i.e. $nabla f(p) = 0$, since this is a necessary condition. But the zero vector is orthogonal to everything. So what's the point of this corollary?
derivatives differential-geometry orthogonality submanifold tangent-spaces
derivatives differential-geometry orthogonality submanifold tangent-spaces
asked Jun 21 at 17:32
playdisplaydis
444 bronze badges
444 bronze badges
2
$begingroup$
Please make the title more informative.
$endgroup$
– YuiTo Cheng
Jun 22 at 4:07
add a comment |
2
$begingroup$
Please make the title more informative.
$endgroup$
– YuiTo Cheng
Jun 22 at 4:07
2
2
$begingroup$
Please make the title more informative.
$endgroup$
– YuiTo Cheng
Jun 22 at 4:07
$begingroup$
Please make the title more informative.
$endgroup$
– YuiTo Cheng
Jun 22 at 4:07
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Take$$M=(x,y)inmathbb R^2mid x^2+y^2=1$$and let $f(x,y)=x^2+y^2$. Then $f|_M$ is constant, and therefore it has an extreme point at every point of $M$. However, $nabla f$ is never equal to $0$, at any point of $M$ (although, as the corollory states, it is orthogonal to $M$ at each point).
The gradient has to be $0$ indeed, if the point at which we are computing it is both an extreme point of $f$ and an interior point of $M$ (if you see $f$ as a subset of $mathbb R^n$), but points of submanifolds usually are not interior points.
$endgroup$
add a comment |
$begingroup$
$p$ is not necessarily a local extremum on $U$, it's a local extremum on $M$.
Consider for instance $f$ defined on $mathbbR^2$ by the square of the euclidean norm; then on the circle $S^1$, it reaches a local extremum at each point, but its gradient is not zero on $S^1$ : $nabla f (p) = 2p$ which is indeed orthogonal to $T_pS^1= p^bot$, but is not $0$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3269951%2fisnt-this-a-trivial-corollary%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Take$$M=(x,y)inmathbb R^2mid x^2+y^2=1$$and let $f(x,y)=x^2+y^2$. Then $f|_M$ is constant, and therefore it has an extreme point at every point of $M$. However, $nabla f$ is never equal to $0$, at any point of $M$ (although, as the corollory states, it is orthogonal to $M$ at each point).
The gradient has to be $0$ indeed, if the point at which we are computing it is both an extreme point of $f$ and an interior point of $M$ (if you see $f$ as a subset of $mathbb R^n$), but points of submanifolds usually are not interior points.
$endgroup$
add a comment |
$begingroup$
Take$$M=(x,y)inmathbb R^2mid x^2+y^2=1$$and let $f(x,y)=x^2+y^2$. Then $f|_M$ is constant, and therefore it has an extreme point at every point of $M$. However, $nabla f$ is never equal to $0$, at any point of $M$ (although, as the corollory states, it is orthogonal to $M$ at each point).
The gradient has to be $0$ indeed, if the point at which we are computing it is both an extreme point of $f$ and an interior point of $M$ (if you see $f$ as a subset of $mathbb R^n$), but points of submanifolds usually are not interior points.
$endgroup$
add a comment |
$begingroup$
Take$$M=(x,y)inmathbb R^2mid x^2+y^2=1$$and let $f(x,y)=x^2+y^2$. Then $f|_M$ is constant, and therefore it has an extreme point at every point of $M$. However, $nabla f$ is never equal to $0$, at any point of $M$ (although, as the corollory states, it is orthogonal to $M$ at each point).
The gradient has to be $0$ indeed, if the point at which we are computing it is both an extreme point of $f$ and an interior point of $M$ (if you see $f$ as a subset of $mathbb R^n$), but points of submanifolds usually are not interior points.
$endgroup$
Take$$M=(x,y)inmathbb R^2mid x^2+y^2=1$$and let $f(x,y)=x^2+y^2$. Then $f|_M$ is constant, and therefore it has an extreme point at every point of $M$. However, $nabla f$ is never equal to $0$, at any point of $M$ (although, as the corollory states, it is orthogonal to $M$ at each point).
The gradient has to be $0$ indeed, if the point at which we are computing it is both an extreme point of $f$ and an interior point of $M$ (if you see $f$ as a subset of $mathbb R^n$), but points of submanifolds usually are not interior points.
answered Jun 21 at 17:36
José Carlos SantosJosé Carlos Santos
196k24 gold badges153 silver badges272 bronze badges
196k24 gold badges153 silver badges272 bronze badges
add a comment |
add a comment |
$begingroup$
$p$ is not necessarily a local extremum on $U$, it's a local extremum on $M$.
Consider for instance $f$ defined on $mathbbR^2$ by the square of the euclidean norm; then on the circle $S^1$, it reaches a local extremum at each point, but its gradient is not zero on $S^1$ : $nabla f (p) = 2p$ which is indeed orthogonal to $T_pS^1= p^bot$, but is not $0$
$endgroup$
add a comment |
$begingroup$
$p$ is not necessarily a local extremum on $U$, it's a local extremum on $M$.
Consider for instance $f$ defined on $mathbbR^2$ by the square of the euclidean norm; then on the circle $S^1$, it reaches a local extremum at each point, but its gradient is not zero on $S^1$ : $nabla f (p) = 2p$ which is indeed orthogonal to $T_pS^1= p^bot$, but is not $0$
$endgroup$
add a comment |
$begingroup$
$p$ is not necessarily a local extremum on $U$, it's a local extremum on $M$.
Consider for instance $f$ defined on $mathbbR^2$ by the square of the euclidean norm; then on the circle $S^1$, it reaches a local extremum at each point, but its gradient is not zero on $S^1$ : $nabla f (p) = 2p$ which is indeed orthogonal to $T_pS^1= p^bot$, but is not $0$
$endgroup$
$p$ is not necessarily a local extremum on $U$, it's a local extremum on $M$.
Consider for instance $f$ defined on $mathbbR^2$ by the square of the euclidean norm; then on the circle $S^1$, it reaches a local extremum at each point, but its gradient is not zero on $S^1$ : $nabla f (p) = 2p$ which is indeed orthogonal to $T_pS^1= p^bot$, but is not $0$
answered Jun 21 at 17:37
MaxMax
19.9k1 gold badge12 silver badges46 bronze badges
19.9k1 gold badge12 silver badges46 bronze badges
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3269951%2fisnt-this-a-trivial-corollary%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
$begingroup$
Please make the title more informative.
$endgroup$
– YuiTo Cheng
Jun 22 at 4:07