Does Approximate Bayesian Computation (ABC) follow the Likelihood Principle?What is an “uninformative prior”? Can we ever have one with truly no information?ABC. How can it avoid the likelihood function?Parameter Estimation for intractable Likelihoods / Alternatives to approximate Bayesian computationDistance metric for Approximate Bayesian Computation (ABC) regressionApproximate Bayesian computation: where to start from?Simple linear regression using Approximate Bayesian Computation (ABC)In what situations would one use Approximate Bayesian Computation instead of Bayesian inference?Using maximum Likelihood regression to get closer to the true posterior when doing Approximate Bayesian Computation : contradiction?Approximate Bayesian Computation for parameters estimation in ODE-based modelApproximate bayesian computation: model selection on nested modelsProof of Approximate / Exact Bayesian Computation
What Exploit Are These User Agents Trying to Use?
Knowledge-based authentication using Domain-driven Design in C#
If a warlock makes a Dancing Sword their pact weapon, is there a way to prevent it from disappearing if it's farther away for more than a minute?
How to Prove P(a) → ∀x(P(x) ∨ ¬(x = a)) using Natural Deduction
Can compressed videos be decoded back to their uncompresed original format?
Can a virus destroy the BIOS of a modern computer?
What reasons are there for a Capitalist to oppose a 100% inheritance tax?
Is it "common practice in Fourier transform spectroscopy to multiply the measured interferogram by an apodizing function"? If so, why?
files created then deleted at every second in tmp directory
How seriously should I take size and weight limits of hand luggage?
What is the opposite of "eschatology"?
Why is the sentence "Das ist eine Nase" correct?
What historical events would have to change in order to make 19th century "steampunk" technology possible?
Finitely generated matrix groups whose eigenvalues are all algebraic
Is it possible to map the firing of neurons in the human brain so as to stimulate artificial memories in someone else?
Rotate ASCII Art by 45 Degrees
How to travel to Japan while expressing milk?
In Bayesian inference, why are some terms dropped from the posterior predictive?
How to prevent "they're falling in love" trope
Implication of namely
My ex-girlfriend uses my Apple ID to log in to her iPad. Do I have to give her my Apple ID password to reset it?
What is a Samsaran Word™?
how do we prove that a sum of two periods is still a period?
Am I breaking OOP practice with this architecture?
Does Approximate Bayesian Computation (ABC) follow the Likelihood Principle?
What is an “uninformative prior”? Can we ever have one with truly no information?ABC. How can it avoid the likelihood function?Parameter Estimation for intractable Likelihoods / Alternatives to approximate Bayesian computationDistance metric for Approximate Bayesian Computation (ABC) regressionApproximate Bayesian computation: where to start from?Simple linear regression using Approximate Bayesian Computation (ABC)In what situations would one use Approximate Bayesian Computation instead of Bayesian inference?Using maximum Likelihood regression to get closer to the true posterior when doing Approximate Bayesian Computation : contradiction?Approximate Bayesian Computation for parameters estimation in ODE-based modelApproximate bayesian computation: model selection on nested modelsProof of Approximate / Exact Bayesian Computation
$begingroup$
I know that ABC is commonly used when the likelihood is intractable, so likelihood principle is not an interest in that case. But, I am curious whether the ABC satisfies the likelihood principle when the likelihood function is tractable. ABC is a generative procedure to sample parameters from posterior, and likelihood principle says that the inference on the parameter should be solely determined by likelihood part ignoring the term of the observation.
I think that if I generate fake samples from a parameter, the generating process is crucially affected by the term of observation, which might be ignored in the likelihood principle.
It's confusing, because I think that the ABC does not follow the likelihood principle, but it is well-known that Bayesian stat follows it.
Am I missing something?
bayesian computational-statistics abc
$endgroup$
add a comment |
$begingroup$
I know that ABC is commonly used when the likelihood is intractable, so likelihood principle is not an interest in that case. But, I am curious whether the ABC satisfies the likelihood principle when the likelihood function is tractable. ABC is a generative procedure to sample parameters from posterior, and likelihood principle says that the inference on the parameter should be solely determined by likelihood part ignoring the term of the observation.
I think that if I generate fake samples from a parameter, the generating process is crucially affected by the term of observation, which might be ignored in the likelihood principle.
It's confusing, because I think that the ABC does not follow the likelihood principle, but it is well-known that Bayesian stat follows it.
Am I missing something?
bayesian computational-statistics abc
$endgroup$
add a comment |
$begingroup$
I know that ABC is commonly used when the likelihood is intractable, so likelihood principle is not an interest in that case. But, I am curious whether the ABC satisfies the likelihood principle when the likelihood function is tractable. ABC is a generative procedure to sample parameters from posterior, and likelihood principle says that the inference on the parameter should be solely determined by likelihood part ignoring the term of the observation.
