How to get rid of “fringes” in 3D plot?How do I get rid of a “jump” in my plot?How to get rid of the perspective effect in a 3D graphicsFourier Analysis: How to get rid of a discontinuityHow to get an Excel-like surface plot with ListContourPlot3DHow to get rid of boundary 'seams' in surface plots?How to get rid of ConditionalExpression followed by plotting?Get rid of the tooltip in contour plotsGetting rid of vertical lines in plotHow to get the height of 3D density plot graphicsHow to get rid of some meshes in ListDensityPlot
Can I attune a Circlet of Human Perfection to my animated skeletons to allow them to blend in and speak?
How to have poached eggs in "sphere form"?
Is it possible for a particle to decay via gravity?
Why does Canada require bilingualism in a lot of federal government posts?
How did the SysRq key get onto modern keyboards if it's rarely used?
What clothes would flying-people wear?
What language is Raven using for her attack in the new 52?
Scam? Checks via Email
Wrapping IMemoryCache with SemaphoreSlim
Antonym of "Megalomania"
Complaints from (junior) developers against solution architects: how can we show the benefits of our work and improve relationships?
What would the United Kingdom's "optimal" Brexit deal look like?
Can Papyrus be folded?
Can Lightning Lure be used to knock out a creature like a magical Taser?
Semen retention is a important thing in Martial arts?
What Marvel character has this 'W' symbol?
how to understand the error info "Illegal parameter number in definition of reserved@a. ...t2+cdots+sqrt2}}_n项 , cdots 收敛.$}"
How do I say "this is why…"?
In syntax, why cannot we say things like "he took walked at the park"? but can say "he took a walk at the park"?
Is there a word to describe someone who is, or the state of being, content with hanging around others without interacting with them?
How does the Thief's Fast Hands feature interact with mundane and magical shields?
Little Lost Robot
Composing fill in the blanks
Why does the Rust compiler not optimize code assuming that two mutable references cannot alias?
How to get rid of “fringes” in 3D plot?
How do I get rid of a “jump” in my plot?How to get rid of the perspective effect in a 3D graphicsFourier Analysis: How to get rid of a discontinuityHow to get an Excel-like surface plot with ListContourPlot3DHow to get rid of boundary 'seams' in surface plots?How to get rid of ConditionalExpression followed by plotting?Get rid of the tooltip in contour plotsGetting rid of vertical lines in plotHow to get the height of 3D density plot graphicsHow to get rid of some meshes in ListDensityPlot
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
The code below generates a plot with some ugly "fringes". Is there a way to get rid of them and get a smoother graphic?
a = 2.3;
myGray = Function[x, y, z, GrayLevel[1]];
s1 = ParametricPlot3D[0, a, 0 + x, Sqrt[1 - x^2 - y^2], y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s2 = ParametricPlot3D[0, -a, 0 + x, -Sqrt[1 - x^2 - y^2], y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s3 = ParametricPlot3D[0, 0, 0.8 a + x, y, Sqrt[1 - x^2 - y^2], x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s4 = ParametricPlot3D[0, 0, -0.8 a + x, y, -Sqrt[1 - x^2 - y^2], x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s5 = ParametricPlot3D[a, 0, 0 + Sqrt[1 - x^2 - y^2], x, y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s6 = ParametricPlot3D[-a, 0, 0 + -Sqrt[1 - x^2 - y^2], x, y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
Show[s1, s2, s3, s4, s5, s6, PlotRange -> All, Boxed -> False, Lighting -> "Neutral", ViewPoint -> -2.1, -2.4, 1.1, ViewVertical -> 0, 0, 1]
plotting graphics3d
$endgroup$
add a comment |
$begingroup$
The code below generates a plot with some ugly "fringes". Is there a way to get rid of them and get a smoother graphic?
a = 2.3;
myGray = Function[x, y, z, GrayLevel[1]];
s1 = ParametricPlot3D[0, a, 0 + x, Sqrt[1 - x^2 - y^2], y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s2 = ParametricPlot3D[0, -a, 0 + x, -Sqrt[1 - x^2 - y^2], y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s3 = ParametricPlot3D[0, 0, 0.8 a + x, y, Sqrt[1 - x^2 - y^2], x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s4 = ParametricPlot3D[0, 0, -0.8 a + x, y, -Sqrt[1 - x^2 - y^2], x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s5 = ParametricPlot3D[a, 0, 0 + Sqrt[1 - x^2 - y^2], x, y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s6 = ParametricPlot3D[-a, 0, 0 + -Sqrt[1 - x^2 - y^2], x, y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
Show[s1, s2, s3, s4, s5, s6, PlotRange -> All, Boxed -> False, Lighting -> "Neutral", ViewPoint -> -2.1, -2.4, 1.1, ViewVertical -> 0, 0, 1]
plotting graphics3d
$endgroup$
add a comment |
$begingroup$
The code below generates a plot with some ugly "fringes". Is there a way to get rid of them and get a smoother graphic?
a = 2.3;
myGray = Function[x, y, z, GrayLevel[1]];
s1 = ParametricPlot3D[0, a, 0 + x, Sqrt[1 - x^2 - y^2], y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s2 = ParametricPlot3D[0, -a, 0 + x, -Sqrt[1 - x^2 - y^2], y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s3 = ParametricPlot3D[0, 0, 0.8 a + x, y, Sqrt[1 - x^2 - y^2], x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s4 = ParametricPlot3D[0, 0, -0.8 a + x, y, -Sqrt[1 - x^2 - y^2], x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s5 = ParametricPlot3D[a, 0, 0 + Sqrt[1 - x^2 - y^2], x, y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s6 = ParametricPlot3D[-a, 0, 0 + -Sqrt[1 - x^2 - y^2], x, y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
Show[s1, s2, s3, s4, s5, s6, PlotRange -> All, Boxed -> False, Lighting -> "Neutral", ViewPoint -> -2.1, -2.4, 1.1, ViewVertical -> 0, 0, 1]
plotting graphics3d
$endgroup$
The code below generates a plot with some ugly "fringes". Is there a way to get rid of them and get a smoother graphic?
a = 2.3;
myGray = Function[x, y, z, GrayLevel[1]];
s1 = ParametricPlot3D[0, a, 0 + x, Sqrt[1 - x^2 - y^2], y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s2 = ParametricPlot3D[0, -a, 0 + x, -Sqrt[1 - x^2 - y^2], y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s3 = ParametricPlot3D[0, 0, 0.8 a + x, y, Sqrt[1 - x^2 - y^2], x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s4 = ParametricPlot3D[0, 0, -0.8 a + x, y, -Sqrt[1 - x^2 - y^2], x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s5 = ParametricPlot3D[a, 0, 0 + Sqrt[1 - x^2 - y^2], x, y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s6 = ParametricPlot3D[-a, 0, 0 + -Sqrt[1 - x^2 - y^2], x, y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
Show[s1, s2, s3, s4, s5, s6, PlotRange -> All, Boxed -> False, Lighting -> "Neutral", ViewPoint -> -2.1, -2.4, 1.1, ViewVertical -> 0, 0, 1]
plotting graphics3d
plotting graphics3d
asked Jul 19 at 23:05
FrunobulaxFrunobulax
1433 bronze badges
1433 bronze badges
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
You can restrict x
and y
to Disk[]
using RegionFunction
:
s1 = ParametricPlot3D[0, a, 0 + x, Sqrt[1 - x^2 - y^2], y,
x, -Pi, Pi, y, -Pi, Pi,
RegionFunction -> (#3^2 + #4^2 <= 1 &), Mesh -> 21,
Boxed -> False,
Axes -> None,
ColorFunction -> myGray,
PlotPoints -> 100]
Doing the same for s2
thru s6
we get
$endgroup$
add a comment |
$begingroup$
The fringes stem from the fact that the disk is discretized into a triangle mesh and its boundary edges are not very short (and the fact that $sqrt1 - r^2$ is not differentiable at the point $r =1$). You can avoid this, e.g., by using a different parameterization:
s1 = ParametricPlot3D[0, a, 0 + r Cos[t], Sqrt[1 - r^2], r Sin[t],
r, 0, 1, t, -Pi, Pi,
Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray,
PlotPoints -> 100
]
$endgroup$
1
$begingroup$
Or usual parametrization of hemisphere:ParametricPlot3D[0, a, 0 + Sin[f] Cos[t], Cos[f], Sin[f] Sin[t], f,0,Pi/2, t,-Pi,Pi, Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100]
$endgroup$
– Alx
Jul 20 at 1:41
1
$begingroup$
Thanks, but the point is to show this specific parametrization; it's for a textbook.
$endgroup$
– Frunobulax
Jul 20 at 8:34
add a comment |
$begingroup$
ImplicitRegion[]
works better than Disk[]
(but why?):
ParametricPlot3D[2.3, 0, 0 + Sqrt[1 - x^2 - y^2], x, y,
x, y ∈ ImplicitRegion[x^2 + y^2 <= 1, x, y], Mesh -> 21,
Boxed -> False, Axes -> None, ColorFunction -> (GrayLevel[1] &),
PlotPoints -> 100]
Update:
Another approach is to control the discretization of the Disk[]
, the boundary being the most important element in this problem:
disk = BoundaryDiscretizeRegion[Disk[0, 0, 1], MaxCellMeasure -> "Length" -> 0.001];
disk = DiscretizeRegion[disk];
ParametricPlot3D[0, 2.3, 0 + x, Sqrt[1 - x^2 - y^2], y,
x, y ∈ disk, Mesh -> 21, Boxed -> False, Axes -> None,
ColorFunction -> (White &), PlotRange -> All]
$endgroup$
$begingroup$
Thanks. Unfortunately, I can only accept one of the answers... :(
$endgroup$
– Frunobulax
Jul 20 at 14:52
1
$begingroup$
@Frunobulax You're welcome, and that's the way it is. I added an alternative method, BTW.
$endgroup$
– Michael E2
Jul 20 at 15:41
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f202414%2fhow-to-get-rid-of-fringes-in-3d-plot%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
You can restrict x
and y
to Disk[]
using RegionFunction
:
s1 = ParametricPlot3D[0, a, 0 + x, Sqrt[1 - x^2 - y^2], y,
x, -Pi, Pi, y, -Pi, Pi,
RegionFunction -> (#3^2 + #4^2 <= 1 &), Mesh -> 21,
Boxed -> False,
Axes -> None,
ColorFunction -> myGray,
PlotPoints -> 100]
Doing the same for s2
thru s6
we get
$endgroup$
add a comment |
$begingroup$
You can restrict x
and y
to Disk[]
using RegionFunction
:
s1 = ParametricPlot3D[0, a, 0 + x, Sqrt[1 - x^2 - y^2], y,
x, -Pi, Pi, y, -Pi, Pi,
RegionFunction -> (#3^2 + #4^2 <= 1 &), Mesh -> 21,
Boxed -> False,
Axes -> None,
ColorFunction -> myGray,
PlotPoints -> 100]
Doing the same for s2
thru s6
we get
$endgroup$
add a comment |
$begingroup$
You can restrict x
and y
to Disk[]
using RegionFunction
:
s1 = ParametricPlot3D[0, a, 0 + x, Sqrt[1 - x^2 - y^2], y,
x, -Pi, Pi, y, -Pi, Pi,
RegionFunction -> (#3^2 + #4^2 <= 1 &), Mesh -> 21,
Boxed -> False,
Axes -> None,
ColorFunction -> myGray,
PlotPoints -> 100]
Doing the same for s2
thru s6
we get
$endgroup$
You can restrict x
and y
to Disk[]
using RegionFunction
:
s1 = ParametricPlot3D[0, a, 0 + x, Sqrt[1 - x^2 - y^2], y,
x, -Pi, Pi, y, -Pi, Pi,
RegionFunction -> (#3^2 + #4^2 <= 1 &), Mesh -> 21,
Boxed -> False,
Axes -> None,
ColorFunction -> myGray,
PlotPoints -> 100]
Doing the same for s2
thru s6
we get
edited Jul 20 at 1:36
answered Jul 20 at 0:50
kglrkglr
208k10 gold badges239 silver badges473 bronze badges
208k10 gold badges239 silver badges473 bronze badges
add a comment |
add a comment |
$begingroup$
The fringes stem from the fact that the disk is discretized into a triangle mesh and its boundary edges are not very short (and the fact that $sqrt1 - r^2$ is not differentiable at the point $r =1$). You can avoid this, e.g., by using a different parameterization:
s1 = ParametricPlot3D[0, a, 0 + r Cos[t], Sqrt[1 - r^2], r Sin[t],
r, 0, 1, t, -Pi, Pi,
Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray,
PlotPoints -> 100
]
$endgroup$
1
$begingroup$
Or usual parametrization of hemisphere:ParametricPlot3D[0, a, 0 + Sin[f] Cos[t], Cos[f], Sin[f] Sin[t], f,0,Pi/2, t,-Pi,Pi, Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100]
$endgroup$
– Alx
Jul 20 at 1:41
1
$begingroup$
Thanks, but the point is to show this specific parametrization; it's for a textbook.
$endgroup$
– Frunobulax
Jul 20 at 8:34
add a comment |
$begingroup$
The fringes stem from the fact that the disk is discretized into a triangle mesh and its boundary edges are not very short (and the fact that $sqrt1 - r^2$ is not differentiable at the point $r =1$). You can avoid this, e.g., by using a different parameterization:
s1 = ParametricPlot3D[0, a, 0 + r Cos[t], Sqrt[1 - r^2], r Sin[t],
r, 0, 1, t, -Pi, Pi,
Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray,
PlotPoints -> 100
]
$endgroup$
1
$begingroup$
Or usual parametrization of hemisphere:ParametricPlot3D[0, a, 0 + Sin[f] Cos[t], Cos[f], Sin[f] Sin[t], f,0,Pi/2, t,-Pi,Pi, Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100]
$endgroup$
– Alx
Jul 20 at 1:41
1
$begingroup$
Thanks, but the point is to show this specific parametrization; it's for a textbook.
$endgroup$
– Frunobulax
Jul 20 at 8:34
add a comment |
$begingroup$
The fringes stem from the fact that the disk is discretized into a triangle mesh and its boundary edges are not very short (and the fact that $sqrt1 - r^2$ is not differentiable at the point $r =1$). You can avoid this, e.g., by using a different parameterization:
s1 = ParametricPlot3D[0, a, 0 + r Cos[t], Sqrt[1 - r^2], r Sin[t],
r, 0, 1, t, -Pi, Pi,
Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray,
PlotPoints -> 100
]
$endgroup$
The fringes stem from the fact that the disk is discretized into a triangle mesh and its boundary edges are not very short (and the fact that $sqrt1 - r^2$ is not differentiable at the point $r =1$). You can avoid this, e.g., by using a different parameterization:
s1 = ParametricPlot3D[0, a, 0 + r Cos[t], Sqrt[1 - r^2], r Sin[t],
r, 0, 1, t, -Pi, Pi,
Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray,
PlotPoints -> 100
]
answered Jul 20 at 0:34
Henrik SchumacherHenrik Schumacher
65.9k5 gold badges94 silver badges183 bronze badges
65.9k5 gold badges94 silver badges183 bronze badges
1
$begingroup$
Or usual parametrization of hemisphere:ParametricPlot3D[0, a, 0 + Sin[f] Cos[t], Cos[f], Sin[f] Sin[t], f,0,Pi/2, t,-Pi,Pi, Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100]
$endgroup$
– Alx
Jul 20 at 1:41
1
$begingroup$
Thanks, but the point is to show this specific parametrization; it's for a textbook.
$endgroup$
– Frunobulax
Jul 20 at 8:34
add a comment |
1
$begingroup$
Or usual parametrization of hemisphere:ParametricPlot3D[0, a, 0 + Sin[f] Cos[t], Cos[f], Sin[f] Sin[t], f,0,Pi/2, t,-Pi,Pi, Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100]
$endgroup$
– Alx
Jul 20 at 1:41
1
$begingroup$
Thanks, but the point is to show this specific parametrization; it's for a textbook.
$endgroup$
– Frunobulax
Jul 20 at 8:34
1
1
$begingroup$
Or usual parametrization of hemisphere:
ParametricPlot3D[0, a, 0 + Sin[f] Cos[t], Cos[f], Sin[f] Sin[t], f,0,Pi/2, t,-Pi,Pi, Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100]
$endgroup$
– Alx
Jul 20 at 1:41
$begingroup$
Or usual parametrization of hemisphere:
ParametricPlot3D[0, a, 0 + Sin[f] Cos[t], Cos[f], Sin[f] Sin[t], f,0,Pi/2, t,-Pi,Pi, Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100]
$endgroup$
– Alx
Jul 20 at 1:41
1
1
$begingroup$
Thanks, but the point is to show this specific parametrization; it's for a textbook.
$endgroup$
– Frunobulax
Jul 20 at 8:34
$begingroup$
Thanks, but the point is to show this specific parametrization; it's for a textbook.
$endgroup$
– Frunobulax
Jul 20 at 8:34
add a comment |
$begingroup$
ImplicitRegion[]
works better than Disk[]
(but why?):
ParametricPlot3D[2.3, 0, 0 + Sqrt[1 - x^2 - y^2], x, y,
x, y ∈ ImplicitRegion[x^2 + y^2 <= 1, x, y], Mesh -> 21,
Boxed -> False, Axes -> None, ColorFunction -> (GrayLevel[1] &),
PlotPoints -> 100]
Update:
Another approach is to control the discretization of the Disk[]
, the boundary being the most important element in this problem:
disk = BoundaryDiscretizeRegion[Disk[0, 0, 1], MaxCellMeasure -> "Length" -> 0.001];
disk = DiscretizeRegion[disk];
ParametricPlot3D[0, 2.3, 0 + x, Sqrt[1 - x^2 - y^2], y,
x, y ∈ disk, Mesh -> 21, Boxed -> False, Axes -> None,
ColorFunction -> (White &), PlotRange -> All]
$endgroup$
$begingroup$
Thanks. Unfortunately, I can only accept one of the answers... :(
$endgroup$
– Frunobulax
Jul 20 at 14:52
1
$begingroup$
@Frunobulax You're welcome, and that's the way it is. I added an alternative method, BTW.
$endgroup$
– Michael E2
Jul 20 at 15:41
add a comment |
$begingroup$
ImplicitRegion[]
works better than Disk[]
(but why?):
ParametricPlot3D[2.3, 0, 0 + Sqrt[1 - x^2 - y^2], x, y,
x, y ∈ ImplicitRegion[x^2 + y^2 <= 1, x, y], Mesh -> 21,
Boxed -> False, Axes -> None, ColorFunction -> (GrayLevel[1] &),
PlotPoints -> 100]
Update:
Another approach is to control the discretization of the Disk[]
, the boundary being the most important element in this problem:
disk = BoundaryDiscretizeRegion[Disk[0, 0, 1], MaxCellMeasure -> "Length" -> 0.001];
disk = DiscretizeRegion[disk];
ParametricPlot3D[0, 2.3, 0 + x, Sqrt[1 - x^2 - y^2], y,
x, y ∈ disk, Mesh -> 21, Boxed -> False, Axes -> None,
ColorFunction -> (White &), PlotRange -> All]
$endgroup$
$begingroup$
Thanks. Unfortunately, I can only accept one of the answers... :(
$endgroup$
– Frunobulax
Jul 20 at 14:52
1
$begingroup$
@Frunobulax You're welcome, and that's the way it is. I added an alternative method, BTW.
$endgroup$
– Michael E2
Jul 20 at 15:41
add a comment |
$begingroup$
ImplicitRegion[]
works better than Disk[]
(but why?):
ParametricPlot3D[2.3, 0, 0 + Sqrt[1 - x^2 - y^2], x, y,
x, y ∈ ImplicitRegion[x^2 + y^2 <= 1, x, y], Mesh -> 21,
Boxed -> False, Axes -> None, ColorFunction -> (GrayLevel[1] &),
PlotPoints -> 100]
Update:
Another approach is to control the discretization of the Disk[]
, the boundary being the most important element in this problem:
disk = BoundaryDiscretizeRegion[Disk[0, 0, 1], MaxCellMeasure -> "Length" -> 0.001];
disk = DiscretizeRegion[disk];
ParametricPlot3D[0, 2.3, 0 + x, Sqrt[1 - x^2 - y^2], y,
x, y ∈ disk, Mesh -> 21, Boxed -> False, Axes -> None,
ColorFunction -> (White &), PlotRange -> All]
$endgroup$
ImplicitRegion[]
works better than Disk[]
(but why?):
ParametricPlot3D[2.3, 0, 0 + Sqrt[1 - x^2 - y^2], x, y,
x, y ∈ ImplicitRegion[x^2 + y^2 <= 1, x, y], Mesh -> 21,
Boxed -> False, Axes -> None, ColorFunction -> (GrayLevel[1] &),
PlotPoints -> 100]
Update:
Another approach is to control the discretization of the Disk[]
, the boundary being the most important element in this problem:
disk = BoundaryDiscretizeRegion[Disk[0, 0, 1], MaxCellMeasure -> "Length" -> 0.001];
disk = DiscretizeRegion[disk];
ParametricPlot3D[0, 2.3, 0 + x, Sqrt[1 - x^2 - y^2], y,
x, y ∈ disk, Mesh -> 21, Boxed -> False, Axes -> None,
ColorFunction -> (White &), PlotRange -> All]
edited Jul 20 at 15:40
answered Jul 20 at 2:11
Michael E2Michael E2
157k13 gold badges215 silver badges509 bronze badges
157k13 gold badges215 silver badges509 bronze badges
$begingroup$
Thanks. Unfortunately, I can only accept one of the answers... :(
$endgroup$
– Frunobulax
Jul 20 at 14:52
1
$begingroup$
@Frunobulax You're welcome, and that's the way it is. I added an alternative method, BTW.
$endgroup$
– Michael E2
Jul 20 at 15:41
add a comment |
$begingroup$
Thanks. Unfortunately, I can only accept one of the answers... :(
$endgroup$
– Frunobulax
Jul 20 at 14:52
1
$begingroup$
@Frunobulax You're welcome, and that's the way it is. I added an alternative method, BTW.
$endgroup$
– Michael E2
Jul 20 at 15:41
$begingroup$
Thanks. Unfortunately, I can only accept one of the answers... :(
$endgroup$
– Frunobulax
Jul 20 at 14:52
$begingroup$
Thanks. Unfortunately, I can only accept one of the answers... :(
$endgroup$
– Frunobulax
Jul 20 at 14:52
1
1
$begingroup$
@Frunobulax You're welcome, and that's the way it is. I added an alternative method, BTW.
$endgroup$
– Michael E2
Jul 20 at 15:41
$begingroup$
@Frunobulax You're welcome, and that's the way it is. I added an alternative method, BTW.
$endgroup$
– Michael E2
Jul 20 at 15:41
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f202414%2fhow-to-get-rid-of-fringes-in-3d-plot%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown