What gives an electron its charge? [duplicate]How do electrons get a charge?What is the source of the electric charge on the electron?Empirical bound on sum of electron and proton chargeWhat is an Electron?What is charge?Why is an electron negatively charged, and what is the difference between negative and positive charges?How do electrons get a charge?Electrons and MagnetismWhy is the charge of a proton positive?Why are electrons negetively charged?What is the difference between poisitive and negative charge?Explanation of charge for a student just entering physics

Can Infinity Stones be retrieved more than once?

Is it safe ? Is it scam or real?

Prove that the limit exists or does not exist

Can hackers enable the camera after the user disabled it?

What is the most remote airport from the center of the city it supposedly serves?

Can a nothic's Weird Insight action discover secrets about a player character that the character doesn't know about themselves?

Independent, post-Brexit Scotland - would there be a hard border with England?

Why do money exchangers give different rates to different bills?

Why is [person X] visibly scared in the library in Game of Thrones S8E3?

Expressing 'our' for objects belonging to our apartment

How does this change to the opportunity attack rule impact combat?

Using column size much larger than necessary

Missing Piece of Pie - Can you find it?

How did Shepard's and Grissom's speeds compare with orbital velocity?

What is the name of this hexagon/pentagon polyhedron?

Why wasn't the Night King naked in S08E03?

Which module had more 'comfort' in terms of living space, the Lunar Module or the Command module?

Why doesn't WotC use established keywords on all new cards?

Out of scope work duties and resignation

What was the design of the Macintosh II's MMU replacement?

What to use instead of cling film to wrap pastry

Pressure inside an infinite ocean?

How can I support myself financially as a 17 year old with a loan?

I have a unique character that I'm having a problem writing. He's a virus!



What gives an electron its charge? [duplicate]


How do electrons get a charge?What is the source of the electric charge on the electron?Empirical bound on sum of electron and proton chargeWhat is an Electron?What is charge?Why is an electron negatively charged, and what is the difference between negative and positive charges?How do electrons get a charge?Electrons and MagnetismWhy is the charge of a proton positive?Why are electrons negetively charged?What is the difference between poisitive and negative charge?Explanation of charge for a student just entering physics













4












$begingroup$



This question already has an answer here:



  • How do electrons get a charge?

    2 answers



What exactly gives electrons a charge? I understand how in molecules, an imbalance between electrons and protons give ions charges and I also understand that there is really no positive or negative charge, they are just names assigned to opposite charges, but I am just very unsatisfied with not actually knowing what an electron is and why it has a charge.










share|cite|improve this question









New contributor




12 15 11 9 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



marked as duplicate by Rishi, John Rennie, David Z 2 days ago


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.

















  • $begingroup$
    I answered a similar question a while back Loki. See physics.stackexchange.com/a/305540/76162
    $endgroup$
    – John Duffield
    2 days ago















4












$begingroup$



This question already has an answer here:



  • How do electrons get a charge?

    2 answers



What exactly gives electrons a charge? I understand how in molecules, an imbalance between electrons and protons give ions charges and I also understand that there is really no positive or negative charge, they are just names assigned to opposite charges, but I am just very unsatisfied with not actually knowing what an electron is and why it has a charge.










share|cite|improve this question









New contributor




12 15 11 9 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



marked as duplicate by Rishi, John Rennie, David Z 2 days ago


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.

















  • $begingroup$
    I answered a similar question a while back Loki. See physics.stackexchange.com/a/305540/76162
    $endgroup$
    – John Duffield
    2 days ago













4












4








4





$begingroup$



This question already has an answer here:



  • How do electrons get a charge?

    2 answers



What exactly gives electrons a charge? I understand how in molecules, an imbalance between electrons and protons give ions charges and I also understand that there is really no positive or negative charge, they are just names assigned to opposite charges, but I am just very unsatisfied with not actually knowing what an electron is and why it has a charge.










share|cite|improve this question









New contributor




12 15 11 9 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$





This question already has an answer here:



  • How do electrons get a charge?

    2 answers



What exactly gives electrons a charge? I understand how in molecules, an imbalance between electrons and protons give ions charges and I also understand that there is really no positive or negative charge, they are just names assigned to opposite charges, but I am just very unsatisfied with not actually knowing what an electron is and why it has a charge.





This question already has an answer here:



  • How do electrons get a charge?

    2 answers







particle-physics electrons charge standard-model elementary-particles






share|cite|improve this question









New contributor




12 15 11 9 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




12 15 11 9 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited Apr 29 at 5:37









Qmechanic

108k122031255




108k122031255






New contributor




12 15 11 9 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked Apr 29 at 2:44









12 15 11 912 15 11 9

264




264




New contributor




12 15 11 9 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





12 15 11 9 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






12 15 11 9 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




marked as duplicate by Rishi, John Rennie, David Z 2 days ago


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.









marked as duplicate by Rishi, John Rennie, David Z 2 days ago


This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.













  • $begingroup$
    I answered a similar question a while back Loki. See physics.stackexchange.com/a/305540/76162
    $endgroup$
    – John Duffield
    2 days ago
















  • $begingroup$
    I answered a similar question a while back Loki. See physics.stackexchange.com/a/305540/76162
    $endgroup$
    – John Duffield
    2 days ago















$begingroup$
I answered a similar question a while back Loki. See physics.stackexchange.com/a/305540/76162
$endgroup$
– John Duffield
2 days ago




$begingroup$
I answered a similar question a while back Loki. See physics.stackexchange.com/a/305540/76162
$endgroup$
– John Duffield
2 days ago










1 Answer
1






active

oldest

votes


















8












$begingroup$


I know electrons have a negative charge and that they are subatomic
particles made up of even smaller particles,




This is incorrect. Electrons are, so far as we know, fundamental particles which just happen to have a negative charge of -1 in elementary charge units as one of their properties.



They are not, so far as we know, made up of even smaller particles. It behaves like a particle that is not composite and is basically a zero radius point in space called a point particle, to the fullest extent that it is possible to test this experimentally. As explained in the point particle link:




[T]here is good reason that an elementary particle is often called a
point particle. Even if an elementary particle has a delocalized
wavepacket, the wavepacket can be represented as a quantum
superposition of quantum states wherein the particle is exactly
localized. Moreover, the interactions of the particle can be
represented as a superposition of interactions of individual states
which are localized. This is not true for a composite particle, which
can never be represented as a superposition of exactly-localized
quantum states. It is in this sense that physicists can discuss the
intrinsic "size" of a particle: The size of its internal structure,
not the size of its wavepacket. The "size" of an elementary particle,
in this sense, is exactly zero.



For example, for the electron, experimental evidence shows that the
size of an electron is less than 10^−18 m. This is consistent with the
expected value of exactly zero.




Fundamental particles (a.k.a. elementary particles), in general, are each one of a finite number of ways that quantum fields can have a local excited state that each behaves in a well defined way.



So far, the fundamental particles we know about are six kinds of quarks, three kinds of charged leptons (including the electron), three kinds of neutrinos, the W+ boson, the antiparticles of all of these particles, the Z boson, the photon, eight kinds of gluons, and the Higgs boson (each kind of quark comes in three colors and each of those can have left or right parity, each kind of charged lepton can have left or right parity, all neutrinos in the Standard Model are left parity and all anti-neutrinos in the Standard Model are right parity). There is also one hypothetical particle, the graviton, which a great many scientists (but not all) believe is an additional fundamental particle.



This is reality as we observe it, and the Standard Model does not provide any deeper explanation for it. Many extensions of the Standard Model, such as supersymmetry, propose that even more fundamental particles exist. But, science has not pierced successfully yet to a layer more fundamental than the Standard Model.




I am just very unsatisfied with not actually knowing what an electron
is and why it has a charge.




So are lots of scientists. But, they haven't come up with any better explanations. At best, many theoretical physicists would suggest that it might be related to M-theory (i.e. string theory) somehow or other. But, there is no realized, specific model implementing string theory that answers these questions in any meaningful way.






share|cite|improve this answer











$endgroup$



















    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    8












    $begingroup$


    I know electrons have a negative charge and that they are subatomic
    particles made up of even smaller particles,




    This is incorrect. Electrons are, so far as we know, fundamental particles which just happen to have a negative charge of -1 in elementary charge units as one of their properties.



    They are not, so far as we know, made up of even smaller particles. It behaves like a particle that is not composite and is basically a zero radius point in space called a point particle, to the fullest extent that it is possible to test this experimentally. As explained in the point particle link:




    [T]here is good reason that an elementary particle is often called a
    point particle. Even if an elementary particle has a delocalized
    wavepacket, the wavepacket can be represented as a quantum
    superposition of quantum states wherein the particle is exactly
    localized. Moreover, the interactions of the particle can be
    represented as a superposition of interactions of individual states
    which are localized. This is not true for a composite particle, which
    can never be represented as a superposition of exactly-localized
    quantum states. It is in this sense that physicists can discuss the
    intrinsic "size" of a particle: The size of its internal structure,
    not the size of its wavepacket. The "size" of an elementary particle,
    in this sense, is exactly zero.



    For example, for the electron, experimental evidence shows that the
    size of an electron is less than 10^−18 m. This is consistent with the
    expected value of exactly zero.




    Fundamental particles (a.k.a. elementary particles), in general, are each one of a finite number of ways that quantum fields can have a local excited state that each behaves in a well defined way.



    So far, the fundamental particles we know about are six kinds of quarks, three kinds of charged leptons (including the electron), three kinds of neutrinos, the W+ boson, the antiparticles of all of these particles, the Z boson, the photon, eight kinds of gluons, and the Higgs boson (each kind of quark comes in three colors and each of those can have left or right parity, each kind of charged lepton can have left or right parity, all neutrinos in the Standard Model are left parity and all anti-neutrinos in the Standard Model are right parity). There is also one hypothetical particle, the graviton, which a great many scientists (but not all) believe is an additional fundamental particle.



    This is reality as we observe it, and the Standard Model does not provide any deeper explanation for it. Many extensions of the Standard Model, such as supersymmetry, propose that even more fundamental particles exist. But, science has not pierced successfully yet to a layer more fundamental than the Standard Model.




    I am just very unsatisfied with not actually knowing what an electron
    is and why it has a charge.




    So are lots of scientists. But, they haven't come up with any better explanations. At best, many theoretical physicists would suggest that it might be related to M-theory (i.e. string theory) somehow or other. But, there is no realized, specific model implementing string theory that answers these questions in any meaningful way.






    share|cite|improve this answer











    $endgroup$

















      8












      $begingroup$


      I know electrons have a negative charge and that they are subatomic
      particles made up of even smaller particles,




      This is incorrect. Electrons are, so far as we know, fundamental particles which just happen to have a negative charge of -1 in elementary charge units as one of their properties.



      They are not, so far as we know, made up of even smaller particles. It behaves like a particle that is not composite and is basically a zero radius point in space called a point particle, to the fullest extent that it is possible to test this experimentally. As explained in the point particle link:




      [T]here is good reason that an elementary particle is often called a
      point particle. Even if an elementary particle has a delocalized
      wavepacket, the wavepacket can be represented as a quantum
      superposition of quantum states wherein the particle is exactly
      localized. Moreover, the interactions of the particle can be
      represented as a superposition of interactions of individual states
      which are localized. This is not true for a composite particle, which
      can never be represented as a superposition of exactly-localized
      quantum states. It is in this sense that physicists can discuss the
      intrinsic "size" of a particle: The size of its internal structure,
      not the size of its wavepacket. The "size" of an elementary particle,
      in this sense, is exactly zero.



      For example, for the electron, experimental evidence shows that the
      size of an electron is less than 10^−18 m. This is consistent with the
      expected value of exactly zero.




      Fundamental particles (a.k.a. elementary particles), in general, are each one of a finite number of ways that quantum fields can have a local excited state that each behaves in a well defined way.



      So far, the fundamental particles we know about are six kinds of quarks, three kinds of charged leptons (including the electron), three kinds of neutrinos, the W+ boson, the antiparticles of all of these particles, the Z boson, the photon, eight kinds of gluons, and the Higgs boson (each kind of quark comes in three colors and each of those can have left or right parity, each kind of charged lepton can have left or right parity, all neutrinos in the Standard Model are left parity and all anti-neutrinos in the Standard Model are right parity). There is also one hypothetical particle, the graviton, which a great many scientists (but not all) believe is an additional fundamental particle.



      This is reality as we observe it, and the Standard Model does not provide any deeper explanation for it. Many extensions of the Standard Model, such as supersymmetry, propose that even more fundamental particles exist. But, science has not pierced successfully yet to a layer more fundamental than the Standard Model.




      I am just very unsatisfied with not actually knowing what an electron
      is and why it has a charge.




      So are lots of scientists. But, they haven't come up with any better explanations. At best, many theoretical physicists would suggest that it might be related to M-theory (i.e. string theory) somehow or other. But, there is no realized, specific model implementing string theory that answers these questions in any meaningful way.






      share|cite|improve this answer











      $endgroup$















        8












        8








        8





        $begingroup$


        I know electrons have a negative charge and that they are subatomic
        particles made up of even smaller particles,




        This is incorrect. Electrons are, so far as we know, fundamental particles which just happen to have a negative charge of -1 in elementary charge units as one of their properties.



        They are not, so far as we know, made up of even smaller particles. It behaves like a particle that is not composite and is basically a zero radius point in space called a point particle, to the fullest extent that it is possible to test this experimentally. As explained in the point particle link:




        [T]here is good reason that an elementary particle is often called a
        point particle. Even if an elementary particle has a delocalized
        wavepacket, the wavepacket can be represented as a quantum
        superposition of quantum states wherein the particle is exactly
        localized. Moreover, the interactions of the particle can be
        represented as a superposition of interactions of individual states
        which are localized. This is not true for a composite particle, which
        can never be represented as a superposition of exactly-localized
        quantum states. It is in this sense that physicists can discuss the
        intrinsic "size" of a particle: The size of its internal structure,
        not the size of its wavepacket. The "size" of an elementary particle,
        in this sense, is exactly zero.



        For example, for the electron, experimental evidence shows that the
        size of an electron is less than 10^−18 m. This is consistent with the
        expected value of exactly zero.




        Fundamental particles (a.k.a. elementary particles), in general, are each one of a finite number of ways that quantum fields can have a local excited state that each behaves in a well defined way.



        So far, the fundamental particles we know about are six kinds of quarks, three kinds of charged leptons (including the electron), three kinds of neutrinos, the W+ boson, the antiparticles of all of these particles, the Z boson, the photon, eight kinds of gluons, and the Higgs boson (each kind of quark comes in three colors and each of those can have left or right parity, each kind of charged lepton can have left or right parity, all neutrinos in the Standard Model are left parity and all anti-neutrinos in the Standard Model are right parity). There is also one hypothetical particle, the graviton, which a great many scientists (but not all) believe is an additional fundamental particle.



        This is reality as we observe it, and the Standard Model does not provide any deeper explanation for it. Many extensions of the Standard Model, such as supersymmetry, propose that even more fundamental particles exist. But, science has not pierced successfully yet to a layer more fundamental than the Standard Model.




        I am just very unsatisfied with not actually knowing what an electron
        is and why it has a charge.




        So are lots of scientists. But, they haven't come up with any better explanations. At best, many theoretical physicists would suggest that it might be related to M-theory (i.e. string theory) somehow or other. But, there is no realized, specific model implementing string theory that answers these questions in any meaningful way.






        share|cite|improve this answer











        $endgroup$




        I know electrons have a negative charge and that they are subatomic
        particles made up of even smaller particles,




        This is incorrect. Electrons are, so far as we know, fundamental particles which just happen to have a negative charge of -1 in elementary charge units as one of their properties.



        They are not, so far as we know, made up of even smaller particles. It behaves like a particle that is not composite and is basically a zero radius point in space called a point particle, to the fullest extent that it is possible to test this experimentally. As explained in the point particle link:




        [T]here is good reason that an elementary particle is often called a
        point particle. Even if an elementary particle has a delocalized
        wavepacket, the wavepacket can be represented as a quantum
        superposition of quantum states wherein the particle is exactly
        localized. Moreover, the interactions of the particle can be
        represented as a superposition of interactions of individual states
        which are localized. This is not true for a composite particle, which
        can never be represented as a superposition of exactly-localized
        quantum states. It is in this sense that physicists can discuss the
        intrinsic "size" of a particle: The size of its internal structure,
        not the size of its wavepacket. The "size" of an elementary particle,
        in this sense, is exactly zero.



        For example, for the electron, experimental evidence shows that the
        size of an electron is less than 10^−18 m. This is consistent with the
        expected value of exactly zero.




        Fundamental particles (a.k.a. elementary particles), in general, are each one of a finite number of ways that quantum fields can have a local excited state that each behaves in a well defined way.



        So far, the fundamental particles we know about are six kinds of quarks, three kinds of charged leptons (including the electron), three kinds of neutrinos, the W+ boson, the antiparticles of all of these particles, the Z boson, the photon, eight kinds of gluons, and the Higgs boson (each kind of quark comes in three colors and each of those can have left or right parity, each kind of charged lepton can have left or right parity, all neutrinos in the Standard Model are left parity and all anti-neutrinos in the Standard Model are right parity). There is also one hypothetical particle, the graviton, which a great many scientists (but not all) believe is an additional fundamental particle.



        This is reality as we observe it, and the Standard Model does not provide any deeper explanation for it. Many extensions of the Standard Model, such as supersymmetry, propose that even more fundamental particles exist. But, science has not pierced successfully yet to a layer more fundamental than the Standard Model.




        I am just very unsatisfied with not actually knowing what an electron
        is and why it has a charge.




        So are lots of scientists. But, they haven't come up with any better explanations. At best, many theoretical physicists would suggest that it might be related to M-theory (i.e. string theory) somehow or other. But, there is no realized, specific model implementing string theory that answers these questions in any meaningful way.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited Apr 29 at 4:28

























        answered Apr 29 at 3:05









        ohwillekeohwilleke

        2,252925




        2,252925













            Popular posts from this blog

            Get product attribute by attribute group code in magento 2get product attribute by product attribute group in magento 2Magento 2 Log Bundle Product Data in List Page?How to get all product attribute of a attribute group of Default attribute set?Magento 2.1 Create a filter in the product grid by new attributeMagento 2 : Get Product Attribute values By GroupMagento 2 How to get all existing values for one attributeMagento 2 get custom attribute of a single product inside a pluginMagento 2.3 How to get all the Multi Source Inventory (MSI) locations collection in custom module?Magento2: how to develop rest API to get new productsGet product attribute by attribute group code ( [attribute_group_code] ) in magento 2

            Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

            Magento 2.3: How do i solve this, Not registered handle, on custom form?How can i rewrite TierPrice Block in Magento2magento 2 captcha not rendering if I override layout xmlmain.CRITICAL: Plugin class doesn't existMagento 2 : Problem while adding custom button order view page?Magento 2.2.5: Overriding Admin Controller sales/orderMagento 2.2.5: Add, Update and Delete existing products Custom OptionsMagento 2.3 : File Upload issue in UI Component FormMagento2 Not registered handleHow to configured Form Builder Js in my custom magento 2.3.0 module?Magento 2.3. How to create image upload field in an admin form