I think that if I generate fake samples from a parameter, the generating process is crucially affected by the term of observation, which might be ignored in the likelihood principle.
It's confusing, because I think that the ABC does not follow the likelihood principle, but it is well-known that Bayesian stat follows it.
Am I missing something?
bayesian computational-statistics abc
$endgroup$
I know that ABC is commonly used when the likelihood is intractable, so likelihood principle is not an interest in that case. But, I am curious whether the ABC satisfies the likelihood principle when the likelihood function is tractable. ABC is a generative procedure to sample parameters from posterior, and likelihood principle says that the inference on the parameter should be solely determined by likelihood part ignoring the term of the observation.
I think that if I generate fake samples from a parameter, the generating process is crucially affected by the term of observation, which might be ignored in the likelihood principle.
It's confusing, because I think that the ABC does not follow the likelihood principle, but it is well-known that Bayesian stat follows it.
Am I missing something?
bayesian computational-statistics abc
bayesian computational-statistics abc
edited 19 hours ago
Minsuk Shin
asked 19 hours ago
Minsuk ShinMinsuk Shin
663
663
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
The "when the likelihood function is tractable" is somewhat self-defeating, as the reason for using ABC is that it is intractable.
As for the likelihood principle, ABC is definitely not respecting it, since it requires a simulation of the data from its sampling distribution. It thus uses the frequentist properties of that distribution rather than the likelihood itself. Except in the (unrealistic) limiting case when the tolerance is exactly zero and the distance is based on the sufficient statistic, the ABC thus fails to agree with the likelihood principle.
In my humble opinion, this is a minor issue when compared with the major problems faced by ABC, unless you can provide an example with dire (There are also exact Bayesian approaches that do not agree with the likelihood principle, witness the Jeffreys or matching priors.)
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "65"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f400719%2fdoes-approximate-bayesian-computation-abc-follow-the-likelihood-principle%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The "when the likelihood function is tractable" is somewhat self-defeating, as the reason for using ABC is that it is intractable.
As for the likelihood principle, ABC is definitely not respecting it, since it requires a simulation of the data from its sampling distribution. It thus uses the frequentist properties of that distribution rather than the likelihood itself. Except in the (unrealistic) limiting case when the tolerance is exactly zero and the distance is based on the sufficient statistic, the ABC thus fails to agree with the likelihood principle.
In my humble opinion, this is a minor issue when compared with the major problems faced by ABC, unless you can provide an example with dire (There are also exact Bayesian approaches that do not agree with the likelihood principle, witness the Jeffreys or matching priors.)
$endgroup$
add a comment |
$begingroup$
The "when the likelihood function is tractable" is somewhat self-defeating, as the reason for using ABC is that it is intractable.
As for the likelihood principle, ABC is definitely not respecting it, since it requires a simulation of the data from its sampling distribution. It thus uses the frequentist properties of that distribution rather than the likelihood itself. Except in the (unrealistic) limiting case when the tolerance is exactly zero and the distance is based on the sufficient statistic, the ABC thus fails to agree with the likelihood principle.
In my humble opinion, this is a minor issue when compared with the major problems faced by ABC, unless you can provide an example with dire (There are also exact Bayesian approaches that do not agree with the likelihood principle, witness the Jeffreys or matching priors.)
$endgroup$
add a comment |
$begingroup$
The "when the likelihood function is tractable" is somewhat self-defeating, as the reason for using ABC is that it is intractable.
As for the likelihood principle, ABC is definitely not respecting it, since it requires a simulation of the data from its sampling distribution. It thus uses the frequentist properties of that distribution rather than the likelihood itself. Except in the (unrealistic) limiting case when the tolerance is exactly zero and the distance is based on the sufficient statistic, the ABC thus fails to agree with the likelihood principle.
In my humble opinion, this is a minor issue when compared with the major problems faced by ABC, unless you can provide an example with dire (There are also exact Bayesian approaches that do not agree with the likelihood principle, witness the Jeffreys or matching priors.)
$endgroup$
The "when the likelihood function is tractable" is somewhat self-defeating, as the reason for using ABC is that it is intractable.
As for the likelihood principle, ABC is definitely not respecting it, since it requires a simulation of the data from its sampling distribution. It thus uses the frequentist properties of that distribution rather than the likelihood itself. Except in the (unrealistic) limiting case when the tolerance is exactly zero and the distance is based on the sufficient statistic, the ABC thus fails to agree with the likelihood principle.
In my humble opinion, this is a minor issue when compared with the major problems faced by ABC, unless you can provide an example with dire (There are also exact Bayesian approaches that do not agree with the likelihood principle, witness the Jeffreys or matching priors.)
edited 13 hours ago
answered 18 hours ago
Xi'anXi'an
59k897365
59k897365
add a comment |
add a comment |
Thanks for contributing an answer to Cross Validated!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f400719%2fdoes-approximate-bayesian-computation-abc-follow-the-likelihood-principle%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown