Why partial fraction decomposition of $frac1s^2(s+2)$ is $fracAs+fracBs^2+fracC(s+2)$?Derivation of the general forms of partial fractionsWhy do you need two fractions for partial fraction decomposition with repeated factors?How can the correct form of the partial fractions decomposition be found for arbitrary rational functions?Integration - Partial Fraction DecompositionPartial Fraction Expansion of Transfer FunctionThe logic behind partial fraction decompositionFast partial-fraction decompositionHelp with partial fraction decompositionPartial fraction decomposition helpPartial fraction decomposition of a rational functionPartial Fraction Decomposition ProblemFind the Partial Fraction DecompositionPartial Fraction Decomposition for Inverse Laplace Transform
Assassin's bullet with mercury
Why didn't Miles's spider sense work before?
If human space travel is limited by the G force vulnerability, is there a way to counter G forces?
Why doesn't using multiple commands with a || or && conditional work?
How much of data wrangling is a data scientist's job?
What is the idiomatic way to say "clothing fits"?
Intersection Puzzle
Plagiarism or not?
How do I gain back my faith in my PhD degree?
How could indestructible materials be used in power generation?
What killed these X2 caps?
Why no variance term in Bayesian logistic regression?
Why would the Red Woman birth a shadow if she worshipped the Lord of the Light?
What is the most common color to indicate the input-field is disabled?
Should I tell management that I intend to leave due to bad software development practices?
Expand and Contract
Bullying boss launched a smear campaign and made me unemployable
What exploit Are these user agents trying to use?
Unlock My Phone! February 2018
What reasons are there for a Capitalist to oppose a 100% inheritance tax?
How dangerous is XSS?
How did the Super Star Destroyer Executor get destroyed exactly?
What about the virus in 12 Monkeys?
Why is this clock signal connected to a capacitor to gnd?
Why partial fraction decomposition of $frac1s^2(s+2)$ is $fracAs+fracBs^2+fracC(s+2)$?
Derivation of the general forms of partial fractionsWhy do you need two fractions for partial fraction decomposition with repeated factors?How can the correct form of the partial fractions decomposition be found for arbitrary rational functions?Integration - Partial Fraction DecompositionPartial Fraction Expansion of Transfer FunctionThe logic behind partial fraction decompositionFast partial-fraction decompositionHelp with partial fraction decompositionPartial fraction decomposition helpPartial fraction decomposition of a rational functionPartial Fraction Decomposition ProblemFind the Partial Fraction DecompositionPartial Fraction Decomposition for Inverse Laplace Transform
$begingroup$
Can someone please explain why: $$frac1s^2(s+2)=fracAs+fracBs^2+fracC(s+2)$$
And not:$$frac1s^2(s+2)=fracAs^2+fracB(s+2)$$
I'm a bit confused where the extra s term comes from in the first equation.
algebra-precalculus partial-fractions
$endgroup$
add a comment |
$begingroup$
Can someone please explain why: $$frac1s^2(s+2)=fracAs+fracBs^2+fracC(s+2)$$
And not:$$frac1s^2(s+2)=fracAs^2+fracB(s+2)$$
I'm a bit confused where the extra s term comes from in the first equation.
algebra-precalculus partial-fractions
$endgroup$
$begingroup$
There are many answers available on MSE, i.e. here and here
$endgroup$
– callculus
yesterday
$begingroup$
More answers here too
$endgroup$
– David K
22 hours ago
add a comment |
$begingroup$
Can someone please explain why: $$frac1s^2(s+2)=fracAs+fracBs^2+fracC(s+2)$$
And not:$$frac1s^2(s+2)=fracAs^2+fracB(s+2)$$
I'm a bit confused where the extra s term comes from in the first equation.
algebra-precalculus partial-fractions
$endgroup$
Can someone please explain why: $$frac1s^2(s+2)=fracAs+fracBs^2+fracC(s+2)$$
And not:$$frac1s^2(s+2)=fracAs^2+fracB(s+2)$$
I'm a bit confused where the extra s term comes from in the first equation.
algebra-precalculus partial-fractions
algebra-precalculus partial-fractions
edited 22 hours ago
user21820
40k544160
40k544160
asked yesterday
stuartstuart
1968
1968
$begingroup$
There are many answers available on MSE, i.e. here and here
$endgroup$
– callculus
yesterday
$begingroup$
More answers here too
$endgroup$
– David K
22 hours ago
add a comment |
$begingroup$
There are many answers available on MSE, i.e. here and here
$endgroup$
– callculus
yesterday
$begingroup$
More answers here too
$endgroup$
– David K
22 hours ago
$begingroup$
There are many answers available on MSE, i.e. here and here
$endgroup$
– callculus
yesterday
$begingroup$
There are many answers available on MSE, i.e. here and here
$endgroup$
– callculus
yesterday
$begingroup$
More answers here too
$endgroup$
– David K
22 hours ago
$begingroup$
More answers here too
$endgroup$
– David K
22 hours ago
add a comment |
4 Answers
4
active
oldest
votes
$begingroup$
The general result is the following.
Suppose that the degree of $p(s)$ is less than the degree of $q(s)$, and that $q(s)=q_1(s)q_2(s)$ where $q_1(s)$ and $q_2(s)$ have no common factor. Then there exist polynomials $r_1(s)$ and $r_2(s)$, with degrees less than $q_1(s)$ and $q_2(s)$ respectively, such that
$$fracp(s)q(s)=fracr_1(s)q_1(s)+fracr_2(s)q_2(s) .$$
In your case the denominator factorises as $s^2$ times $s+2$ so you have
$$frac1s^2(s+2)=fracAs+Bs^2+fracCs+2 .$$
It is then usually more convenient (though not obligatory) to split up the first fraction, which gives your answer.
Note that you cannot, for the purposes of the above result, regard the denominator as $s$ times $s(s+2)$, because these polynomials do have a common factor.
$endgroup$
add a comment |
$begingroup$
If your denominator has a factor of the form $(as+b)^n$ then to write partial fractions you should write all the powers up to $n$, i.e. $fracAas+b+fracB(as+b)^2+cdots+fracZ(as+b)^n$. In the case you showed, you have that $s^2$ is a factor of the denominator and that's why in partial fractions you should write the terms $fracAs+fracBs^2$.
$endgroup$
1
$begingroup$
That's the rule, but I think the question was asking why is that the rule.
$endgroup$
– David K
22 hours ago
$begingroup$
@user21820 I didn't answer this question. What are you referring to?
$endgroup$
– David K
22 hours ago
$begingroup$
@DavidK: Oops sorry I thought you were the other David. Lol.
$endgroup$
– user21820
21 hours ago
add a comment |
$begingroup$
That is because for
$$fracas^2+bs+cs^2(s+2)=fracAs^2+fracB(s+2),$$
the left hand side has three parameters $a,b,c$, but the right hand side only has two parameters $a,b$. And if you try to solve TWO values from THREE equations, it will usually lead to a contradiction. So a third term of the right is needed. Even though this is not obvious in your question, you should think 1 as a degree 2 polynomial.
Or more simply, consider the example
$$
fracs+1s^2=frac1s^2+frac1s
$$
$endgroup$
add a comment |
$begingroup$
One can immediately see why in this case the partial fraction expansion will lead to a nonzero coefficient for the $1/s$ term. The asymptotic behavior of the fraction for large $s$ is $sim 1/s^3$. The singularity at $s = -2$ contributes a term proportional to $1/(s+2)$ to the partial fraction expansion, which for large $s$ behaves like $sim 1/s$. This $sim 1/s$ must be canceled out by the partial fraction expansion terms coming from the singularity at $s = 0$, this requires the presence of a contribution proportional to $1/s$.
By making this reasoning more precise we can get to the complete partial fraction expansion using only the contribution from the singularity at $s = -2$. The amplitude of the $1/(s+2)$ term in the partial fraction expansion is given by the factor that multiplies it in the fraction evaluated at $s = -2$, this is therefore equal to $1/4$. So the contribution to the partial fraction expansion coming from the singularity at $s = -2$ is:
$$frac14(s+2)$$
For large $s$ we can expand this in powers of $1/s$:
$$frac14(s+2) = frac14 sfrac11+frac2s = frac14s - frac12 s^2 + mathcalOleft(frac1s^3right)$$
The singularity at $s = 0$ will contribute terms to the partial fraction expansion whose large $s$ behavior will have to cancel out these first two terms, this means that this contribution to the partial fraction expansion is:
$$frac12 s^2-frac14s $$
The complete partial fraction expansion is thus given by:
$$frac12 s^2-frac14s + frac14(s+2) $$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172683%2fwhy-partial-fraction-decomposition-of-frac1s2s2-is-fracas-frac%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The general result is the following.
Suppose that the degree of $p(s)$ is less than the degree of $q(s)$, and that $q(s)=q_1(s)q_2(s)$ where $q_1(s)$ and $q_2(s)$ have no common factor. Then there exist polynomials $r_1(s)$ and $r_2(s)$, with degrees less than $q_1(s)$ and $q_2(s)$ respectively, such that
$$fracp(s)q(s)=fracr_1(s)q_1(s)+fracr_2(s)q_2(s) .$$
In your case the denominator factorises as $s^2$ times $s+2$ so you have
$$frac1s^2(s+2)=fracAs+Bs^2+fracCs+2 .$$
It is then usually more convenient (though not obligatory) to split up the first fraction, which gives your answer.
Note that you cannot, for the purposes of the above result, regard the denominator as $s$ times $s(s+2)$, because these polynomials do have a common factor.
$endgroup$
add a comment |
$begingroup$
The general result is the following.
Suppose that the degree of $p(s)$ is less than the degree of $q(s)$, and that $q(s)=q_1(s)q_2(s)$ where $q_1(s)$ and $q_2(s)$ have no common factor. Then there exist polynomials $r_1(s)$ and $r_2(s)$, with degrees less than $q_1(s)$ and $q_2(s)$ respectively, such that
$$fracp(s)q(s)=fracr_1(s)q_1(s)+fracr_2(s)q_2(s) .$$
In your case the denominator factorises as $s^2$ times $s+2$ so you have
$$frac1s^2(s+2)=fracAs+Bs^2+fracCs+2 .$$
It is then usually more convenient (though not obligatory) to split up the first fraction, which gives your answer.
Note that you cannot, for the purposes of the above result, regard the denominator as $s$ times $s(s+2)$, because these polynomials do have a common factor.
$endgroup$
add a comment |
$begingroup$
The general result is the following.
Suppose that the degree of $p(s)$ is less than the degree of $q(s)$, and that $q(s)=q_1(s)q_2(s)$ where $q_1(s)$ and $q_2(s)$ have no common factor. Then there exist polynomials $r_1(s)$ and $r_2(s)$, with degrees less than $q_1(s)$ and $q_2(s)$ respectively, such that
$$fracp(s)q(s)=fracr_1(s)q_1(s)+fracr_2(s)q_2(s) .$$
In your case the denominator factorises as $s^2$ times $s+2$ so you have
$$frac1s^2(s+2)=fracAs+Bs^2+fracCs+2 .$$
It is then usually more convenient (though not obligatory) to split up the first fraction, which gives your answer.
Note that you cannot, for the purposes of the above result, regard the denominator as $s$ times $s(s+2)$, because these polynomials do have a common factor.
$endgroup$
The general result is the following.
Suppose that the degree of $p(s)$ is less than the degree of $q(s)$, and that $q(s)=q_1(s)q_2(s)$ where $q_1(s)$ and $q_2(s)$ have no common factor. Then there exist polynomials $r_1(s)$ and $r_2(s)$, with degrees less than $q_1(s)$ and $q_2(s)$ respectively, such that
$$fracp(s)q(s)=fracr_1(s)q_1(s)+fracr_2(s)q_2(s) .$$
In your case the denominator factorises as $s^2$ times $s+2$ so you have
$$frac1s^2(s+2)=fracAs+Bs^2+fracCs+2 .$$
It is then usually more convenient (though not obligatory) to split up the first fraction, which gives your answer.
Note that you cannot, for the purposes of the above result, regard the denominator as $s$ times $s(s+2)$, because these polynomials do have a common factor.
answered yesterday
DavidDavid
69.7k668131
69.7k668131
add a comment |
add a comment |
$begingroup$
If your denominator has a factor of the form $(as+b)^n$ then to write partial fractions you should write all the powers up to $n$, i.e. $fracAas+b+fracB(as+b)^2+cdots+fracZ(as+b)^n$. In the case you showed, you have that $s^2$ is a factor of the denominator and that's why in partial fractions you should write the terms $fracAs+fracBs^2$.
$endgroup$
1
$begingroup$
That's the rule, but I think the question was asking why is that the rule.
$endgroup$
– David K
22 hours ago
$begingroup$
@user21820 I didn't answer this question. What are you referring to?
$endgroup$
– David K
22 hours ago
$begingroup$
@DavidK: Oops sorry I thought you were the other David. Lol.
$endgroup$
– user21820
21 hours ago
add a comment |
$begingroup$
If your denominator has a factor of the form $(as+b)^n$ then to write partial fractions you should write all the powers up to $n$, i.e. $fracAas+b+fracB(as+b)^2+cdots+fracZ(as+b)^n$. In the case you showed, you have that $s^2$ is a factor of the denominator and that's why in partial fractions you should write the terms $fracAs+fracBs^2$.
$endgroup$
1
$begingroup$
That's the rule, but I think the question was asking why is that the rule.
$endgroup$
– David K
22 hours ago
$begingroup$
@user21820 I didn't answer this question. What are you referring to?
$endgroup$
– David K
22 hours ago
$begingroup$
@DavidK: Oops sorry I thought you were the other David. Lol.
$endgroup$
– user21820
21 hours ago
add a comment |
$begingroup$
If your denominator has a factor of the form $(as+b)^n$ then to write partial fractions you should write all the powers up to $n$, i.e. $fracAas+b+fracB(as+b)^2+cdots+fracZ(as+b)^n$. In the case you showed, you have that $s^2$ is a factor of the denominator and that's why in partial fractions you should write the terms $fracAs+fracBs^2$.
$endgroup$
If your denominator has a factor of the form $(as+b)^n$ then to write partial fractions you should write all the powers up to $n$, i.e. $fracAas+b+fracB(as+b)^2+cdots+fracZ(as+b)^n$. In the case you showed, you have that $s^2$ is a factor of the denominator and that's why in partial fractions you should write the terms $fracAs+fracBs^2$.
answered yesterday
Julian MejiaJulian Mejia
41828
41828
1
$begingroup$
That's the rule, but I think the question was asking why is that the rule.
$endgroup$
– David K
22 hours ago
$begingroup$
@user21820 I didn't answer this question. What are you referring to?
$endgroup$
– David K
22 hours ago
$begingroup$
@DavidK: Oops sorry I thought you were the other David. Lol.
$endgroup$
– user21820
21 hours ago
add a comment |
1
$begingroup$
That's the rule, but I think the question was asking why is that the rule.
$endgroup$
– David K
22 hours ago
$begingroup$
@user21820 I didn't answer this question. What are you referring to?
$endgroup$
– David K
22 hours ago
$begingroup$
@DavidK: Oops sorry I thought you were the other David. Lol.
$endgroup$
– user21820
21 hours ago
1
1
$begingroup$
That's the rule, but I think the question was asking why is that the rule.
$endgroup$
– David K
22 hours ago
$begingroup$
That's the rule, but I think the question was asking why is that the rule.
$endgroup$
– David K
22 hours ago
$begingroup$
@user21820 I didn't answer this question. What are you referring to?
$endgroup$
– David K
22 hours ago
$begingroup$
@user21820 I didn't answer this question. What are you referring to?
$endgroup$
– David K
22 hours ago
$begingroup$
@DavidK: Oops sorry I thought you were the other David. Lol.
$endgroup$
– user21820
21 hours ago
$begingroup$
@DavidK: Oops sorry I thought you were the other David. Lol.
$endgroup$
– user21820
21 hours ago
add a comment |
$begingroup$
That is because for
$$fracas^2+bs+cs^2(s+2)=fracAs^2+fracB(s+2),$$
the left hand side has three parameters $a,b,c$, but the right hand side only has two parameters $a,b$. And if you try to solve TWO values from THREE equations, it will usually lead to a contradiction. So a third term of the right is needed. Even though this is not obvious in your question, you should think 1 as a degree 2 polynomial.
Or more simply, consider the example
$$
fracs+1s^2=frac1s^2+frac1s
$$
$endgroup$
add a comment |
$begingroup$
That is because for
$$fracas^2+bs+cs^2(s+2)=fracAs^2+fracB(s+2),$$
the left hand side has three parameters $a,b,c$, but the right hand side only has two parameters $a,b$. And if you try to solve TWO values from THREE equations, it will usually lead to a contradiction. So a third term of the right is needed. Even though this is not obvious in your question, you should think 1 as a degree 2 polynomial.
Or more simply, consider the example
$$
fracs+1s^2=frac1s^2+frac1s
$$
$endgroup$
add a comment |
$begingroup$
That is because for
$$fracas^2+bs+cs^2(s+2)=fracAs^2+fracB(s+2),$$
the left hand side has three parameters $a,b,c$, but the right hand side only has two parameters $a,b$. And if you try to solve TWO values from THREE equations, it will usually lead to a contradiction. So a third term of the right is needed. Even though this is not obvious in your question, you should think 1 as a degree 2 polynomial.
Or more simply, consider the example
$$
fracs+1s^2=frac1s^2+frac1s
$$
$endgroup$
That is because for
$$fracas^2+bs+cs^2(s+2)=fracAs^2+fracB(s+2),$$
the left hand side has three parameters $a,b,c$, but the right hand side only has two parameters $a,b$. And if you try to solve TWO values from THREE equations, it will usually lead to a contradiction. So a third term of the right is needed. Even though this is not obvious in your question, you should think 1 as a degree 2 polynomial.
Or more simply, consider the example
$$
fracs+1s^2=frac1s^2+frac1s
$$
answered yesterday
Holding ArthurHolding Arthur
1,388417
1,388417
add a comment |
add a comment |
$begingroup$
One can immediately see why in this case the partial fraction expansion will lead to a nonzero coefficient for the $1/s$ term. The asymptotic behavior of the fraction for large $s$ is $sim 1/s^3$. The singularity at $s = -2$ contributes a term proportional to $1/(s+2)$ to the partial fraction expansion, which for large $s$ behaves like $sim 1/s$. This $sim 1/s$ must be canceled out by the partial fraction expansion terms coming from the singularity at $s = 0$, this requires the presence of a contribution proportional to $1/s$.
By making this reasoning more precise we can get to the complete partial fraction expansion using only the contribution from the singularity at $s = -2$. The amplitude of the $1/(s+2)$ term in the partial fraction expansion is given by the factor that multiplies it in the fraction evaluated at $s = -2$, this is therefore equal to $1/4$. So the contribution to the partial fraction expansion coming from the singularity at $s = -2$ is:
$$frac14(s+2)$$
For large $s$ we can expand this in powers of $1/s$:
$$frac14(s+2) = frac14 sfrac11+frac2s = frac14s - frac12 s^2 + mathcalOleft(frac1s^3right)$$
The singularity at $s = 0$ will contribute terms to the partial fraction expansion whose large $s$ behavior will have to cancel out these first two terms, this means that this contribution to the partial fraction expansion is:
$$frac12 s^2-frac14s $$
The complete partial fraction expansion is thus given by:
$$frac12 s^2-frac14s + frac14(s+2) $$
$endgroup$
add a comment |
$begingroup$
One can immediately see why in this case the partial fraction expansion will lead to a nonzero coefficient for the $1/s$ term. The asymptotic behavior of the fraction for large $s$ is $sim 1/s^3$. The singularity at $s = -2$ contributes a term proportional to $1/(s+2)$ to the partial fraction expansion, which for large $s$ behaves like $sim 1/s$. This $sim 1/s$ must be canceled out by the partial fraction expansion terms coming from the singularity at $s = 0$, this requires the presence of a contribution proportional to $1/s$.
By making this reasoning more precise we can get to the complete partial fraction expansion using only the contribution from the singularity at $s = -2$. The amplitude of the $1/(s+2)$ term in the partial fraction expansion is given by the factor that multiplies it in the fraction evaluated at $s = -2$, this is therefore equal to $1/4$. So the contribution to the partial fraction expansion coming from the singularity at $s = -2$ is:
$$frac14(s+2)$$
For large $s$ we can expand this in powers of $1/s$:
$$frac14(s+2) = frac14 sfrac11+frac2s = frac14s - frac12 s^2 + mathcalOleft(frac1s^3right)$$
The singularity at $s = 0$ will contribute terms to the partial fraction expansion whose large $s$ behavior will have to cancel out these first two terms, this means that this contribution to the partial fraction expansion is:
$$frac12 s^2-frac14s $$
The complete partial fraction expansion is thus given by:
$$frac12 s^2-frac14s + frac14(s+2) $$
$endgroup$
add a comment |
$begingroup$
One can immediately see why in this case the partial fraction expansion will lead to a nonzero coefficient for the $1/s$ term. The asymptotic behavior of the fraction for large $s$ is $sim 1/s^3$. The singularity at $s = -2$ contributes a term proportional to $1/(s+2)$ to the partial fraction expansion, which for large $s$ behaves like $sim 1/s$. This $sim 1/s$ must be canceled out by the partial fraction expansion terms coming from the singularity at $s = 0$, this requires the presence of a contribution proportional to $1/s$.
By making this reasoning more precise we can get to the complete partial fraction expansion using only the contribution from the singularity at $s = -2$. The amplitude of the $1/(s+2)$ term in the partial fraction expansion is given by the factor that multiplies it in the fraction evaluated at $s = -2$, this is therefore equal to $1/4$. So the contribution to the partial fraction expansion coming from the singularity at $s = -2$ is:
$$frac14(s+2)$$
For large $s$ we can expand this in powers of $1/s$:
$$frac14(s+2) = frac14 sfrac11+frac2s = frac14s - frac12 s^2 + mathcalOleft(frac1s^3right)$$
The singularity at $s = 0$ will contribute terms to the partial fraction expansion whose large $s$ behavior will have to cancel out these first two terms, this means that this contribution to the partial fraction expansion is:
$$frac12 s^2-frac14s $$
The complete partial fraction expansion is thus given by:
$$frac12 s^2-frac14s + frac14(s+2) $$
$endgroup$
One can immediately see why in this case the partial fraction expansion will lead to a nonzero coefficient for the $1/s$ term. The asymptotic behavior of the fraction for large $s$ is $sim 1/s^3$. The singularity at $s = -2$ contributes a term proportional to $1/(s+2)$ to the partial fraction expansion, which for large $s$ behaves like $sim 1/s$. This $sim 1/s$ must be canceled out by the partial fraction expansion terms coming from the singularity at $s = 0$, this requires the presence of a contribution proportional to $1/s$.
By making this reasoning more precise we can get to the complete partial fraction expansion using only the contribution from the singularity at $s = -2$. The amplitude of the $1/(s+2)$ term in the partial fraction expansion is given by the factor that multiplies it in the fraction evaluated at $s = -2$, this is therefore equal to $1/4$. So the contribution to the partial fraction expansion coming from the singularity at $s = -2$ is:
$$frac14(s+2)$$
For large $s$ we can expand this in powers of $1/s$:
$$frac14(s+2) = frac14 sfrac11+frac2s = frac14s - frac12 s^2 + mathcalOleft(frac1s^3right)$$
The singularity at $s = 0$ will contribute terms to the partial fraction expansion whose large $s$ behavior will have to cancel out these first two terms, this means that this contribution to the partial fraction expansion is:
$$frac12 s^2-frac14s $$
The complete partial fraction expansion is thus given by:
$$frac12 s^2-frac14s + frac14(s+2) $$
answered 23 hours ago
Count IblisCount Iblis
8,52221534
8,52221534
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172683%2fwhy-partial-fraction-decomposition-of-frac1s2s2-is-fracas-frac%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
There are many answers available on MSE, i.e. here and here
$endgroup$
– callculus
yesterday
$begingroup$
More answers here too
$endgroup$
– David K
22 hours ago