How to evaluate the following integral involving a gaussian?Evaluating $intlimits_-infty^infty exp(iax)over1+ixdx$how can I evaluate this integral?Evaluating a double integral involving exponential of trigonometric functionsGeneral result of the following integralHow do I evaluate the integral $int frac1xsin xdx$?Evaluate integralHow do I evaluate the following integral $int_-infty^infty e^-sigma^2 x^2/2; mathrm dx$?Evaluating the integral $int e^ dx$What is the simplest technique to evaluate the following definite triple integral?Integral involving 2-dimensional Gaussian function

California: "For quality assurance, this phone call is being recorded"

Is there any Biblical Basis for 400 years of silence between Old and New Testament?

Will TSA allow me to carry a CPAP?

Is it legal in the UK for politicians to lie to the public for political gain?

Story about a toddler with god-like powers, dangerous tantrums

Credit card offering 0.5 miles for every cent rounded up. Too good to be true?

Is the capacitor drawn or wired wrongly?

The term for the person/group a political party aligns themselves with to appear concerned about the general public

How should I push back against my job assigning "homework"?

Comma Code - Ch. 4 Automate the Boring Stuff

What does it mean by "d-ism of Leibniz" and "dotage of Newton" in simple English?

How is it possible for this NPC to be alive during the Curse of Strahd adventure?

Can an old DSLR be upgraded to match modern smartphone image quality

How can I make 20-200 ohm variable resistor look like a 20-240 ohm resistor?

Is the decompression of compressed and encrypted data without decryption also theoretically impossible?

Word for a small burst of laughter that can't be held back

Can you please explain this joke: "I'm going bananas is what I tell my bananas before I leave the house"?

Access to all elements on the page

Will dual-learning in a glider make my airplane learning safer?

Computing the differentials in the Adams spectral sequence

Should we freeze the number of people coming in to the study for Kaplan-Meier test

Where do the UpdateInstallationWizard.aspx logs get saved in Azure PaaS?

How can a single Member of the House block a Congressional bill?

Can commodity 3d printer extrusion hardware and filament be used for injection molding?



How to evaluate the following integral involving a gaussian?


Evaluating $intlimits_-infty^infty exp(iax)over1+ixdx$how can I evaluate this integral?Evaluating a double integral involving exponential of trigonometric functionsGeneral result of the following integralHow do I evaluate the integral $int frac1xsin xdx$?Evaluate integralHow do I evaluate the following integral $int_-infty^infty e^-sigma^2 x^2/2; mathrm dx$?Evaluating the integral $int e^ dx$What is the simplest technique to evaluate the following definite triple integral?Integral involving 2-dimensional Gaussian function













6












$begingroup$


I want to evaluate the following integral:



$$intlimits_0 ^infty x sinpx exp(-a^2x^2) dx$$



Now I am unsure how to proceed. I know that this is an even function so I can extend the limit terms to $-infty, infty $ and then divide by 2. I have tried to evaluate this on Wolfram Alpha, but it only shows the answer while I am interested in the procedure.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Have you tried differentiating wrt $p$ or $a$
    $endgroup$
    – Henry Lee
    May 24 at 23:02






  • 2




    $begingroup$
    i think the integral is indeed divergent???
    $endgroup$
    – logo
    May 24 at 23:04






  • 1




    $begingroup$
    Should the last term be $exp(-cx^2)$ for some constant $c$? In its current form, the integral diverges.
    $endgroup$
    – VHarisop
    May 24 at 23:07






  • 1




    $begingroup$
    @VHarishop Sorry, I made a mistake the exponential term should be $ exp(-a^2x^2)$ and not $ exp(frac-a^2x^2)$
    $endgroup$
    – daljit97
    May 24 at 23:08
















6












$begingroup$


I want to evaluate the following integral:



$$intlimits_0 ^infty x sinpx exp(-a^2x^2) dx$$



Now I am unsure how to proceed. I know that this is an even function so I can extend the limit terms to $-infty, infty $ and then divide by 2. I have tried to evaluate this on Wolfram Alpha, but it only shows the answer while I am interested in the procedure.










share|cite|improve this question











$endgroup$











  • $begingroup$
    Have you tried differentiating wrt $p$ or $a$
    $endgroup$
    – Henry Lee
    May 24 at 23:02






  • 2




    $begingroup$
    i think the integral is indeed divergent???
    $endgroup$
    – logo
    May 24 at 23:04






  • 1




    $begingroup$
    Should the last term be $exp(-cx^2)$ for some constant $c$? In its current form, the integral diverges.
    $endgroup$
    – VHarisop
    May 24 at 23:07






  • 1




    $begingroup$
    @VHarishop Sorry, I made a mistake the exponential term should be $ exp(-a^2x^2)$ and not $ exp(frac-a^2x^2)$
    $endgroup$
    – daljit97
    May 24 at 23:08














6












6








6


1



$begingroup$


I want to evaluate the following integral:



$$intlimits_0 ^infty x sinpx exp(-a^2x^2) dx$$



Now I am unsure how to proceed. I know that this is an even function so I can extend the limit terms to $-infty, infty $ and then divide by 2. I have tried to evaluate this on Wolfram Alpha, but it only shows the answer while I am interested in the procedure.










share|cite|improve this question











$endgroup$




I want to evaluate the following integral:



$$intlimits_0 ^infty x sinpx exp(-a^2x^2) dx$$



Now I am unsure how to proceed. I know that this is an even function so I can extend the limit terms to $-infty, infty $ and then divide by 2. I have tried to evaluate this on Wolfram Alpha, but it only shows the answer while I am interested in the procedure.







integration definite-integrals






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited May 25 at 1:21









David G. Stork

12.9k41936




12.9k41936










asked May 24 at 22:59









daljit97daljit97

333211




333211











  • $begingroup$
    Have you tried differentiating wrt $p$ or $a$
    $endgroup$
    – Henry Lee
    May 24 at 23:02






  • 2




    $begingroup$
    i think the integral is indeed divergent???
    $endgroup$
    – logo
    May 24 at 23:04






  • 1




    $begingroup$
    Should the last term be $exp(-cx^2)$ for some constant $c$? In its current form, the integral diverges.
    $endgroup$
    – VHarisop
    May 24 at 23:07






  • 1




    $begingroup$
    @VHarishop Sorry, I made a mistake the exponential term should be $ exp(-a^2x^2)$ and not $ exp(frac-a^2x^2)$
    $endgroup$
    – daljit97
    May 24 at 23:08

















  • $begingroup$
    Have you tried differentiating wrt $p$ or $a$
    $endgroup$
    – Henry Lee
    May 24 at 23:02






  • 2




    $begingroup$
    i think the integral is indeed divergent???
    $endgroup$
    – logo
    May 24 at 23:04






  • 1




    $begingroup$
    Should the last term be $exp(-cx^2)$ for some constant $c$? In its current form, the integral diverges.
    $endgroup$
    – VHarisop
    May 24 at 23:07






  • 1




    $begingroup$
    @VHarishop Sorry, I made a mistake the exponential term should be $ exp(-a^2x^2)$ and not $ exp(frac-a^2x^2)$
    $endgroup$
    – daljit97
    May 24 at 23:08
















$begingroup$
Have you tried differentiating wrt $p$ or $a$
$endgroup$
– Henry Lee
May 24 at 23:02




$begingroup$
Have you tried differentiating wrt $p$ or $a$
$endgroup$
– Henry Lee
May 24 at 23:02




2




2




$begingroup$
i think the integral is indeed divergent???
$endgroup$
– logo
May 24 at 23:04




$begingroup$
i think the integral is indeed divergent???
$endgroup$
– logo
May 24 at 23:04




1




1




$begingroup$
Should the last term be $exp(-cx^2)$ for some constant $c$? In its current form, the integral diverges.
$endgroup$
– VHarisop
May 24 at 23:07




$begingroup$
Should the last term be $exp(-cx^2)$ for some constant $c$? In its current form, the integral diverges.
$endgroup$
– VHarisop
May 24 at 23:07




1




1




$begingroup$
@VHarishop Sorry, I made a mistake the exponential term should be $ exp(-a^2x^2)$ and not $ exp(frac-a^2x^2)$
$endgroup$
– daljit97
May 24 at 23:08





$begingroup$
@VHarishop Sorry, I made a mistake the exponential term should be $ exp(-a^2x^2)$ and not $ exp(frac-a^2x^2)$
$endgroup$
– daljit97
May 24 at 23:08











3 Answers
3






active

oldest

votes


















3












$begingroup$

Start with:
$$Ileft( p right)=int_0^infty cos left( px right)exp (-a^2x^2)dx$$
We can use differentiation under the integral sign:



$$I'left( p right)=-int_0^infty xsin left( px right)exp (-a^2x^2)dx$$
Integration by parts using $u=sin left( px right)quad andquad dv=-xexp left( -a^2x^2 right)dx$
$$I'left( p right)=left. sin left( px right)fracexp left( -a^2x^2 right)2a^2 right|_0^infty -fracp2a^2int_0^infty cos left( px right)exp left( -a^2x^2 right)dx$$
The first term on the right vanishes, and we have the first-order differential equation:
$$fracI'left( p right)Ileft( p right)=-fracp2a^2Rightarrow ln left( Ileft( p right) right)=-fracp^24a^2+C$$
Using $$Ileft( 0 right)=fracsqrtpi a$$
We can find $C=ln left( fracsqrtpi a right)$
hence
$$ln left( Ileft( p right) right)=-fracp^24a^2+ln left( fracsqrtpi a right)$$
So
$$Ileft( p right)=fracsqrtpi aexp left( -fracp^24a^2 right)$$
Finally the integral in question equals
$$-I'left( p right)=-fracddpleft( fracsqrtpi aexp left( -fracp^24a^2 right) right)$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    How is $I(0)= int_0 ^ infty cos(0) = sqrtpi/a$?
    $endgroup$
    – daljit97
    May 25 at 0:42







  • 1




    $begingroup$
    $Ileft( 0 right)=int_0^infty cos left( 0 right)exp (-a^2x^2)dx=int_0^infty exp (-a^2x^2)dx$
    $endgroup$
    – logo
    May 25 at 1:45


















5












$begingroup$

Integrating by parts we get $-frac 1 2a^2 e^-a^2x^2 sin(px)|_0^infty+ frac p 2a^2int_0^infty e^-a^2x^2 cos(px)dx$. The first term is $0$ and the second term is the real part of a Gaussian characteristic function up to a constant factor.



The answer is $frac psqrtpi 4a^3 e^-p^2/2a^2$






share|cite|improve this answer











$endgroup$




















    2












    $begingroup$

    $$
    beginalign
    int_0^infty xsinpxexp(-a^2x^2) dx
    & =int_0^infty xsum_ngeq0dfrac(-1)^n(px)^2n+1(2n+1)!exp(-a^2x^2) dx \
    & =sum_ngeq0dfrac(-1)^np^2n+1(2n+1)!int_0^infty x^2n+2exp(-a^2x^2) dx \
    & =sum_ngeq0dfrac(-1)^np^2n+1(2n+1)!dfrac12a^2n+3int_0^infty u^n+frac12e^-u du ~~~;~~~a^2x^2=u\
    & =sum_ngeq0dfrac(-1)^np^2n+1(2n+2)Gamma(2n+3)dfrac12a^2n+3Gamma(n+frac32)\
    & =sum_ngeq0dfrac(-1)^np^2n+1(2n+2)2^2n+2sqrtpi^-1Gamma(n+2)Gamma(n+frac32)dfrac12a^2n+3Gamma(n+frac32)\
    & =sqrtpisum_ngeq0dfrac(-1)^np^2n+12^2n+2dfrac12a^2n+3\
    & =sqrtpidfracp4a^3sum_ngeq0left(dfrac-p^24a^2right)^ndfrac1n!\
    & =sqrtpidfracp4a^3expleft(dfrac-p^24a^2right)
    endalign
    $$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      Oh my goodness... so much work for such a simple integral (done by parts)! Obviously a technical solution with a different approach!
      $endgroup$
      – David G. Stork
      May 25 at 1:22











    • $begingroup$
      @DavidG.Stork This is a technical solution with different approach.
      $endgroup$
      – Nosrati
      May 25 at 1:25











    Your Answer








    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3238744%2fhow-to-evaluate-the-following-integral-involving-a-gaussian%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    3 Answers
    3






    active

    oldest

    votes








    3 Answers
    3






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    Start with:
    $$Ileft( p right)=int_0^infty cos left( px right)exp (-a^2x^2)dx$$
    We can use differentiation under the integral sign:



    $$I'left( p right)=-int_0^infty xsin left( px right)exp (-a^2x^2)dx$$
    Integration by parts using $u=sin left( px right)quad andquad dv=-xexp left( -a^2x^2 right)dx$
    $$I'left( p right)=left. sin left( px right)fracexp left( -a^2x^2 right)2a^2 right|_0^infty -fracp2a^2int_0^infty cos left( px right)exp left( -a^2x^2 right)dx$$
    The first term on the right vanishes, and we have the first-order differential equation:
    $$fracI'left( p right)Ileft( p right)=-fracp2a^2Rightarrow ln left( Ileft( p right) right)=-fracp^24a^2+C$$
    Using $$Ileft( 0 right)=fracsqrtpi a$$
    We can find $C=ln left( fracsqrtpi a right)$
    hence
    $$ln left( Ileft( p right) right)=-fracp^24a^2+ln left( fracsqrtpi a right)$$
    So
    $$Ileft( p right)=fracsqrtpi aexp left( -fracp^24a^2 right)$$
    Finally the integral in question equals
    $$-I'left( p right)=-fracddpleft( fracsqrtpi aexp left( -fracp^24a^2 right) right)$$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      How is $I(0)= int_0 ^ infty cos(0) = sqrtpi/a$?
      $endgroup$
      – daljit97
      May 25 at 0:42







    • 1




      $begingroup$
      $Ileft( 0 right)=int_0^infty cos left( 0 right)exp (-a^2x^2)dx=int_0^infty exp (-a^2x^2)dx$
      $endgroup$
      – logo
      May 25 at 1:45















    3












    $begingroup$

    Start with:
    $$Ileft( p right)=int_0^infty cos left( px right)exp (-a^2x^2)dx$$
    We can use differentiation under the integral sign:



    $$I'left( p right)=-int_0^infty xsin left( px right)exp (-a^2x^2)dx$$
    Integration by parts using $u=sin left( px right)quad andquad dv=-xexp left( -a^2x^2 right)dx$
    $$I'left( p right)=left. sin left( px right)fracexp left( -a^2x^2 right)2a^2 right|_0^infty -fracp2a^2int_0^infty cos left( px right)exp left( -a^2x^2 right)dx$$
    The first term on the right vanishes, and we have the first-order differential equation:
    $$fracI'left( p right)Ileft( p right)=-fracp2a^2Rightarrow ln left( Ileft( p right) right)=-fracp^24a^2+C$$
    Using $$Ileft( 0 right)=fracsqrtpi a$$
    We can find $C=ln left( fracsqrtpi a right)$
    hence
    $$ln left( Ileft( p right) right)=-fracp^24a^2+ln left( fracsqrtpi a right)$$
    So
    $$Ileft( p right)=fracsqrtpi aexp left( -fracp^24a^2 right)$$
    Finally the integral in question equals
    $$-I'left( p right)=-fracddpleft( fracsqrtpi aexp left( -fracp^24a^2 right) right)$$






    share|cite|improve this answer











    $endgroup$












    • $begingroup$
      How is $I(0)= int_0 ^ infty cos(0) = sqrtpi/a$?
      $endgroup$
      – daljit97
      May 25 at 0:42







    • 1




      $begingroup$
      $Ileft( 0 right)=int_0^infty cos left( 0 right)exp (-a^2x^2)dx=int_0^infty exp (-a^2x^2)dx$
      $endgroup$
      – logo
      May 25 at 1:45













    3












    3








    3





    $begingroup$

    Start with:
    $$Ileft( p right)=int_0^infty cos left( px right)exp (-a^2x^2)dx$$
    We can use differentiation under the integral sign:



    $$I'left( p right)=-int_0^infty xsin left( px right)exp (-a^2x^2)dx$$
    Integration by parts using $u=sin left( px right)quad andquad dv=-xexp left( -a^2x^2 right)dx$
    $$I'left( p right)=left. sin left( px right)fracexp left( -a^2x^2 right)2a^2 right|_0^infty -fracp2a^2int_0^infty cos left( px right)exp left( -a^2x^2 right)dx$$
    The first term on the right vanishes, and we have the first-order differential equation:
    $$fracI'left( p right)Ileft( p right)=-fracp2a^2Rightarrow ln left( Ileft( p right) right)=-fracp^24a^2+C$$
    Using $$Ileft( 0 right)=fracsqrtpi a$$
    We can find $C=ln left( fracsqrtpi a right)$
    hence
    $$ln left( Ileft( p right) right)=-fracp^24a^2+ln left( fracsqrtpi a right)$$
    So
    $$Ileft( p right)=fracsqrtpi aexp left( -fracp^24a^2 right)$$
    Finally the integral in question equals
    $$-I'left( p right)=-fracddpleft( fracsqrtpi aexp left( -fracp^24a^2 right) right)$$






    share|cite|improve this answer











    $endgroup$



    Start with:
    $$Ileft( p right)=int_0^infty cos left( px right)exp (-a^2x^2)dx$$
    We can use differentiation under the integral sign:



    $$I'left( p right)=-int_0^infty xsin left( px right)exp (-a^2x^2)dx$$
    Integration by parts using $u=sin left( px right)quad andquad dv=-xexp left( -a^2x^2 right)dx$
    $$I'left( p right)=left. sin left( px right)fracexp left( -a^2x^2 right)2a^2 right|_0^infty -fracp2a^2int_0^infty cos left( px right)exp left( -a^2x^2 right)dx$$
    The first term on the right vanishes, and we have the first-order differential equation:
    $$fracI'left( p right)Ileft( p right)=-fracp2a^2Rightarrow ln left( Ileft( p right) right)=-fracp^24a^2+C$$
    Using $$Ileft( 0 right)=fracsqrtpi a$$
    We can find $C=ln left( fracsqrtpi a right)$
    hence
    $$ln left( Ileft( p right) right)=-fracp^24a^2+ln left( fracsqrtpi a right)$$
    So
    $$Ileft( p right)=fracsqrtpi aexp left( -fracp^24a^2 right)$$
    Finally the integral in question equals
    $$-I'left( p right)=-fracddpleft( fracsqrtpi aexp left( -fracp^24a^2 right) right)$$







    share|cite|improve this answer














    share|cite|improve this answer



    share|cite|improve this answer








    edited May 24 at 23:59

























    answered May 24 at 23:42









    logologo

    37413




    37413











    • $begingroup$
      How is $I(0)= int_0 ^ infty cos(0) = sqrtpi/a$?
      $endgroup$
      – daljit97
      May 25 at 0:42







    • 1




      $begingroup$
      $Ileft( 0 right)=int_0^infty cos left( 0 right)exp (-a^2x^2)dx=int_0^infty exp (-a^2x^2)dx$
      $endgroup$
      – logo
      May 25 at 1:45
















    • $begingroup$
      How is $I(0)= int_0 ^ infty cos(0) = sqrtpi/a$?
      $endgroup$
      – daljit97
      May 25 at 0:42







    • 1




      $begingroup$
      $Ileft( 0 right)=int_0^infty cos left( 0 right)exp (-a^2x^2)dx=int_0^infty exp (-a^2x^2)dx$
      $endgroup$
      – logo
      May 25 at 1:45















    $begingroup$
    How is $I(0)= int_0 ^ infty cos(0) = sqrtpi/a$?
    $endgroup$
    – daljit97
    May 25 at 0:42





    $begingroup$
    How is $I(0)= int_0 ^ infty cos(0) = sqrtpi/a$?
    $endgroup$
    – daljit97
    May 25 at 0:42





    1




    1




    $begingroup$
    $Ileft( 0 right)=int_0^infty cos left( 0 right)exp (-a^2x^2)dx=int_0^infty exp (-a^2x^2)dx$
    $endgroup$
    – logo
    May 25 at 1:45




    $begingroup$
    $Ileft( 0 right)=int_0^infty cos left( 0 right)exp (-a^2x^2)dx=int_0^infty exp (-a^2x^2)dx$
    $endgroup$
    – logo
    May 25 at 1:45











    5












    $begingroup$

    Integrating by parts we get $-frac 1 2a^2 e^-a^2x^2 sin(px)|_0^infty+ frac p 2a^2int_0^infty e^-a^2x^2 cos(px)dx$. The first term is $0$ and the second term is the real part of a Gaussian characteristic function up to a constant factor.



    The answer is $frac psqrtpi 4a^3 e^-p^2/2a^2$






    share|cite|improve this answer











    $endgroup$

















      5












      $begingroup$

      Integrating by parts we get $-frac 1 2a^2 e^-a^2x^2 sin(px)|_0^infty+ frac p 2a^2int_0^infty e^-a^2x^2 cos(px)dx$. The first term is $0$ and the second term is the real part of a Gaussian characteristic function up to a constant factor.



      The answer is $frac psqrtpi 4a^3 e^-p^2/2a^2$






      share|cite|improve this answer











      $endgroup$















        5












        5








        5





        $begingroup$

        Integrating by parts we get $-frac 1 2a^2 e^-a^2x^2 sin(px)|_0^infty+ frac p 2a^2int_0^infty e^-a^2x^2 cos(px)dx$. The first term is $0$ and the second term is the real part of a Gaussian characteristic function up to a constant factor.



        The answer is $frac psqrtpi 4a^3 e^-p^2/2a^2$






        share|cite|improve this answer











        $endgroup$



        Integrating by parts we get $-frac 1 2a^2 e^-a^2x^2 sin(px)|_0^infty+ frac p 2a^2int_0^infty e^-a^2x^2 cos(px)dx$. The first term is $0$ and the second term is the real part of a Gaussian characteristic function up to a constant factor.



