What gives an electron its charge? [duplicate]How do electrons get a charge?What is the source of the electric charge on the electron?Empirical bound on sum of electron and proton chargeWhat is an Electron?What is charge?Why is an electron negatively charged, and what is the difference between negative and positive charges?How do electrons get a charge?Electrons and MagnetismWhy is the charge of a proton positive?Why are electrons negetively charged?What is the difference between poisitive and negative charge?Explanation of charge for a student just entering physics
Can Infinity Stones be retrieved more than once?
Is it safe ? Is it scam or real?
Prove that the limit exists or does not exist
Can hackers enable the camera after the user disabled it?
What is the most remote airport from the center of the city it supposedly serves?
Can a nothic's Weird Insight action discover secrets about a player character that the character doesn't know about themselves?
Independent, post-Brexit Scotland - would there be a hard border with England?
Why do money exchangers give different rates to different bills?
Why is [person X] visibly scared in the library in Game of Thrones S8E3?
Expressing 'our' for objects belonging to our apartment
How does this change to the opportunity attack rule impact combat?
Using column size much larger than necessary
Missing Piece of Pie - Can you find it?
How did Shepard's and Grissom's speeds compare with orbital velocity?
What is the name of this hexagon/pentagon polyhedron?
Why wasn't the Night King naked in S08E03?
Which module had more 'comfort' in terms of living space, the Lunar Module or the Command module?
Why doesn't WotC use established keywords on all new cards?
Out of scope work duties and resignation
What was the design of the Macintosh II's MMU replacement?
What to use instead of cling film to wrap pastry
Pressure inside an infinite ocean?
How can I support myself financially as a 17 year old with a loan?
I have a unique character that I'm having a problem writing. He's a virus!
What gives an electron its charge? [duplicate]
How do electrons get a charge?What is the source of the electric charge on the electron?Empirical bound on sum of electron and proton chargeWhat is an Electron?What is charge?Why is an electron negatively charged, and what is the difference between negative and positive charges?How do electrons get a charge?Electrons and MagnetismWhy is the charge of a proton positive?Why are electrons negetively charged?What is the difference between poisitive and negative charge?Explanation of charge for a student just entering physics
$begingroup$
This question already has an answer here:
How do electrons get a charge?
2 answers
What exactly gives electrons a charge? I understand how in molecules, an imbalance between electrons and protons give ions charges and I also understand that there is really no positive or negative charge, they are just names assigned to opposite charges, but I am just very unsatisfied with not actually knowing what an electron is and why it has a charge.
particle-physics electrons charge standard-model elementary-particles
New contributor
$endgroup$
marked as duplicate by Rishi, John Rennie, David Z♦ 2 days ago
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
add a comment |
$begingroup$
This question already has an answer here:
How do electrons get a charge?
2 answers
What exactly gives electrons a charge? I understand how in molecules, an imbalance between electrons and protons give ions charges and I also understand that there is really no positive or negative charge, they are just names assigned to opposite charges, but I am just very unsatisfied with not actually knowing what an electron is and why it has a charge.
particle-physics electrons charge standard-model elementary-particles
New contributor
$endgroup$
marked as duplicate by Rishi, John Rennie, David Z♦ 2 days ago
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
$begingroup$
I answered a similar question a while back Loki. See physics.stackexchange.com/a/305540/76162
$endgroup$
– John Duffield
2 days ago
add a comment |
$begingroup$
This question already has an answer here:
How do electrons get a charge?
2 answers
What exactly gives electrons a charge? I understand how in molecules, an imbalance between electrons and protons give ions charges and I also understand that there is really no positive or negative charge, they are just names assigned to opposite charges, but I am just very unsatisfied with not actually knowing what an electron is and why it has a charge.
particle-physics electrons charge standard-model elementary-particles
New contributor
$endgroup$
This question already has an answer here:
How do electrons get a charge?
2 answers
What exactly gives electrons a charge? I understand how in molecules, an imbalance between electrons and protons give ions charges and I also understand that there is really no positive or negative charge, they are just names assigned to opposite charges, but I am just very unsatisfied with not actually knowing what an electron is and why it has a charge.
This question already has an answer here:
How do electrons get a charge?
2 answers
particle-physics electrons charge standard-model elementary-particles
particle-physics electrons charge standard-model elementary-particles
New contributor
New contributor
edited Apr 29 at 5:37
Qmechanic♦
108k122031255
108k122031255
New contributor
asked Apr 29 at 2:44
12 15 11 912 15 11 9
264
264
New contributor
New contributor
marked as duplicate by Rishi, John Rennie, David Z♦ 2 days ago
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
marked as duplicate by Rishi, John Rennie, David Z♦ 2 days ago
This question has been asked before and already has an answer. If those answers do not fully address your question, please ask a new question.
$begingroup$
I answered a similar question a while back Loki. See physics.stackexchange.com/a/305540/76162
$endgroup$
– John Duffield
2 days ago
add a comment |
$begingroup$
I answered a similar question a while back Loki. See physics.stackexchange.com/a/305540/76162
$endgroup$
– John Duffield
2 days ago
$begingroup$
I answered a similar question a while back Loki. See physics.stackexchange.com/a/305540/76162
$endgroup$
– John Duffield
2 days ago
$begingroup$
I answered a similar question a while back Loki. See physics.stackexchange.com/a/305540/76162
$endgroup$
– John Duffield
2 days ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I know electrons have a negative charge and that they are subatomic
particles made up of even smaller particles,
This is incorrect. Electrons are, so far as we know, fundamental particles which just happen to have a negative charge of -1 in elementary charge units as one of their properties.
They are not, so far as we know, made up of even smaller particles. It behaves like a particle that is not composite and is basically a zero radius point in space called a point particle, to the fullest extent that it is possible to test this experimentally. As explained in the point particle link:
[T]here is good reason that an elementary particle is often called a
point particle. Even if an elementary particle has a delocalized
wavepacket, the wavepacket can be represented as a quantum
superposition of quantum states wherein the particle is exactly
localized. Moreover, the interactions of the particle can be
represented as a superposition of interactions of individual states
which are localized. This is not true for a composite particle, which
can never be represented as a superposition of exactly-localized
quantum states. It is in this sense that physicists can discuss the
intrinsic "size" of a particle: The size of its internal structure,
not the size of its wavepacket. The "size" of an elementary particle,
in this sense, is exactly zero.
For example, for the electron, experimental evidence shows that the
size of an electron is less than 10^−18 m. This is consistent with the
expected value of exactly zero.
Fundamental particles (a.k.a. elementary particles), in general, are each one of a finite number of ways that quantum fields can have a local excited state that each behaves in a well defined way.
So far, the fundamental particles we know about are six kinds of quarks, three kinds of charged leptons (including the electron), three kinds of neutrinos, the W+ boson, the antiparticles of all of these particles, the Z boson, the photon, eight kinds of gluons, and the Higgs boson (each kind of quark comes in three colors and each of those can have left or right parity, each kind of charged lepton can have left or right parity, all neutrinos in the Standard Model are left parity and all anti-neutrinos in the Standard Model are right parity). There is also one hypothetical particle, the graviton, which a great many scientists (but not all) believe is an additional fundamental particle.
This is reality as we observe it, and the Standard Model does not provide any deeper explanation for it. Many extensions of the Standard Model, such as supersymmetry, propose that even more fundamental particles exist. But, science has not pierced successfully yet to a layer more fundamental than the Standard Model.
I am just very unsatisfied with not actually knowing what an electron
is and why it has a charge.
So are lots of scientists. But, they haven't come up with any better explanations. At best, many theoretical physicists would suggest that it might be related to M-theory (i.e. string theory) somehow or other. But, there is no realized, specific model implementing string theory that answers these questions in any meaningful way.
$endgroup$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I know electrons have a negative charge and that they are subatomic
particles made up of even smaller particles,
This is incorrect. Electrons are, so far as we know, fundamental particles which just happen to have a negative charge of -1 in elementary charge units as one of their properties.
They are not, so far as we know, made up of even smaller particles. It behaves like a particle that is not composite and is basically a zero radius point in space called a point particle, to the fullest extent that it is possible to test this experimentally. As explained in the point particle link:
[T]here is good reason that an elementary particle is often called a
point particle. Even if an elementary particle has a delocalized
wavepacket, the wavepacket can be represented as a quantum
superposition of quantum states wherein the particle is exactly
localized. Moreover, the interactions of the particle can be
represented as a superposition of interactions of individual states
which are localized. This is not true for a composite particle, which
can never be represented as a superposition of exactly-localized
quantum states. It is in this sense that physicists can discuss the
intrinsic "size" of a particle: The size of its internal structure,
not the size of its wavepacket. The "size" of an elementary particle,
in this sense, is exactly zero.
For example, for the electron, experimental evidence shows that the
size of an electron is less than 10^−18 m. This is consistent with the
expected value of exactly zero.
Fundamental particles (a.k.a. elementary particles), in general, are each one of a finite number of ways that quantum fields can have a local excited state that each behaves in a well defined way.
So far, the fundamental particles we know about are six kinds of quarks, three kinds of charged leptons (including the electron), three kinds of neutrinos, the W+ boson, the antiparticles of all of these particles, the Z boson, the photon, eight kinds of gluons, and the Higgs boson (each kind of quark comes in three colors and each of those can have left or right parity, each kind of charged lepton can have left or right parity, all neutrinos in the Standard Model are left parity and all anti-neutrinos in the Standard Model are right parity). There is also one hypothetical particle, the graviton, which a great many scientists (but not all) believe is an additional fundamental particle.
This is reality as we observe it, and the Standard Model does not provide any deeper explanation for it. Many extensions of the Standard Model, such as supersymmetry, propose that even more fundamental particles exist. But, science has not pierced successfully yet to a layer more fundamental than the Standard Model.
I am just very unsatisfied with not actually knowing what an electron
is and why it has a charge.
So are lots of scientists. But, they haven't come up with any better explanations. At best, many theoretical physicists would suggest that it might be related to M-theory (i.e. string theory) somehow or other. But, there is no realized, specific model implementing string theory that answers these questions in any meaningful way.
$endgroup$
add a comment |
$begingroup$
I know electrons have a negative charge and that they are subatomic
particles made up of even smaller particles,
This is incorrect. Electrons are, so far as we know, fundamental particles which just happen to have a negative charge of -1 in elementary charge units as one of their properties.
They are not, so far as we know, made up of even smaller particles. It behaves like a particle that is not composite and is basically a zero radius point in space called a point particle, to the fullest extent that it is possible to test this experimentally. As explained in the point particle link:
[T]here is good reason that an elementary particle is often called a
point particle. Even if an elementary particle has a delocalized
wavepacket, the wavepacket can be represented as a quantum
superposition of quantum states wherein the particle is exactly
localized. Moreover, the interactions of the particle can be
represented as a superposition of interactions of individual states
which are localized. This is not true for a composite particle, which
can never be represented as a superposition of exactly-localized
quantum states. It is in this sense that physicists can discuss the
intrinsic "size" of a particle: The size of its internal structure,
not the size of its wavepacket. The "size" of an elementary particle,
in this sense, is exactly zero.
For example, for the electron, experimental evidence shows that the
size of an electron is less than 10^−18 m. This is consistent with the
expected value of exactly zero.
Fundamental particles (a.k.a. elementary particles), in general, are each one of a finite number of ways that quantum fields can have a local excited state that each behaves in a well defined way.
So far, the fundamental particles we know about are six kinds of quarks, three kinds of charged leptons (including the electron), three kinds of neutrinos, the W+ boson, the antiparticles of all of these particles, the Z boson, the photon, eight kinds of gluons, and the Higgs boson (each kind of quark comes in three colors and each of those can have left or right parity, each kind of charged lepton can have left or right parity, all neutrinos in the Standard Model are left parity and all anti-neutrinos in the Standard Model are right parity). There is also one hypothetical particle, the graviton, which a great many scientists (but not all) believe is an additional fundamental particle.
This is reality as we observe it, and the Standard Model does not provide any deeper explanation for it. Many extensions of the Standard Model, such as supersymmetry, propose that even more fundamental particles exist. But, science has not pierced successfully yet to a layer more fundamental than the Standard Model.
I am just very unsatisfied with not actually knowing what an electron
is and why it has a charge.
So are lots of scientists. But, they haven't come up with any better explanations. At best, many theoretical physicists would suggest that it might be related to M-theory (i.e. string theory) somehow or other. But, there is no realized, specific model implementing string theory that answers these questions in any meaningful way.
$endgroup$
add a comment |
$begingroup$
I know electrons have a negative charge and that they are subatomic
particles made up of even smaller particles,
This is incorrect. Electrons are, so far as we know, fundamental particles which just happen to have a negative charge of -1 in elementary charge units as one of their properties.
They are not, so far as we know, made up of even smaller particles. It behaves like a particle that is not composite and is basically a zero radius point in space called a point particle, to the fullest extent that it is possible to test this experimentally. As explained in the point particle link:
[T]here is good reason that an elementary particle is often called a
point particle. Even if an elementary particle has a delocalized
wavepacket, the wavepacket can be represented as a quantum
superposition of quantum states wherein the particle is exactly
localized. Moreover, the interactions of the particle can be
represented as a superposition of interactions of individual states
which are localized. This is not true for a composite particle, which
can never be represented as a superposition of exactly-localized
quantum states. It is in this sense that physicists can discuss the
intrinsic "size" of a particle: The size of its internal structure,
not the size of its wavepacket. The "size" of an elementary particle,
in this sense, is exactly zero.
For example, for the electron, experimental evidence shows that the
size of an electron is less than 10^−18 m. This is consistent with the
expected value of exactly zero.
Fundamental particles (a.k.a. elementary particles), in general, are each one of a finite number of ways that quantum fields can have a local excited state that each behaves in a well defined way.
So far, the fundamental particles we know about are six kinds of quarks, three kinds of charged leptons (including the electron), three kinds of neutrinos, the W+ boson, the antiparticles of all of these particles, the Z boson, the photon, eight kinds of gluons, and the Higgs boson (each kind of quark comes in three colors and each of those can have left or right parity, each kind of charged lepton can have left or right parity, all neutrinos in the Standard Model are left parity and all anti-neutrinos in the Standard Model are right parity). There is also one hypothetical particle, the graviton, which a great many scientists (but not all) believe is an additional fundamental particle.
This is reality as we observe it, and the Standard Model does not provide any deeper explanation for it. Many extensions of the Standard Model, such as supersymmetry, propose that even more fundamental particles exist. But, science has not pierced successfully yet to a layer more fundamental than the Standard Model.
I am just very unsatisfied with not actually knowing what an electron
is and why it has a charge.
So are lots of scientists. But, they haven't come up with any better explanations. At best, many theoretical physicists would suggest that it might be related to M-theory (i.e. string theory) somehow or other. But, there is no realized, specific model implementing string theory that answers these questions in any meaningful way.
$endgroup$
I know electrons have a negative charge and that they are subatomic
particles made up of even smaller particles,
This is incorrect. Electrons are, so far as we know, fundamental particles which just happen to have a negative charge of -1 in elementary charge units as one of their properties.
They are not, so far as we know, made up of even smaller particles. It behaves like a particle that is not composite and is basically a zero radius point in space called a point particle, to the fullest extent that it is possible to test this experimentally. As explained in the point particle link:
[T]here is good reason that an elementary particle is often called a
point particle. Even if an elementary particle has a delocalized
wavepacket, the wavepacket can be represented as a quantum
superposition of quantum states wherein the particle is exactly
localized. Moreover, the interactions of the particle can be
represented as a superposition of interactions of individual states
which are localized. This is not true for a composite particle, which
can never be represented as a superposition of exactly-localized
quantum states. It is in this sense that physicists can discuss the
intrinsic "size" of a particle: The size of its internal structure,
not the size of its wavepacket. The "size" of an elementary particle,
in this sense, is exactly zero.
For example, for the electron, experimental evidence shows that the
size of an electron is less than 10^−18 m. This is consistent with the
expected value of exactly zero.
Fundamental particles (a.k.a. elementary particles), in general, are each one of a finite number of ways that quantum fields can have a local excited state that each behaves in a well defined way.
So far, the fundamental particles we know about are six kinds of quarks, three kinds of charged leptons (including the electron), three kinds of neutrinos, the W+ boson, the antiparticles of all of these particles, the Z boson, the photon, eight kinds of gluons, and the Higgs boson (each kind of quark comes in three colors and each of those can have left or right parity, each kind of charged lepton can have left or right parity, all neutrinos in the Standard Model are left parity and all anti-neutrinos in the Standard Model are right parity). There is also one hypothetical particle, the graviton, which a great many scientists (but not all) believe is an additional fundamental particle.
This is reality as we observe it, and the Standard Model does not provide any deeper explanation for it. Many extensions of the Standard Model, such as supersymmetry, propose that even more fundamental particles exist. But, science has not pierced successfully yet to a layer more fundamental than the Standard Model.
I am just very unsatisfied with not actually knowing what an electron
is and why it has a charge.
So are lots of scientists. But, they haven't come up with any better explanations. At best, many theoretical physicists would suggest that it might be related to M-theory (i.e. string theory) somehow or other. But, there is no realized, specific model implementing string theory that answers these questions in any meaningful way.
edited Apr 29 at 4:28
answered Apr 29 at 3:05
ohwillekeohwilleke
2,252925
2,252925
add a comment |
add a comment |
$begingroup$
I answered a similar question a while back Loki. See physics.stackexchange.com/a/305540/76162
$endgroup$
– John Duffield
2 days ago