Fair gambler's ruin problem intuitionProbability of Gambler's Ruin with Unequal Gain/LossAdaptive gambler's ruin problemGambler's Ruin with no set target for winGambler's ruin problem - unsure about the number of roundsEffect of Gambler's Ruin Bet Size on DurationGambler's ruin: verifying Markov propertyComparison of duration of two gambler's ruin gamesGambler's Ruin - Probability of Losing in t StepsGambler's Ruin: Win 2 dollars, Lose 1 dollarGambler's ruin Markov chain
Is there a hemisphere-neutral way of specifying a season?
What method can I use to design a dungeon difficult enough that the PCs can't make it through without killing them?
Avoiding the "not like other girls" trope?
Why is this clock signal connected to a capacitor to gnd?
How writing a dominant 7 sus4 chord in RNA ( Vsus7 chord in the 1st inversion)
Can I run a new neutral wire to repair a broken circuit?
How would I stat a creature to be immune to everything but the Magic Missile spell? (just for fun)
Do UK voters know if their MP will be the Speaker of the House?
Am I breaking OOP practice with this architecture?
If human space travel is limited by the G force vulnerability, is there a way to counter G forces?
What is a romance in Latin?
CAST throwing error when run in stored procedure but not when run as raw query
Is "remove commented out code" correct English?
When is человек used as the word man instead of человек
I would say: "You are another teacher", but she is a woman and I am a man
Expand and Contract
Intersection Puzzle
How dangerous is XSS?
What does the expression "A Mann!" means
Unlock My Phone! February 2018
Detention in 1997
Can my sorcerer use a spellbook only to collect spells and scribe scrolls, not cast?
Why doesn't using multiple commands with a || or && conditional work?
What do you call someone who asks many questions?
Fair gambler's ruin problem intuition
Probability of Gambler's Ruin with Unequal Gain/LossAdaptive gambler's ruin problemGambler's Ruin with no set target for winGambler's ruin problem - unsure about the number of roundsEffect of Gambler's Ruin Bet Size on DurationGambler's ruin: verifying Markov propertyComparison of duration of two gambler's ruin gamesGambler's Ruin - Probability of Losing in t StepsGambler's Ruin: Win 2 dollars, Lose 1 dollarGambler's ruin Markov chain
$begingroup$
In a fair gambler's ruin problem, where the gambler starts with k dollars, wins $1 with probability 1/2 and loses $1 with probability 1/2, and stops when he/she reaches $n or $0.
In the solution (from Dobrow's Introduction to Stochastic Processes with R), they let $p_k$ be defined as the probability of reaching $n with $k in one's inventory. Then they use the fact that $p_k - p_k-1 = p_k-1 - p_k-2 = ... = p_1 - p_0 = p_1$.
Intuitively this means the probability of reaching $n with $k minus the probability of reaching $n with $k-1 is equivalent to the probability of reaching $n with only $1.
Is there an intuitive reason why this is the case?
probability stochastic-processes intuition
$endgroup$
add a comment |
$begingroup$
In a fair gambler's ruin problem, where the gambler starts with k dollars, wins $1 with probability 1/2 and loses $1 with probability 1/2, and stops when he/she reaches $n or $0.
In the solution (from Dobrow's Introduction to Stochastic Processes with R), they let $p_k$ be defined as the probability of reaching $n with $k in one's inventory. Then they use the fact that $p_k - p_k-1 = p_k-1 - p_k-2 = ... = p_1 - p_0 = p_1$.
Intuitively this means the probability of reaching $n with $k minus the probability of reaching $n with $k-1 is equivalent to the probability of reaching $n with only $1.
Is there an intuitive reason why this is the case?
probability stochastic-processes intuition
$endgroup$
add a comment |
$begingroup$
In a fair gambler's ruin problem, where the gambler starts with k dollars, wins $1 with probability 1/2 and loses $1 with probability 1/2, and stops when he/she reaches $n or $0.
In the solution (from Dobrow's Introduction to Stochastic Processes with R), they let $p_k$ be defined as the probability of reaching $n with $k in one's inventory. Then they use the fact that $p_k - p_k-1 = p_k-1 - p_k-2 = ... = p_1 - p_0 = p_1$.
Intuitively this means the probability of reaching $n with $k minus the probability of reaching $n with $k-1 is equivalent to the probability of reaching $n with only $1.
Is there an intuitive reason why this is the case?
probability stochastic-processes intuition
$endgroup$
In a fair gambler's ruin problem, where the gambler starts with k dollars, wins $1 with probability 1/2 and loses $1 with probability 1/2, and stops when he/she reaches $n or $0.
In the solution (from Dobrow's Introduction to Stochastic Processes with R), they let $p_k$ be defined as the probability of reaching $n with $k in one's inventory. Then they use the fact that $p_k - p_k-1 = p_k-1 - p_k-2 = ... = p_1 - p_0 = p_1$.
Intuitively this means the probability of reaching $n with $k minus the probability of reaching $n with $k-1 is equivalent to the probability of reaching $n with only $1.
Is there an intuitive reason why this is the case?
probability stochastic-processes intuition
probability stochastic-processes intuition
edited 18 hours ago
BSplitter
572215
572215
asked yesterday
platypus17platypus17
667
667
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that
$$q_k-1 - q_k = q_k-2 - q_k - 1 = ldots = q_1 - q_2 = q_0 - q_1 tag1labeleq1$$
Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.
Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by
$$p_i = frac12p_i - 1 + frac12p_i + 1 tag2labeleq2$$
based on the probabilities of either winning or losing the first time. Summing eqrefeq2 for $i$ from $1$ to $k - 1$ gives
$$sum_i=1^k-1 p_i = frac12sum_i=1^k-1 p_i - 1 + frac12sum_i=1^k-1 p_i + 1 tag3labeleq3$$
Having the summations only include the common terms on both sides gives
$$p_1 + sum_i=2^k - 2 p_i + p_k-1 = frac12p_0 + frac12p_1 + frac12sum_i=2^k - 2 p_i + frac12sum_i=2^k - 2 p_i + frac12p_k-1 + frac12p_k tag4labeleq4$$
Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_k-1$ term on the left to the RHS, eqrefeq4 becomes
$$frac12p_1 - frac12p_0 = frac12p_k - frac12p_k-1 tag5labeleq5$$
Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqrefeq2 to get that $p_i+1 - p_i = p_i - p_i-1$, like John Doe's answer states.
$endgroup$
add a comment |
$begingroup$
The probability of reaching $$n$ starting with $$k$ can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability $1/2$. If you win, you have $$(k+1)$, so the probability of reaching $$n$ from here is $p_k+1$. If instead, you lose the first toss, then its $$p_k-1$. Then use the Law of Total Probability $P(X)=sum_n P(X|Y_n)P(Y_n)$ where $Y_n$ is a partition of the sample space. In this case, $Y_1=textlose toss$, and $Y_2=textwin toss$. Then you get
$$p_k=frac12(p_k-1+p_k+1)$$ Rearranging this gives $$2p_k=p_k-1+p_k+1\p_k-p_k-1=p_k+1-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172677%2ffair-gamblers-ruin-problem-intuition%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that
$$q_k-1 - q_k = q_k-2 - q_k - 1 = ldots = q_1 - q_2 = q_0 - q_1 tag1labeleq1$$
Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.
Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by
$$p_i = frac12p_i - 1 + frac12p_i + 1 tag2labeleq2$$
based on the probabilities of either winning or losing the first time. Summing eqrefeq2 for $i$ from $1$ to $k - 1$ gives
$$sum_i=1^k-1 p_i = frac12sum_i=1^k-1 p_i - 1 + frac12sum_i=1^k-1 p_i + 1 tag3labeleq3$$
Having the summations only include the common terms on both sides gives
$$p_1 + sum_i=2^k - 2 p_i + p_k-1 = frac12p_0 + frac12p_1 + frac12sum_i=2^k - 2 p_i + frac12sum_i=2^k - 2 p_i + frac12p_k-1 + frac12p_k tag4labeleq4$$
Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_k-1$ term on the left to the RHS, eqrefeq4 becomes
$$frac12p_1 - frac12p_0 = frac12p_k - frac12p_k-1 tag5labeleq5$$
Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqrefeq2 to get that $p_i+1 - p_i = p_i - p_i-1$, like John Doe's answer states.
