Example of compact Riemannian manifold with only one closed geodesic. Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Why are we interested in closed geodesics?Existence of geodesic on a compact Riemannian manifoldAre closed geodesics the prime numbers of Riemannian manifolds?Completeness of a Riemannian manifold with boundaryTotally geodesic hypersurface in compact hyperbolic manifoldExistence of closed, non self-intersecting geodesics on compact manifoldsExample for conjugate points with only one connecting geodesicExample for infinitely many points with more than one minimizing geodesic to a point?Compact totally geodesic submanifolds in manifold with positive sectional curvatureClosed geodesic on a non-simply connected Riemannian manifold
How can I make names more distinctive without making them longer?
How to stop my camera from exagerrating differences in skin colour?
New Order #5: where Fibonacci and Beatty meet at Wythoff
Is above average number of years spent on PhD considered a red flag in future academia or industry positions?
I'm thinking of a number
What do you call a plan that's an alternative plan in case your initial plan fails?
Why don't the Weasley twins use magic outside of school if the Trace can only find the location of spells cast?
Replacing HDD with SSD; what about non-APFS/APFS?
Did the new image of black hole confirm the general theory of relativity?
Simulating Exploding Dice
Single author papers against my advisor's will?
Strange behaviour of Check
I'm having difficulty getting my players to do stuff in a sandbox campaign
Can a non-EU citizen traveling with me come with me through the EU passport line?
Passing functions in C++
Is there a service that would inform me whenever a new direct route is scheduled from a given airport?
What is the electric potential inside a point charge?
Active filter with series inductor and resistor - do these exist?
Unable to start mainnet node docker container
Why is there no army of Iron-Mans in the MCU?
What loss function to use when labels are probabilities?
How can players take actions together that are impossible otherwise?
3 doors, three guards, one stone
Estimate capacitor parameters
Example of compact Riemannian manifold with only one closed geodesic.
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Why are we interested in closed geodesics?Existence of geodesic on a compact Riemannian manifoldAre closed geodesics the prime numbers of Riemannian manifolds?Completeness of a Riemannian manifold with boundaryTotally geodesic hypersurface in compact hyperbolic manifoldExistence of closed, non self-intersecting geodesics on compact manifoldsExample for conjugate points with only one connecting geodesicExample for infinitely many points with more than one minimizing geodesic to a point?Compact totally geodesic submanifolds in manifold with positive sectional curvatureClosed geodesic on a non-simply connected Riemannian manifold
$begingroup$
The Lyusternik-Fet theorem states that every compact Riemannian manifold has at least one closed geodesic.
Are there any easy-to-construct1 examples of compact Riemannian manifolds for which it is easy to see they only have one closed geodesic?2
If there aren't any such examples, are there any easy-to-construct examples that only have one closed geodesic but where proving this might be difficult?
And if there aren't any examples of this, are there any examples at all of compact manifolds with only one closed geodesic?
1 Of course, the $1$-sphere $S^1$ contains just one closed geodesic, but I'm interested in examples besides this one.
2 By the theorem of the three geodesics, this example cannot be a topological sphere.
differential-geometry examples-counterexamples geodesic
$endgroup$
add a comment |
$begingroup$
The Lyusternik-Fet theorem states that every compact Riemannian manifold has at least one closed geodesic.
Are there any easy-to-construct1 examples of compact Riemannian manifolds for which it is easy to see they only have one closed geodesic?2
If there aren't any such examples, are there any easy-to-construct examples that only have one closed geodesic but where proving this might be difficult?
And if there aren't any examples of this, are there any examples at all of compact manifolds with only one closed geodesic?
1 Of course, the $1$-sphere $S^1$ contains just one closed geodesic, but I'm interested in examples besides this one.
2 By the theorem of the three geodesics, this example cannot be a topological sphere.
differential-geometry examples-counterexamples geodesic
$endgroup$
add a comment |
$begingroup$
The Lyusternik-Fet theorem states that every compact Riemannian manifold has at least one closed geodesic.
Are there any easy-to-construct1 examples of compact Riemannian manifolds for which it is easy to see they only have one closed geodesic?2
If there aren't any such examples, are there any easy-to-construct examples that only have one closed geodesic but where proving this might be difficult?
And if there aren't any examples of this, are there any examples at all of compact manifolds with only one closed geodesic?
1 Of course, the $1$-sphere $S^1$ contains just one closed geodesic, but I'm interested in examples besides this one.
2 By the theorem of the three geodesics, this example cannot be a topological sphere.
differential-geometry examples-counterexamples geodesic
$endgroup$
The Lyusternik-Fet theorem states that every compact Riemannian manifold has at least one closed geodesic.
Are there any easy-to-construct1 examples of compact Riemannian manifolds for which it is easy to see they only have one closed geodesic?2
If there aren't any such examples, are there any easy-to-construct examples that only have one closed geodesic but where proving this might be difficult?
And if there aren't any examples of this, are there any examples at all of compact manifolds with only one closed geodesic?
1 Of course, the $1$-sphere $S^1$ contains just one closed geodesic, but I'm interested in examples besides this one.
2 By the theorem of the three geodesics, this example cannot be a topological sphere.
differential-geometry examples-counterexamples geodesic
differential-geometry examples-counterexamples geodesic
edited 8 hours ago
Peter Kagey
asked 2 days ago
Peter KageyPeter Kagey
1,60072053
1,60072053
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:
Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.
See for instance this survey article by Burns and Matveev.
This is known for surfaces (with the only hard case when the surface is diffeomorphic to $S^2$ in which case the result is due to Bangert and Franks) and for many higher-dimensional manifolds. However, the problem is open already when $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.
$endgroup$
add a comment |
$begingroup$
If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.
EDIT: Apologies for missing the crucial compactness hypothesis.
$endgroup$
$begingroup$
Lovely example, but a hyperboloid isn't compact, right?
$endgroup$
– Peter Kagey
2 days ago
$begingroup$
Oops. Sloppy reading. I'll delete.
$endgroup$
– Ted Shifrin
2 days ago
1
$begingroup$
It's a nice example; you should leave it.
$endgroup$
– Peter Kagey
2 days ago
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185649%2fexample-of-compact-riemannian-manifold-with-only-one-closed-geodesic%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:
Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.
See for instance this survey article by Burns and Matveev.
This is known for surfaces (with the only hard case when the surface is diffeomorphic to $S^2$ in which case the result is due to Bangert and Franks) and for many higher-dimensional manifolds. However, the problem is open already when $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.
$endgroup$
add a comment |
$begingroup$
First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:
Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.
See for instance this survey article by Burns and Matveev.
This is known for surfaces (with the only hard case when the surface is diffeomorphic to $S^2$ in which case the result is due to Bangert and Franks) and for many higher-dimensional manifolds. However, the problem is open already when $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.
$endgroup$
add a comment |
$begingroup$
First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:
Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.
See for instance this survey article by Burns and Matveev.
This is known for surfaces (with the only hard case when the surface is diffeomorphic to $S^2$ in which case the result is due to Bangert and Franks) and for many higher-dimensional manifolds. However, the problem is open already when $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.
$endgroup$
First of all, you have to exclude constant maps $S^1to M$ from consideration: They are all closed geodesics. Secondly, you have to talk about geometrically distinct closed geodesics: Geodesics which have the same image are regarded as "the same". Then, it is a notorious conjecture/open problem:
Conjecture. Every compact Riemannian manifold of dimension $n >1$ contains infinitely many geometrically distinct nonconstant geodesics.
See for instance this survey article by Burns and Matveev.
This is known for surfaces (with the only hard case when the surface is diffeomorphic to $S^2$ in which case the result is due to Bangert and Franks) and for many higher-dimensional manifolds. However, the problem is open already when $M$ is diffeomorphic to the sphere $S^n$, $nge 3$.
edited yesterday
answered 2 days ago
Moishe KohanMoishe Kohan
48.8k344111
48.8k344111
add a comment |
add a comment |
$begingroup$
If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.
EDIT: Apologies for missing the crucial compactness hypothesis.
$endgroup$
$begingroup$
Lovely example, but a hyperboloid isn't compact, right?
$endgroup$
– Peter Kagey
2 days ago
$begingroup$
Oops. Sloppy reading. I'll delete.
$endgroup$
– Ted Shifrin
2 days ago
1
$begingroup$
It's a nice example; you should leave it.
$endgroup$
– Peter Kagey
2 days ago
add a comment |
$begingroup$
If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.
EDIT: Apologies for missing the crucial compactness hypothesis.
$endgroup$
$begingroup$
Lovely example, but a hyperboloid isn't compact, right?
$endgroup$
– Peter Kagey
2 days ago
$begingroup$
Oops. Sloppy reading. I'll delete.
$endgroup$
– Ted Shifrin
2 days ago
1
$begingroup$
It's a nice example; you should leave it.
$endgroup$
– Peter Kagey
2 days ago
add a comment |
$begingroup$
If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.
EDIT: Apologies for missing the crucial compactness hypothesis.
$endgroup$
If you analyze the geodesics using Clairaut's relation, you'll find that the only closed geodesic on a hyperboloid of one sheet is the central circle. Indeed, the same holds for a concave surface of revolution of the same "shape" as the hyperboloid of one sheet.
EDIT: Apologies for missing the crucial compactness hypothesis.
edited 2 days ago
answered 2 days ago
Ted ShifrinTed Shifrin
65.1k44792
65.1k44792
$begingroup$
Lovely example, but a hyperboloid isn't compact, right?
$endgroup$
– Peter Kagey
2 days ago
$begingroup$
Oops. Sloppy reading. I'll delete.
$endgroup$
– Ted Shifrin
2 days ago
1
$begingroup$
It's a nice example; you should leave it.
$endgroup$
– Peter Kagey
2 days ago
add a comment |
$begingroup$
Lovely example, but a hyperboloid isn't compact, right?
$endgroup$
– Peter Kagey
2 days ago
$begingroup$
Oops. Sloppy reading. I'll delete.
$endgroup$
– Ted Shifrin
2 days ago
1
$begingroup$
It's a nice example; you should leave it.
$endgroup$
– Peter Kagey
2 days ago
$begingroup$
Lovely example, but a hyperboloid isn't compact, right?
$endgroup$
– Peter Kagey
2 days ago
$begingroup$
Lovely example, but a hyperboloid isn't compact, right?
$endgroup$
– Peter Kagey
2 days ago
$begingroup$
Oops. Sloppy reading. I'll delete.
$endgroup$
– Ted Shifrin
2 days ago
$begingroup$
Oops. Sloppy reading. I'll delete.
$endgroup$
– Ted Shifrin
2 days ago
1
1
$begingroup$
It's a nice example; you should leave it.
$endgroup$
– Peter Kagey
2 days ago
$begingroup$
It's a nice example; you should leave it.
$endgroup$
– Peter Kagey
2 days ago
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185649%2fexample-of-compact-riemannian-manifold-with-only-one-closed-geodesic%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown