Finding the error in an argumentChain rule notation for function with two variablesThe multivariable chain rule and functions that depend on themselvesCalculate partial derivative $f'_x, f'_y, f'_z$ where $f(x, y, z) = x^fracyz$Simple Chain Rule for PartialsChain rule for partial derivativesQuestion regarding the proof of the directional derivativePartial derivative of a function w.r.t an argument that occurs multiple timesDerivative of function of matrices using the product ruleWhen to use Partial derivatives and chain rulePartial derivative with dependent variables
Which is the best way to check return result?
How do I deal with an unproductive colleague in a small company?
Can I run a new neutral wire to repair a broken circuit?
What are some good books on Machine Learning and AI like Krugman, Wells and Graddy's "Essentials of Economics"
Is there a hemisphere-neutral way of specifying a season?
Why can't we play rap on piano?
What does the expression "A Mann!" means
Unlock My Phone! February 2018
Why didn't Miles's spider sense work before?
Determining Impedance With An Antenna Analyzer
Bullying boss launched a smear campaign and made me unemployable
Detention in 1997
Do UK voters know if their MP will be the Speaker of the House?
A category-like structure without composition?
Is "remove commented out code" correct English?
Should I tell management that I intend to leave due to bad software development practices?
Cursor Replacement for Newbies
Arrow those variables!
How can I determine if the org that I'm currently connected to is a scratch org?
Why is consensus so controversial in Britain?
Forgetting the musical notes while performing in concert
Would Slavery Reparations be considered Bills of Attainder and hence Illegal?
Avoiding the "not like other girls" trope?
Do scales need to be in alphabetical order?
Finding the error in an argument
Chain rule notation for function with two variablesThe multivariable chain rule and functions that depend on themselvesCalculate partial derivative $f'_x, f'_y, f'_z$ where $f(x, y, z) = x^fracyz$Simple Chain Rule for PartialsChain rule for partial derivativesQuestion regarding the proof of the directional derivativePartial derivative of a function w.r.t an argument that occurs multiple timesDerivative of function of matrices using the product ruleWhen to use Partial derivatives and chain rulePartial derivative with dependent variables
$begingroup$
If $z=f(x,y)$ and $y=x^2$, then by the chain rule
$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$
Therefore
$2xfracpartial zpartial y=0$
and
$fracpartial zpartial y=0$
What is wrong with this argument?
I have a feeling that
1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and
2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.
How is my reasoning? I am pretty confused by this question.
calculus multivariable-calculus partial-derivative
$endgroup$
add a comment |
$begingroup$
If $z=f(x,y)$ and $y=x^2$, then by the chain rule
$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$
Therefore
$2xfracpartial zpartial y=0$
and
$fracpartial zpartial y=0$
What is wrong with this argument?
I have a feeling that
1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and
2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.
How is my reasoning? I am pretty confused by this question.
calculus multivariable-calculus partial-derivative
$endgroup$
$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
yesterday
1
$begingroup$
I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
$endgroup$
– BSplitter
yesterday
$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
yesterday
add a comment |
$begingroup$
If $z=f(x,y)$ and $y=x^2$, then by the chain rule
$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$
Therefore
$2xfracpartial zpartial y=0$
and
$fracpartial zpartial y=0$
What is wrong with this argument?
I have a feeling that
1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and
2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.
How is my reasoning? I am pretty confused by this question.
calculus multivariable-calculus partial-derivative
$endgroup$
If $z=f(x,y)$ and $y=x^2$, then by the chain rule
$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$
Therefore
$2xfracpartial zpartial y=0$
and
$fracpartial zpartial y=0$
What is wrong with this argument?
I have a feeling that
1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and
2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.
How is my reasoning? I am pretty confused by this question.
calculus multivariable-calculus partial-derivative
calculus multivariable-calculus partial-derivative
edited yesterday
mathenthusiast
asked yesterday
mathenthusiastmathenthusiast
808
808
$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
yesterday
1
$begingroup$
I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
$endgroup$
– BSplitter
yesterday
$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
yesterday
add a comment |
$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
yesterday
1
$begingroup$
I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
$endgroup$
– BSplitter
yesterday
$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
yesterday
$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
yesterday
$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
yesterday
1
1
$begingroup$
I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
$endgroup$
– BSplitter
yesterday
$begingroup$
I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
$endgroup$
– BSplitter
yesterday
$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
yesterday
$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
yesterday
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Nothing wrong. Just change it into
$$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$
Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.
Actually, a better way to say this is that
$$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$
Where I have clearly written down the restriction $y=x^2$.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172680%2ffinding-the-error-in-an-argument%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Nothing wrong. Just change it into
$$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$
Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.
Actually, a better way to say this is that
$$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$
Where I have clearly written down the restriction $y=x^2$.
$endgroup$
add a comment |
$begingroup$
Nothing wrong. Just change it into
$$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$
Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.
Actually, a better way to say this is that
$$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$
Where I have clearly written down the restriction $y=x^2$.
$endgroup$
add a comment |
$begingroup$
Nothing wrong. Just change it into
$$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$
Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.
Actually, a better way to say this is that
$$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$
Where I have clearly written down the restriction $y=x^2$.
$endgroup$
Nothing wrong. Just change it into
$$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$
Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.
Actually, a better way to say this is that
$$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$
Where I have clearly written down the restriction $y=x^2$.
answered yesterday
Holding ArthurHolding Arthur
1,388417
1,388417
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172680%2ffinding-the-error-in-an-argument%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
yesterday
1
$begingroup$
I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
$endgroup$
– BSplitter
yesterday
$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
yesterday