How to get rid of “fringes” in 3D plot?How do I get rid of a “jump” in my plot?How to get rid of the perspective effect in a 3D graphicsFourier Analysis: How to get rid of a discontinuityHow to get an Excel-like surface plot with ListContourPlot3DHow to get rid of boundary 'seams' in surface plots?How to get rid of ConditionalExpression followed by plotting?Get rid of the tooltip in contour plotsGetting rid of vertical lines in plotHow to get the height of 3D density plot graphicsHow to get rid of some meshes in ListDensityPlot

Can I attune a Circlet of Human Perfection to my animated skeletons to allow them to blend in and speak?

How to have poached eggs in "sphere form"?

Is it possible for a particle to decay via gravity?

Why does Canada require bilingualism in a lot of federal government posts?

How did the SysRq key get onto modern keyboards if it's rarely used?

What clothes would flying-people wear?

What language is Raven using for her attack in the new 52?

Scam? Checks via Email

Wrapping IMemoryCache with SemaphoreSlim

Antonym of "Megalomania"

Complaints from (junior) developers against solution architects: how can we show the benefits of our work and improve relationships?

What would the United Kingdom's "optimal" Brexit deal look like?

Can Papyrus be folded?

Can Lightning Lure be used to knock out a creature like a magical Taser?

Semen retention is a important thing in Martial arts?

What Marvel character has this 'W' symbol?

how to understand the error info "Illegal parameter number in definition of reserved@a. ...t2+cdots+sqrt2}}_n项 , cdots 收敛.$}"

How do I say "this is why…"?

In syntax, why cannot we say things like "he took walked at the park"? but can say "he took a walk at the park"?

Is there a word to describe someone who is, or the state of being, content with hanging around others without interacting with them?

How does the Thief's Fast Hands feature interact with mundane and magical shields?

Little Lost Robot

Composing fill in the blanks

Why does the Rust compiler not optimize code assuming that two mutable references cannot alias?



How to get rid of “fringes” in 3D plot?


How do I get rid of a “jump” in my plot?How to get rid of the perspective effect in a 3D graphicsFourier Analysis: How to get rid of a discontinuityHow to get an Excel-like surface plot with ListContourPlot3DHow to get rid of boundary 'seams' in surface plots?How to get rid of ConditionalExpression followed by plotting?Get rid of the tooltip in contour plotsGetting rid of vertical lines in plotHow to get the height of 3D density plot graphicsHow to get rid of some meshes in ListDensityPlot






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








5












$begingroup$


The code below generates a plot with some ugly "fringes". Is there a way to get rid of them and get a smoother graphic?



a = 2.3;
myGray = Function[x, y, z, GrayLevel[1]];
s1 = ParametricPlot3D[0, a, 0 + x, Sqrt[1 - x^2 - y^2], y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s2 = ParametricPlot3D[0, -a, 0 + x, -Sqrt[1 - x^2 - y^2], y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s3 = ParametricPlot3D[0, 0, 0.8 a + x, y, Sqrt[1 - x^2 - y^2], x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s4 = ParametricPlot3D[0, 0, -0.8 a + x, y, -Sqrt[1 - x^2 - y^2], x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s5 = ParametricPlot3D[a, 0, 0 + Sqrt[1 - x^2 - y^2], x, y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
s6 = ParametricPlot3D[-a, 0, 0 + -Sqrt[1 - x^2 - y^2], x, y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
Show[s1, s2, s3, s4, s5, s6, PlotRange -> All, Boxed -> False, Lighting -> "Neutral", ViewPoint -> -2.1, -2.4, 1.1, ViewVertical -> 0, 0, 1]









share|improve this question









$endgroup$




















    5












    $begingroup$


    The code below generates a plot with some ugly "fringes". Is there a way to get rid of them and get a smoother graphic?



    a = 2.3;
    myGray = Function[x, y, z, GrayLevel[1]];
    s1 = ParametricPlot3D[0, a, 0 + x, Sqrt[1 - x^2 - y^2], y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
    s2 = ParametricPlot3D[0, -a, 0 + x, -Sqrt[1 - x^2 - y^2], y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
    s3 = ParametricPlot3D[0, 0, 0.8 a + x, y, Sqrt[1 - x^2 - y^2], x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
    s4 = ParametricPlot3D[0, 0, -0.8 a + x, y, -Sqrt[1 - x^2 - y^2], x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
    s5 = ParametricPlot3D[a, 0, 0 + Sqrt[1 - x^2 - y^2], x, y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
    s6 = ParametricPlot3D[-a, 0, 0 + -Sqrt[1 - x^2 - y^2], x, y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
    Show[s1, s2, s3, s4, s5, s6, PlotRange -> All, Boxed -> False, Lighting -> "Neutral", ViewPoint -> -2.1, -2.4, 1.1, ViewVertical -> 0, 0, 1]









    share|improve this question









    $endgroup$
















      5












      5








      5





      $begingroup$


      The code below generates a plot with some ugly "fringes". Is there a way to get rid of them and get a smoother graphic?



      a = 2.3;
      myGray = Function[x, y, z, GrayLevel[1]];
      s1 = ParametricPlot3D[0, a, 0 + x, Sqrt[1 - x^2 - y^2], y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
      s2 = ParametricPlot3D[0, -a, 0 + x, -Sqrt[1 - x^2 - y^2], y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
      s3 = ParametricPlot3D[0, 0, 0.8 a + x, y, Sqrt[1 - x^2 - y^2], x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
      s4 = ParametricPlot3D[0, 0, -0.8 a + x, y, -Sqrt[1 - x^2 - y^2], x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
      s5 = ParametricPlot3D[a, 0, 0 + Sqrt[1 - x^2 - y^2], x, y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
      s6 = ParametricPlot3D[-a, 0, 0 + -Sqrt[1 - x^2 - y^2], x, y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
      Show[s1, s2, s3, s4, s5, s6, PlotRange -> All, Boxed -> False, Lighting -> "Neutral", ViewPoint -> -2.1, -2.4, 1.1, ViewVertical -> 0, 0, 1]









      share|improve this question









      $endgroup$




      The code below generates a plot with some ugly "fringes". Is there a way to get rid of them and get a smoother graphic?



      a = 2.3;
      myGray = Function[x, y, z, GrayLevel[1]];
      s1 = ParametricPlot3D[0, a, 0 + x, Sqrt[1 - x^2 - y^2], y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
      s2 = ParametricPlot3D[0, -a, 0 + x, -Sqrt[1 - x^2 - y^2], y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
      s3 = ParametricPlot3D[0, 0, 0.8 a + x, y, Sqrt[1 - x^2 - y^2], x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
      s4 = ParametricPlot3D[0, 0, -0.8 a + x, y, -Sqrt[1 - x^2 - y^2], x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
      s5 = ParametricPlot3D[a, 0, 0 + Sqrt[1 - x^2 - y^2], x, y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
      s6 = ParametricPlot3D[-a, 0, 0 + -Sqrt[1 - x^2 - y^2], x, y, x, y [Element] Disk[0, 0, 1], Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100];
      Show[s1, s2, s3, s4, s5, s6, PlotRange -> All, Boxed -> False, Lighting -> "Neutral", ViewPoint -> -2.1, -2.4, 1.1, ViewVertical -> 0, 0, 1]






      plotting graphics3d






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Jul 19 at 23:05









      FrunobulaxFrunobulax

      1433 bronze badges




      1433 bronze badges























          3 Answers
          3






          active

          oldest

          votes


















          3












          $begingroup$

          You can restrict x and y to Disk[] using RegionFunction:



          s1 = ParametricPlot3D[0, a, 0 + x, Sqrt[1 - x^2 - y^2], y, 
          x, -Pi, Pi, y, -Pi, Pi,
          RegionFunction -> (#3^2 + #4^2 <= 1 &), Mesh -> 21,
          Boxed -> False,
          Axes -> None,
          ColorFunction -> myGray,
          PlotPoints -> 100]


          enter image description here



          Doing the same for s2 thru s6 we get



          enter image description here






          share|improve this answer











          $endgroup$






















            3












            $begingroup$

            The fringes stem from the fact that the disk is discretized into a triangle mesh and its boundary edges are not very short (and the fact that $sqrt1 - r^2$ is not differentiable at the point $r =1$). You can avoid this, e.g., by using a different parameterization:



            s1 = ParametricPlot3D[0, a, 0 + r Cos[t], Sqrt[1 - r^2], r Sin[t],
            r, 0, 1, t, -Pi, Pi,
            Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray,
            PlotPoints -> 100
            ]





            share|improve this answer









            $endgroup$










            • 1




              $begingroup$
              Or usual parametrization of hemisphere: ParametricPlot3D[0, a, 0 + Sin[f] Cos[t], Cos[f], Sin[f] Sin[t], f,0,Pi/2, t,-Pi,Pi, Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100]
              $endgroup$
              – Alx
              Jul 20 at 1:41






            • 1




              $begingroup$
              Thanks, but the point is to show this specific parametrization; it's for a textbook.
              $endgroup$
              – Frunobulax
              Jul 20 at 8:34


















            3












            $begingroup$

            ImplicitRegion[] works better than Disk[] (but why?):



            ParametricPlot3D[2.3, 0, 0 + Sqrt[1 - x^2 - y^2], x, y,
            x, y ∈ ImplicitRegion[x^2 + y^2 <= 1, x, y], Mesh -> 21,
            Boxed -> False, Axes -> None, ColorFunction -> (GrayLevel[1] &),
            PlotPoints -> 100]


            enter image description here



            Update:
            Another approach is to control the discretization of the Disk[], the boundary being the most important element in this problem:



            disk = BoundaryDiscretizeRegion[Disk[0, 0, 1], MaxCellMeasure -> "Length" -> 0.001];
            disk = DiscretizeRegion[disk];

            ParametricPlot3D[0, 2.3, 0 + x, Sqrt[1 - x^2 - y^2], y,
            x, y ∈ disk, Mesh -> 21, Boxed -> False, Axes -> None,
            ColorFunction -> (White &), PlotRange -> All]


            enter image description here






            share|improve this answer











            $endgroup$














            • $begingroup$
              Thanks. Unfortunately, I can only accept one of the answers... :(
              $endgroup$
              – Frunobulax
              Jul 20 at 14:52






            • 1




              $begingroup$
              @Frunobulax You're welcome, and that's the way it is. I added an alternative method, BTW.
              $endgroup$
              – Michael E2
              Jul 20 at 15:41













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "387"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f202414%2fhow-to-get-rid-of-fringes-in-3d-plot%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            You can restrict x and y to Disk[] using RegionFunction:



            s1 = ParametricPlot3D[0, a, 0 + x, Sqrt[1 - x^2 - y^2], y, 
            x, -Pi, Pi, y, -Pi, Pi,
            RegionFunction -> (#3^2 + #4^2 <= 1 &), Mesh -> 21,
            Boxed -> False,
            Axes -> None,
            ColorFunction -> myGray,
            PlotPoints -> 100]


            enter image description here



            Doing the same for s2 thru s6 we get



            enter image description here






            share|improve this answer











            $endgroup$



















              3












              $begingroup$

              You can restrict x and y to Disk[] using RegionFunction:



              s1 = ParametricPlot3D[0, a, 0 + x, Sqrt[1 - x^2 - y^2], y, 
              x, -Pi, Pi, y, -Pi, Pi,
              RegionFunction -> (#3^2 + #4^2 <= 1 &), Mesh -> 21,
              Boxed -> False,
              Axes -> None,
              ColorFunction -> myGray,
              PlotPoints -> 100]


              enter image description here



              Doing the same for s2 thru s6 we get



              enter image description here






              share|improve this answer











              $endgroup$

















                3












                3








                3





                $begingroup$

                You can restrict x and y to Disk[] using RegionFunction:



                s1 = ParametricPlot3D[0, a, 0 + x, Sqrt[1 - x^2 - y^2], y, 
                x, -Pi, Pi, y, -Pi, Pi,
                RegionFunction -> (#3^2 + #4^2 <= 1 &), Mesh -> 21,
                Boxed -> False,
                Axes -> None,
                ColorFunction -> myGray,
                PlotPoints -> 100]


                enter image description here



                Doing the same for s2 thru s6 we get



                enter image description here






                share|improve this answer











                $endgroup$



                You can restrict x and y to Disk[] using RegionFunction:



                s1 = ParametricPlot3D[0, a, 0 + x, Sqrt[1 - x^2 - y^2], y, 
                x, -Pi, Pi, y, -Pi, Pi,
                RegionFunction -> (#3^2 + #4^2 <= 1 &), Mesh -> 21,
                Boxed -> False,
                Axes -> None,
                ColorFunction -> myGray,
                PlotPoints -> 100]


                enter image description here



                Doing the same for s2 thru s6 we get



                enter image description here







                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited Jul 20 at 1:36

























                answered Jul 20 at 0:50









                kglrkglr

                208k10 gold badges239 silver badges473 bronze badges




                208k10 gold badges239 silver badges473 bronze badges


























                    3












                    $begingroup$

                    The fringes stem from the fact that the disk is discretized into a triangle mesh and its boundary edges are not very short (and the fact that $sqrt1 - r^2$ is not differentiable at the point $r =1$). You can avoid this, e.g., by using a different parameterization:



                    s1 = ParametricPlot3D[0, a, 0 + r Cos[t], Sqrt[1 - r^2], r Sin[t],
                    r, 0, 1, t, -Pi, Pi,
                    Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray,
                    PlotPoints -> 100
                    ]





                    share|improve this answer









                    $endgroup$










                    • 1




                      $begingroup$
                      Or usual parametrization of hemisphere: ParametricPlot3D[0, a, 0 + Sin[f] Cos[t], Cos[f], Sin[f] Sin[t], f,0,Pi/2, t,-Pi,Pi, Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100]
                      $endgroup$
                      – Alx
                      Jul 20 at 1:41






                    • 1




                      $begingroup$
                      Thanks, but the point is to show this specific parametrization; it's for a textbook.
                      $endgroup$
                      – Frunobulax
                      Jul 20 at 8:34















                    3












                    $begingroup$

                    The fringes stem from the fact that the disk is discretized into a triangle mesh and its boundary edges are not very short (and the fact that $sqrt1 - r^2$ is not differentiable at the point $r =1$). You can avoid this, e.g., by using a different parameterization:



                    s1 = ParametricPlot3D[0, a, 0 + r Cos[t], Sqrt[1 - r^2], r Sin[t],
                    r, 0, 1, t, -Pi, Pi,
                    Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray,
                    PlotPoints -> 100
                    ]





                    share|improve this answer









                    $endgroup$










                    • 1




                      $begingroup$
                      Or usual parametrization of hemisphere: ParametricPlot3D[0, a, 0 + Sin[f] Cos[t], Cos[f], Sin[f] Sin[t], f,0,Pi/2, t,-Pi,Pi, Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100]
                      $endgroup$
                      – Alx
                      Jul 20 at 1:41






                    • 1




                      $begingroup$
                      Thanks, but the point is to show this specific parametrization; it's for a textbook.
                      $endgroup$
                      – Frunobulax
                      Jul 20 at 8:34













                    3












                    3








                    3





                    $begingroup$

                    The fringes stem from the fact that the disk is discretized into a triangle mesh and its boundary edges are not very short (and the fact that $sqrt1 - r^2$ is not differentiable at the point $r =1$). You can avoid this, e.g., by using a different parameterization:



                    s1 = ParametricPlot3D[0, a, 0 + r Cos[t], Sqrt[1 - r^2], r Sin[t],
                    r, 0, 1, t, -Pi, Pi,
                    Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray,
                    PlotPoints -> 100
                    ]





                    share|improve this answer









                    $endgroup$



                    The fringes stem from the fact that the disk is discretized into a triangle mesh and its boundary edges are not very short (and the fact that $sqrt1 - r^2$ is not differentiable at the point $r =1$). You can avoid this, e.g., by using a different parameterization:



                    s1 = ParametricPlot3D[0, a, 0 + r Cos[t], Sqrt[1 - r^2], r Sin[t],
                    r, 0, 1, t, -Pi, Pi,
                    Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray,
                    PlotPoints -> 100
                    ]






                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered Jul 20 at 0:34









                    Henrik SchumacherHenrik Schumacher

                    65.9k5 gold badges94 silver badges183 bronze badges




                    65.9k5 gold badges94 silver badges183 bronze badges










                    • 1




                      $begingroup$
                      Or usual parametrization of hemisphere: ParametricPlot3D[0, a, 0 + Sin[f] Cos[t], Cos[f], Sin[f] Sin[t], f,0,Pi/2, t,-Pi,Pi, Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100]
                      $endgroup$
                      – Alx
                      Jul 20 at 1:41






                    • 1




                      $begingroup$
                      Thanks, but the point is to show this specific parametrization; it's for a textbook.
                      $endgroup$
                      – Frunobulax
                      Jul 20 at 8:34












                    • 1




                      $begingroup$
                      Or usual parametrization of hemisphere: ParametricPlot3D[0, a, 0 + Sin[f] Cos[t], Cos[f], Sin[f] Sin[t], f,0,Pi/2, t,-Pi,Pi, Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100]
                      $endgroup$
                      – Alx
                      Jul 20 at 1:41






                    • 1




                      $begingroup$
                      Thanks, but the point is to show this specific parametrization; it's for a textbook.
                      $endgroup$
                      – Frunobulax
                      Jul 20 at 8:34







                    1




                    1




                    $begingroup$
                    Or usual parametrization of hemisphere: ParametricPlot3D[0, a, 0 + Sin[f] Cos[t], Cos[f], Sin[f] Sin[t], f,0,Pi/2, t,-Pi,Pi, Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100]
                    $endgroup$
                    – Alx
                    Jul 20 at 1:41




                    $begingroup$
                    Or usual parametrization of hemisphere: ParametricPlot3D[0, a, 0 + Sin[f] Cos[t], Cos[f], Sin[f] Sin[t], f,0,Pi/2, t,-Pi,Pi, Mesh -> 21, Boxed -> False, Axes -> None, ColorFunction -> myGray, PlotPoints -> 100]
                    $endgroup$
                    – Alx
                    Jul 20 at 1:41




                    1




                    1




                    $begingroup$
                    Thanks, but the point is to show this specific parametrization; it's for a textbook.
                    $endgroup$
                    – Frunobulax
                    Jul 20 at 8:34




                    $begingroup$
                    Thanks, but the point is to show this specific parametrization; it's for a textbook.
                    $endgroup$
                    – Frunobulax
                    Jul 20 at 8:34











                    3












                    $begingroup$

                    ImplicitRegion[] works better than Disk[] (but why?):



                    ParametricPlot3D[2.3, 0, 0 + Sqrt[1 - x^2 - y^2], x, y,
                    x, y ∈ ImplicitRegion[x^2 + y^2 <= 1, x, y], Mesh -> 21,
                    Boxed -> False, Axes -> None, ColorFunction -> (GrayLevel[1] &),
                    PlotPoints -> 100]


                    enter image description here



                    Update:
                    Another approach is to control the discretization of the Disk[], the boundary being the most important element in this problem:



                    disk = BoundaryDiscretizeRegion[Disk[0, 0, 1], MaxCellMeasure -> "Length" -> 0.001];
                    disk = DiscretizeRegion[disk];

                    ParametricPlot3D[0, 2.3, 0 + x, Sqrt[1 - x^2 - y^2], y,
                    x, y ∈ disk, Mesh -> 21, Boxed -> False, Axes -> None,
                    ColorFunction -> (White &), PlotRange -> All]


                    enter image description here






                    share|improve this answer











                    $endgroup$














                    • $begingroup$
                      Thanks. Unfortunately, I can only accept one of the answers... :(
                      $endgroup$
                      – Frunobulax
                      Jul 20 at 14:52






                    • 1




                      $begingroup$
                      @Frunobulax You're welcome, and that's the way it is. I added an alternative method, BTW.
                      $endgroup$
                      – Michael E2
                      Jul 20 at 15:41















                    3












                    $begingroup$

                    ImplicitRegion[] works better than Disk[] (but why?):



                    ParametricPlot3D[2.3, 0, 0 + Sqrt[1 - x^2 - y^2], x, y,
                    x, y ∈ ImplicitRegion[x^2 + y^2 <= 1, x, y], Mesh -> 21,
                    Boxed -> False, Axes -> None, ColorFunction -> (GrayLevel[1] &),
                    PlotPoints -> 100]


                    enter image description here



                    Update:
                    Another approach is to control the discretization of the Disk[], the boundary being the most important element in this problem:



                    disk = BoundaryDiscretizeRegion[Disk[0, 0, 1], MaxCellMeasure -> "Length" -> 0.001];
                    disk = DiscretizeRegion[disk];

                    ParametricPlot3D[0, 2.3, 0 + x, Sqrt[1 - x^2 - y^2], y,
                    x, y ∈ disk, Mesh -> 21, Boxed -> False, Axes -> None,
                    ColorFunction -> (White &), PlotRange -> All]


                    enter image description here






                    share|improve this answer











                    $endgroup$














                    • $begingroup$
                      Thanks. Unfortunately, I can only accept one of the answers... :(
                      $endgroup$
                      – Frunobulax
                      Jul 20 at 14:52






                    • 1




                      $begingroup$
                      @Frunobulax You're welcome, and that's the way it is. I added an alternative method, BTW.
                      $endgroup$
                      – Michael E2
                      Jul 20 at 15:41













                    3












                    3








                    3





                    $begingroup$

                    ImplicitRegion[] works better than Disk[] (but why?):



                    ParametricPlot3D[2.3, 0, 0 + Sqrt[1 - x^2 - y^2], x, y,
                    x, y ∈ ImplicitRegion[x^2 + y^2 <= 1, x, y], Mesh -> 21,
                    Boxed -> False, Axes -> None, ColorFunction -> (GrayLevel[1] &),
                    PlotPoints -> 100]


                    enter image description here



                    Update:
                    Another approach is to control the discretization of the Disk[], the boundary being the most important element in this problem:



                    disk = BoundaryDiscretizeRegion[Disk[0, 0, 1], MaxCellMeasure -> "Length" -> 0.001];
                    disk = DiscretizeRegion[disk];

                    ParametricPlot3D[0, 2.3, 0 + x, Sqrt[1 - x^2 - y^2], y,
                    x, y ∈ disk, Mesh -> 21, Boxed -> False, Axes -> None,
                    ColorFunction -> (White &), PlotRange -> All]


                    enter image description here






                    share|improve this answer











                    $endgroup$



                    ImplicitRegion[] works better than Disk[] (but why?):



                    ParametricPlot3D[2.3, 0, 0 + Sqrt[1 - x^2 - y^2], x, y,
                    x, y ∈ ImplicitRegion[x^2 + y^2 <= 1, x, y], Mesh -> 21,
                    Boxed -> False, Axes -> None, ColorFunction -> (GrayLevel[1] &),
                    PlotPoints -> 100]


                    enter image description here



                    Update:
                    Another approach is to control the discretization of the Disk[], the boundary being the most important element in this problem:



                    disk = BoundaryDiscretizeRegion[Disk[0, 0, 1], MaxCellMeasure -> "Length" -> 0.001];
                    disk = DiscretizeRegion[disk];

                    ParametricPlot3D[0, 2.3, 0 + x, Sqrt[1 - x^2 - y^2], y,
                    x, y ∈ disk, Mesh -> 21, Boxed -> False, Axes -> None,
                    ColorFunction -> (White &), PlotRange -> All]


                    enter image description here







                    share|improve this answer














                    share|improve this answer



                    share|improve this answer








                    edited Jul 20 at 15:40

























                    answered Jul 20 at 2:11









                    Michael E2Michael E2

                    157k13 gold badges215 silver badges509 bronze badges




                    157k13 gold badges215 silver badges509 bronze badges














                    • $begingroup$
                      Thanks. Unfortunately, I can only accept one of the answers... :(
                      $endgroup$
                      – Frunobulax
                      Jul 20 at 14:52






                    • 1




                      $begingroup$
                      @Frunobulax You're welcome, and that's the way it is. I added an alternative method, BTW.
                      $endgroup$
                      – Michael E2
                      Jul 20 at 15:41
















                    • $begingroup$
                      Thanks. Unfortunately, I can only accept one of the answers... :(
                      $endgroup$
                      – Frunobulax
                      Jul 20 at 14:52






                    • 1




                      $begingroup$
                      @Frunobulax You're welcome, and that's the way it is. I added an alternative method, BTW.
                      $endgroup$
                      – Michael E2
                      Jul 20 at 15:41















                    $begingroup$
                    Thanks. Unfortunately, I can only accept one of the answers... :(
                    $endgroup$
                    – Frunobulax
                    Jul 20 at 14:52




                    $begingroup$
                    Thanks. Unfortunately, I can only accept one of the answers... :(
                    $endgroup$
                    – Frunobulax
                    Jul 20 at 14:52




                    1




                    1




                    $begingroup$
                    @Frunobulax You're welcome, and that's the way it is. I added an alternative method, BTW.
                    $endgroup$
                    – Michael E2
                    Jul 20 at 15:41




                    $begingroup$
                    @Frunobulax You're welcome, and that's the way it is. I added an alternative method, BTW.
                    $endgroup$
                    – Michael E2
                    Jul 20 at 15:41

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematica Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f202414%2fhow-to-get-rid-of-fringes-in-3d-plot%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

                    Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation

                    Magento 2 “No Payment Methods” in Admin New OrderHow to integrate Paypal Express Checkout with the Magento APIMagento 1.5 - Sales > Order > edit order and shipping methods disappearAuto Invoice Check/Money Order Payment methodAdd more simple payment methods?Shipping methods not showingWhat should I do to change payment methods if changing the configuration has no effects?1.9 - No Payment Methods showing upMy Payment Methods not Showing for downloadable/virtual product when checkout?Magento2 API to access internal payment methodHow to call an existing payment methods in the registration form?