        The answer is $frac psqrtpi 4a^3 e^-p^2/2a^2$







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited May 25 at 5:03

























        answered May 24 at 23:15









        Kavi Rama MurthyKavi Rama Murthy

        86.3k53873




        86.3k53873





















            2












            $begingroup$

            $$
            beginalign
            int_0^infty xsinpxexp(-a^2x^2) dx
            & =int_0^infty xsum_ngeq0dfrac(-1)^n(px)^2n+1(2n+1)!exp(-a^2x^2) dx \
            & =sum_ngeq0dfrac(-1)^np^2n+1(2n+1)!int_0^infty x^2n+2exp(-a^2x^2) dx \
            & =sum_ngeq0dfrac(-1)^np^2n+1(2n+1)!dfrac12a^2n+3int_0^infty u^n+frac12e^-u du ~~~;~~~a^2x^2=u\
            & =sum_ngeq0dfrac(-1)^np^2n+1(2n+2)Gamma(2n+3)dfrac12a^2n+3Gamma(n+frac32)\
            & =sum_ngeq0dfrac(-1)^np^2n+1(2n+2)2^2n+2sqrtpi^-1Gamma(n+2)Gamma(n+frac32)dfrac12a^2n+3Gamma(n+frac32)\
            & =sqrtpisum_ngeq0dfrac(-1)^np^2n+12^2n+2dfrac12a^2n+3\
            & =sqrtpidfracp4a^3sum_ngeq0left(dfrac-p^24a^2right)^ndfrac1n!\
            & =sqrtpidfracp4a^3expleft(dfrac-p^24a^2right)
            endalign
            $$






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Oh my goodness... so much work for such a simple integral (done by parts)! Obviously a technical solution with a different approach!
              $endgroup$
              – David G. Stork
              May 25 at 1:22











            • $begingroup$
              @DavidG.Stork This is a technical solution with different approach.
              $endgroup$
              – Nosrati
              May 25 at 1:25















            2












            $begingroup$

            $$
            beginalign
            int_0^infty xsinpxexp(-a^2x^2) dx
            & =int_0^infty xsum_ngeq0dfrac(-1)^n(px)^2n+1(2n+1)!exp(-a^2x^2) dx \
            & =sum_ngeq0dfrac(-1)^np^2n+1(2n+1)!int_0^infty x^2n+2exp(-a^2x^2) dx \
            & =sum_ngeq0dfrac(-1)^np^2n+1(2n+1)!dfrac12a^2n+3int_0^infty u^n+frac12e^-u du ~~~;~~~a^2x^2=u\
            & =sum_ngeq0dfrac(-1)^np^2n+1(2n+2)Gamma(2n+3)dfrac12a^2n+3Gamma(n+frac32)\
            & =sum_ngeq0dfrac(-1)^np^2n+1(2n+2)2^2n+2sqrtpi^-1Gamma(n+2)Gamma(n+frac32)dfrac12a^2n+3Gamma(n+frac32)\
            & =sqrtpisum_ngeq0dfrac(-1)^np^2n+12^2n+2dfrac12a^2n+3\
            & =sqrtpidfracp4a^3sum_ngeq0left(dfrac-p^24a^2right)^ndfrac1n!\
            & =sqrtpidfracp4a^3expleft(dfrac-p^24a^2right)
            endalign
            $$






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Oh my goodness... so much work for such a simple integral (done by parts)! Obviously a technical solution with a different approach!
              $endgroup$
              – David G. Stork
              May 25 at 1:22











            • $begingroup$
              @DavidG.Stork This is a technical solution with different approach.
              $endgroup$
              – Nosrati
              May 25 at 1:25













            2












            2








            2





            $begingroup$

            $$
            beginalign
            int_0^infty xsinpxexp(-a^2x^2) dx
            & =int_0^infty xsum_ngeq0dfrac(-1)^n(px)^2n+1(2n+1)!exp(-a^2x^2) dx \
            & =sum_ngeq0dfrac(-1)^np^2n+1(2n+1)!int_0^infty x^2n+2exp(-a^2x^2) dx \
            & =sum_ngeq0dfrac(-1)^np^2n+1(2n+1)!dfrac12a^2n+3int_0^infty u^n+frac12e^-u du ~~~;~~~a^2x^2=u\
            & =sum_ngeq0dfrac(-1)^np^2n+1(2n+2)Gamma(2n+3)dfrac12a^2n+3Gamma(n+frac32)\
            & =sum_ngeq0dfrac(-1)^np^2n+1(2n+2)2^2n+2sqrtpi^-1Gamma(n+2)Gamma(n+frac32)dfrac12a^2n+3Gamma(n+frac32)\
            & =sqrtpisum_ngeq0dfrac(-1)^np^2n+12^2n+2dfrac12a^2n+3\
            & =sqrtpidfracp4a^3sum_ngeq0left(dfrac-p^24a^2right)^ndfrac1n!\
            & =sqrtpidfracp4a^3expleft(dfrac-p^24a^2right)
            endalign
            $$






            share|cite|improve this answer











            $endgroup$



            $$
            beginalign
            int_0^infty xsinpxexp(-a^2x^2) dx
            & =int_0^infty xsum_ngeq0dfrac(-1)^n(px)^2n+1(2n+1)!exp(-a^2x^2) dx \
            & =sum_ngeq0dfrac(-1)^np^2n+1(2n+1)!int_0^infty x^2n+2exp(-a^2x^2) dx \
            & =sum_ngeq0dfrac(-1)^np^2n+1(2n+1)!dfrac12a^2n+3int_0^infty u^n+frac12e^-u du ~~~;~~~a^2x^2=u\
            & =sum_ngeq0dfrac(-1)^np^2n+1(2n+2)Gamma(2n+3)dfrac12a^2n+3Gamma(n+frac32)\
            & =sum_ngeq0dfrac(-1)^np^2n+1(2n+2)2^2n+2sqrtpi^-1Gamma(n+2)Gamma(n+frac32)dfrac12a^2n+3Gamma(n+frac32)\
            & =sqrtpisum_ngeq0dfrac(-1)^np^2n+12^2n+2dfrac12a^2n+3\
            & =sqrtpidfracp4a^3sum_ngeq0left(dfrac-p^24a^2right)^ndfrac1n!\
            & =sqrtpidfracp4a^3expleft(dfrac-p^24a^2right)
            endalign
            $$







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited May 25 at 1:21

























            answered May 25 at 1:15









            NosratiNosrati

            27.3k62355




            27.3k62355











            • $begingroup$
              Oh my goodness... so much work for such a simple integral (done by parts)! Obviously a technical solution with a different approach!
              $endgroup$
              – David G. Stork
              May 25 at 1:22











            • $begingroup$
              @DavidG.Stork This is a technical solution with different approach.
              $endgroup$
              – Nosrati
              May 25 at 1:25
















            • $begingroup$
              Oh my goodness... so much work for such a simple integral (done by parts)! Obviously a technical solution with a different approach!
              $endgroup$
              – David G. Stork
              May 25 at 1:22











            • $begingroup$
              @DavidG.Stork This is a technical solution with different approach.
              $endgroup$
              – Nosrati
              May 25 at 1:25















            $begingroup$
            Oh my goodness... so much work for such a simple integral (done by parts)! Obviously a technical solution with a different approach!
            $endgroup$
            – David G. Stork
            May 25 at 1:22





            $begingroup$
            Oh my goodness... so much work for such a simple integral (done by parts)! Obviously a technical solution with a different approach!
            $endgroup$
            – David G. Stork
            May 25 at 1:22













            $begingroup$
            @DavidG.Stork This is a technical solution with different approach.
            $endgroup$
            – Nosrati
            May 25 at 1:25




            $begingroup$
            @DavidG.Stork This is a technical solution with different approach.
            $endgroup$
            – Nosrati
            May 25 at 1:25

















            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3238744%2fhow-to-evaluate-the-following-integral-involving-a-gaussian%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

            Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation

            Magento 2 “No Payment Methods” in Admin New OrderHow to integrate Paypal Express Checkout with the Magento APIMagento 1.5 - Sales > Order > edit order and shipping methods disappearAuto Invoice Check/Money Order Payment methodAdd more simple payment methods?Shipping methods not showingWhat should I do to change payment methods if changing the configuration has no effects?1.9 - No Payment Methods showing upMy Payment Methods not Showing for downloadable/virtual product when checkout?Magento2 API to access internal payment methodHow to call an existing payment methods in the registration form?