$endgroup$
add a comment |
$begingroup$
Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that
$$q_k-1 - q_k = q_k-2 - q_k - 1 = ldots = q_1 - q_2 = q_0 - q_1 tag1labeleq1$$
Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.
Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by
$$p_i = frac12p_i - 1 + frac12p_i + 1 tag2labeleq2$$
based on the probabilities of either winning or losing the first time. Summing eqrefeq2 for $i$ from $1$ to $k - 1$ gives
$$sum_i=1^k-1 p_i = frac12sum_i=1^k-1 p_i - 1 + frac12sum_i=1^k-1 p_i + 1 tag3labeleq3$$
Having the summations only include the common terms on both sides gives
$$p_1 + sum_i=2^k - 2 p_i + p_k-1 = frac12p_0 + frac12p_1 + frac12sum_i=2^k - 2 p_i + frac12sum_i=2^k - 2 p_i + frac12p_k-1 + frac12p_k tag4labeleq4$$
Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_k-1$ term on the left to the RHS, eqrefeq4 becomes
$$frac12p_1 - frac12p_0 = frac12p_k - frac12p_k-1 tag5labeleq5$$
Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqrefeq2 to get that $p_i+1 - p_i = p_i - p_i-1$, like John Doe's answer states.
$endgroup$
add a comment |
$begingroup$
Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that
$$q_k-1 - q_k = q_k-2 - q_k - 1 = ldots = q_1 - q_2 = q_0 - q_1 tag1labeleq1$$
Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.
Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by
$$p_i = frac12p_i - 1 + frac12p_i + 1 tag2labeleq2$$
based on the probabilities of either winning or losing the first time. Summing eqrefeq2 for $i$ from $1$ to $k - 1$ gives
$$sum_i=1^k-1 p_i = frac12sum_i=1^k-1 p_i - 1 + frac12sum_i=1^k-1 p_i + 1 tag3labeleq3$$
Having the summations only include the common terms on both sides gives
$$p_1 + sum_i=2^k - 2 p_i + p_k-1 = frac12p_0 + frac12p_1 + frac12sum_i=2^k - 2 p_i + frac12sum_i=2^k - 2 p_i + frac12p_k-1 + frac12p_k tag4labeleq4$$
Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_k-1$ term on the left to the RHS, eqrefeq4 becomes
$$frac12p_1 - frac12p_0 = frac12p_k - frac12p_k-1 tag5labeleq5$$
Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqrefeq2 to get that $p_i+1 - p_i = p_i - p_i-1$, like John Doe's answer states.
$endgroup$
Regarding an "intuitive" reason for this relation, note that winning or losing a dollar has an equal chance and is independent of how much your currently have. Thus, the change in probability of winning or losing when starting off with $$1$ more is independent of what your starting value is. Note that if $q_k = 1 - p_k$ is the probability of losing when starting with $$k$, then plugging $p_k = 1 - q_k$ in gives that
$$q_k-1 - q_k = q_k-2 - q_k - 1 = ldots = q_1 - q_2 = q_0 - q_1 tag1labeleq1$$
Note you can reverse all the elements by multiplying by $-1$ to give the exact same relationship as with $p_k$.
Regarding how to get the relationship, this answer originally started with that, as the answer by John Doe states, the difference relation for reaching $n starting with $i is given by
$$p_i = frac12p_i - 1 + frac12p_i + 1 tag2labeleq2$$
based on the probabilities of either winning or losing the first time. Summing eqrefeq2 for $i$ from $1$ to $k - 1$ gives
$$sum_i=1^k-1 p_i = frac12sum_i=1^k-1 p_i - 1 + frac12sum_i=1^k-1 p_i + 1 tag3labeleq3$$
Having the summations only include the common terms on both sides gives
$$p_1 + sum_i=2^k - 2 p_i + p_k-1 = frac12p_0 + frac12p_1 + frac12sum_i=2^k - 2 p_i + frac12sum_i=2^k - 2 p_i + frac12p_k-1 + frac12p_k tag4labeleq4$$
Since the summation parts on both sides up to the same thing, they can be removed. Thus, after moving the $p_0$ and $p_1$ terms to the LHS and the $p_k-1$ term on the left to the RHS, eqrefeq4 becomes
$$frac12p_1 - frac12p_0 = frac12p_k - frac12p_k-1 tag5labeleq5$$
Multiplying both sides by $2$, then varying $k$ down, gives the relations you stated are used in the solution. However, it's generally simpler & easier to just manipulate eqrefeq2 to get that $p_i+1 - p_i = p_i - p_i-1$, like John Doe's answer states.
edited 23 hours ago
answered yesterday
John OmielanJohn Omielan
4,6012215
4,6012215
add a comment |
add a comment |
$begingroup$
The probability of reaching $$n$ starting with $$k$ can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability $1/2$. If you win, you have $$(k+1)$, so the probability of reaching $$n$ from here is $p_k+1$. If instead, you lose the first toss, then its $$p_k-1$. Then use the Law of Total Probability $P(X)=sum_n P(X|Y_n)P(Y_n)$ where $Y_n$ is a partition of the sample space. In this case, $Y_1=textlose toss$, and $Y_2=textwin toss$. Then you get
$$p_k=frac12(p_k-1+p_k+1)$$ Rearranging this gives $$2p_k=p_k-1+p_k+1\p_k-p_k-1=p_k+1-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.
$endgroup$
add a comment |
$begingroup$
The probability of reaching $$n$ starting with $$k$ can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability $1/2$. If you win, you have $$(k+1)$, so the probability of reaching $$n$ from here is $p_k+1$. If instead, you lose the first toss, then its $$p_k-1$. Then use the Law of Total Probability $P(X)=sum_n P(X|Y_n)P(Y_n)$ where $Y_n$ is a partition of the sample space. In this case, $Y_1=textlose toss$, and $Y_2=textwin toss$. Then you get
$$p_k=frac12(p_k-1+p_k+1)$$ Rearranging this gives $$2p_k=p_k-1+p_k+1\p_k-p_k-1=p_k+1-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.
$endgroup$
add a comment |
$begingroup$
The probability of reaching $$n$ starting with $$k$ can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability $1/2$. If you win, you have $$(k+1)$, so the probability of reaching $$n$ from here is $p_k+1$. If instead, you lose the first toss, then its $$p_k-1$. Then use the Law of Total Probability $P(X)=sum_n P(X|Y_n)P(Y_n)$ where $Y_n$ is a partition of the sample space. In this case, $Y_1=textlose toss$, and $Y_2=textwin toss$. Then you get
$$p_k=frac12(p_k-1+p_k+1)$$ Rearranging this gives $$2p_k=p_k-1+p_k+1\p_k-p_k-1=p_k+1-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.
$endgroup$
The probability of reaching $$n$ starting with $$k$ can be split up by what possible first steps you can take - you either lose the first toss or win, each with probability $1/2$. If you win, you have $$(k+1)$, so the probability of reaching $$n$ from here is $p_k+1$. If instead, you lose the first toss, then its $$p_k-1$. Then use the Law of Total Probability $P(X)=sum_n P(X|Y_n)P(Y_n)$ where $Y_n$ is a partition of the sample space. In this case, $Y_1=textlose toss$, and $Y_2=textwin toss$. Then you get
$$p_k=frac12(p_k-1+p_k+1)$$ Rearranging this gives $$2p_k=p_k-1+p_k+1\p_k-p_k-1=p_k+1-p_k$$ as required, and iterating it multiple times gets to $p_1-p_0$, and of course, $p_0=0$.
edited 14 hours ago
answered yesterday
John DoeJohn Doe
11.7k11239
11.7k11239
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172677%2ffair-gamblers-ruin-problem-intuition%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown