Example of a continuous function that don't have a continuous extensionExtending a continuous function defined on the rationalsLet $Asubset X$; let $f:Ato Y$ be continuous; let $Y$ be Hausdorff. Is there an example where there is no continuous function for $g$?Continuity of a product of two real valued continuous function.a counter example of extension of a continuous functionInverse of a continuous functionIf $Asubseteqmathbb R$ is closed and $f:Atomathbb R$ is right-continuous, is there a right-continuous extension of $f$ to $mathbb R$?Proving Topological Equivalence without finding a functionA function that can be continuously extended is continuousContinuous Extension of Densely Defined Continuous (but not Uniformly Continuous) Function.A topological space with the Universal Extension Property which is not homeomorphic to a retract of $mathbbR^J$?

Patience, young "Padovan"

How to use Pandas to get the count of every combination inclusive

Can a German sentence have two subjects?

How do I create uniquely male characters?

Download, install and reboot computer at night if needed

What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?

What makes Graph invariants so useful/important?

Closed subgroups of abelian groups

A function which translates a sentence to title-case

Simulate Bitwise Cyclic Tag

Where to refill my bottle in India?

Should I join an office cleaning event for free?

Motorized valve interfering with button?

Does the radius of the Spirit Guardians spell depend on the size of the caster?

Are white and non-white police officers equally likely to kill black suspects?

Is Social Media Science Fiction?

How does one intimidate enemies without having the capacity for violence?

Infinite past with a beginning?

Extreme, but not acceptable situation and I can't start the work tomorrow morning

Can Medicine checks be used, with decent rolls, to completely mitigate the risk of death from ongoing damage?

What is the command to reset a PC without deleting any files

I see my dog run

My colleague's body is amazing

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?



Example of a continuous function that don't have a continuous extension


Extending a continuous function defined on the rationalsLet $Asubset X$; let $f:Ato Y$ be continuous; let $Y$ be Hausdorff. Is there an example where there is no continuous function for $g$?Continuity of a product of two real valued continuous function.a counter example of extension of a continuous functionInverse of a continuous functionIf $Asubseteqmathbb R$ is closed and $f:Atomathbb R$ is right-continuous, is there a right-continuous extension of $f$ to $mathbb R$?Proving Topological Equivalence without finding a functionA function that can be continuously extended is continuousContinuous Extension of Densely Defined Continuous (but not Uniformly Continuous) Function.A topological space with the Universal Extension Property which is not homeomorphic to a retract of $mathbbR^J$?













5












$begingroup$



Give an example of a topological space $(X,tau)$, a subset $Asubset X$ that is dense in $X$ (i.e., $overlineA = X$), and a continuous function $f:AtomathbbR$ that cannot be continually extended to $X$, that is, a $f$ for such do not exist a continuous function $g:Xto mathbbR$ such that $f(x) = g(x)$ for all $xin A$.




I just proved that if $f,g:XtomathbbR$ are continuous and agree in a dense subset $Asubset X$ then they're equal.



I thought in $X=mathbbR$ with usual topology and $A = mathbbR-0 =:mathbbR^* $, so I think $f:mathbbR^*tomathbbR, f(x) = x^-1$ is a continuous function that cannot be continually extended to $mathbbR$. I'm quite sure of this, but I'm stuck in proving it using the definition of continuity in general topological spaces.



Also, I'm quite confused on how this asked example is not a counterexample of what I proved.



Thanks in advance.










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    The open intervals form a basis for topology on the real line. A set is open if and only if it contains an open interval around each of these points. Using this definition of open sets you can show that the two different definitions of continuity are actually the same in this case. So you're example will work. And to show it will work you can show it using the usual definition of continuity you're used to in the real numbers.
    $endgroup$
    – Melody
    yesterday















5












$begingroup$



Give an example of a topological space $(X,tau)$, a subset $Asubset X$ that is dense in $X$ (i.e., $overlineA = X$), and a continuous function $f:AtomathbbR$ that cannot be continually extended to $X$, that is, a $f$ for such do not exist a continuous function $g:Xto mathbbR$ such that $f(x) = g(x)$ for all $xin A$.




I just proved that if $f,g:XtomathbbR$ are continuous and agree in a dense subset $Asubset X$ then they're equal.



I thought in $X=mathbbR$ with usual topology and $A = mathbbR-0 =:mathbbR^* $, so I think $f:mathbbR^*tomathbbR, f(x) = x^-1$ is a continuous function that cannot be continually extended to $mathbbR$. I'm quite sure of this, but I'm stuck in proving it using the definition of continuity in general topological spaces.



Also, I'm quite confused on how this asked example is not a counterexample of what I proved.



Thanks in advance.










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    The open intervals form a basis for topology on the real line. A set is open if and only if it contains an open interval around each of these points. Using this definition of open sets you can show that the two different definitions of continuity are actually the same in this case. So you're example will work. And to show it will work you can show it using the usual definition of continuity you're used to in the real numbers.
    $endgroup$
    – Melody
    yesterday













5












5








5


0



$begingroup$



Give an example of a topological space $(X,tau)$, a subset $Asubset X$ that is dense in $X$ (i.e., $overlineA = X$), and a continuous function $f:AtomathbbR$ that cannot be continually extended to $X$, that is, a $f$ for such do not exist a continuous function $g:Xto mathbbR$ such that $f(x) = g(x)$ for all $xin A$.




I just proved that if $f,g:XtomathbbR$ are continuous and agree in a dense subset $Asubset X$ then they're equal.



I thought in $X=mathbbR$ with usual topology and $A = mathbbR-0 =:mathbbR^* $, so I think $f:mathbbR^*tomathbbR, f(x) = x^-1$ is a continuous function that cannot be continually extended to $mathbbR$. I'm quite sure of this, but I'm stuck in proving it using the definition of continuity in general topological spaces.



Also, I'm quite confused on how this asked example is not a counterexample of what I proved.



Thanks in advance.










share|cite|improve this question









$endgroup$





Give an example of a topological space $(X,tau)$, a subset $Asubset X$ that is dense in $X$ (i.e., $overlineA = X$), and a continuous function $f:AtomathbbR$ that cannot be continually extended to $X$, that is, a $f$ for such do not exist a continuous function $g:Xto mathbbR$ such that $f(x) = g(x)$ for all $xin A$.




I just proved that if $f,g:XtomathbbR$ are continuous and agree in a dense subset $Asubset X$ then they're equal.



I thought in $X=mathbbR$ with usual topology and $A = mathbbR-0 =:mathbbR^* $, so I think $f:mathbbR^*tomathbbR, f(x) = x^-1$ is a continuous function that cannot be continually extended to $mathbbR$. I'm quite sure of this, but I'm stuck in proving it using the definition of continuity in general topological spaces.



Also, I'm quite confused on how this asked example is not a counterexample of what I proved.



Thanks in advance.







general-topology continuity






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked yesterday









AnalyticHarmonyAnalyticHarmony

699313




699313







  • 1




    $begingroup$
    The open intervals form a basis for topology on the real line. A set is open if and only if it contains an open interval around each of these points. Using this definition of open sets you can show that the two different definitions of continuity are actually the same in this case. So you're example will work. And to show it will work you can show it using the usual definition of continuity you're used to in the real numbers.
    $endgroup$
    – Melody
    yesterday












  • 1




    $begingroup$
    The open intervals form a basis for topology on the real line. A set is open if and only if it contains an open interval around each of these points. Using this definition of open sets you can show that the two different definitions of continuity are actually the same in this case. So you're example will work. And to show it will work you can show it using the usual definition of continuity you're used to in the real numbers.
    $endgroup$
    – Melody
    yesterday







1




1




$begingroup$
The open intervals form a basis for topology on the real line. A set is open if and only if it contains an open interval around each of these points. Using this definition of open sets you can show that the two different definitions of continuity are actually the same in this case. So you're example will work. And to show it will work you can show it using the usual definition of continuity you're used to in the real numbers.
$endgroup$
– Melody
yesterday




$begingroup$
The open intervals form a basis for topology on the real line. A set is open if and only if it contains an open interval around each of these points. Using this definition of open sets you can show that the two different definitions of continuity are actually the same in this case. So you're example will work. And to show it will work you can show it using the usual definition of continuity you're used to in the real numbers.
$endgroup$
– Melody
yesterday










3 Answers
3






active

oldest

votes


















4












$begingroup$

Define $f(x)=1/x$ like you did, and assume you can find a continuous extension $g : mathbbRtomathbbR$. Well this $g $ takes a real numbered value at $0$, namely $-infty < g (0) < infty $, and it agrees with $f $ at non-zero values.



One definition of continuity is that given a net of points in $X $ converging to $x_0$ and a function $g $, then the images converge to $g(x_0) $. Since $mathbbR$ is a metric space, we can use sequences instead of nets. But given a sequence of real numbers $(x_n )_n=1^infty $ converging to $0$, the sequence $(g (x_n))_n=1^infty $ converges to either positive or negative $infty $. So it does not converge to $g (0) $. So $g $ is not continuous




BTW regarding your question on the results you proved. You proved a result about two functions that were continuous on the entire space, who agree on a dense subset. But the main question of your post is regarding a function who is not assumed to be continuous on the entire space, and comparing it to one that is continuous on the entire space. So the main example is not countering your original result






share|cite|improve this answer











$endgroup$




















    2












    $begingroup$

    Using sequences is the easiest way to go, but for a more "topological" proof, to show that no extension of $f$ is continuous at $x=0,$ we suppose there is one (we still call it $f$ for convenience), and we show that there is an $epsilon>0$ so that for any $delta >0$, there is an $xin (-delta,delta$), such that$f(x)>f(0)+epsilon$ (or that $f(x)<f(0)-epsilon$). Let's do the former.



    Now, drawing a picture will make the following obvious:



    Take $epsilon=1.$ Then, if $f(0)+1le 0$, then $textany xin (0,delta)$ will do because $f(x)=1/x>0.$



    If $f(0)+1> 0$, all we need do is choose $x$ small enough so that $f(x)=1/x>f(0)+1,$ which is to say, choose $x<mindelta, frac1f(0)+1$






    share|cite|improve this answer









    $endgroup$




















      2












      $begingroup$

      Another reason: continuous in the whole line implies locally bounded near every point.



      And another counterexample based in a different idea: $Bbb Q$ is dense in $Bbb R$ with the usual topology. The function
      $$f:Bbb QlongrightarrowBbb R$$
      $$
      f(x) =
      begincases
      0:& x < sqrt2,\
      1:& x > sqrt2,
      endcases
      $$

      is continuous (check it) and can't be extended continuously to $Bbb R$.






      share|cite|improve this answer











      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177651%2fexample-of-a-continuous-function-that-dont-have-a-continuous-extension%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        4












        $begingroup$

        Define $f(x)=1/x$ like you did, and assume you can find a continuous extension $g : mathbbRtomathbbR$. Well this $g $ takes a real numbered value at $0$, namely $-infty < g (0) < infty $, and it agrees with $f $ at non-zero values.



        One definition of continuity is that given a net of points in $X $ converging to $x_0$ and a function $g $, then the images converge to $g(x_0) $. Since $mathbbR$ is a metric space, we can use sequences instead of nets. But given a sequence of real numbers $(x_n )_n=1^infty $ converging to $0$, the sequence $(g (x_n))_n=1^infty $ converges to either positive or negative $infty $. So it does not converge to $g (0) $. So $g $ is not continuous




        BTW regarding your question on the results you proved. You proved a result about two functions that were continuous on the entire space, who agree on a dense subset. But the main question of your post is regarding a function who is not assumed to be continuous on the entire space, and comparing it to one that is continuous on the entire space. So the main example is not countering your original result






        share|cite|improve this answer











        $endgroup$

















          4












          $begingroup$

          Define $f(x)=1/x$ like you did, and assume you can find a continuous extension $g : mathbbRtomathbbR$. Well this $g $ takes a real numbered value at $0$, namely $-infty < g (0) < infty $, and it agrees with $f $ at non-zero values.



          One definition of continuity is that given a net of points in $X $ converging to $x_0$ and a function $g $, then the images converge to $g(x_0) $. Since $mathbbR$ is a metric space, we can use sequences instead of nets. But given a sequence of real numbers $(x_n )_n=1^infty $ converging to $0$, the sequence $(g (x_n))_n=1^infty $ converges to either positive or negative $infty $. So it does not converge to $g (0) $. So $g $ is not continuous




          BTW regarding your question on the results you proved. You proved a result about two functions that were continuous on the entire space, who agree on a dense subset. But the main question of your post is regarding a function who is not assumed to be continuous on the entire space, and comparing it to one that is continuous on the entire space. So the main example is not countering your original result






          share|cite|improve this answer











          $endgroup$















            4












            4








            4





            $begingroup$

            Define $f(x)=1/x$ like you did, and assume you can find a continuous extension $g : mathbbRtomathbbR$. Well this $g $ takes a real numbered value at $0$, namely $-infty < g (0) < infty $, and it agrees with $f $ at non-zero values.



            One definition of continuity is that given a net of points in $X $ converging to $x_0$ and a function $g $, then the images converge to $g(x_0) $. Since $mathbbR$ is a metric space, we can use sequences instead of nets. But given a sequence of real numbers $(x_n )_n=1^infty $ converging to $0$, the sequence $(g (x_n))_n=1^infty $ converges to either positive or negative $infty $. So it does not converge to $g (0) $. So $g $ is not continuous




            BTW regarding your question on the results you proved. You proved a result about two functions that were continuous on the entire space, who agree on a dense subset. But the main question of your post is regarding a function who is not assumed to be continuous on the entire space, and comparing it to one that is continuous on the entire space. So the main example is not countering your original result






            share|cite|improve this answer











            $endgroup$



            Define $f(x)=1/x$ like you did, and assume you can find a continuous extension $g : mathbbRtomathbbR$. Well this $g $ takes a real numbered value at $0$, namely $-infty < g (0) < infty $, and it agrees with $f $ at non-zero values.



            One definition of continuity is that given a net of points in $X $ converging to $x_0$ and a function $g $, then the images converge to $g(x_0) $. Since $mathbbR$ is a metric space, we can use sequences instead of nets. But given a sequence of real numbers $(x_n )_n=1^infty $ converging to $0$, the sequence $(g (x_n))_n=1^infty $ converges to either positive or negative $infty $. So it does not converge to $g (0) $. So $g $ is not continuous




            BTW regarding your question on the results you proved. You proved a result about two functions that were continuous on the entire space, who agree on a dense subset. But the main question of your post is regarding a function who is not assumed to be continuous on the entire space, and comparing it to one that is continuous on the entire space. So the main example is not countering your original result







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited yesterday

























            answered yesterday









            NazimJNazimJ

            79019




            79019





















                2












                $begingroup$

                Using sequences is the easiest way to go, but for a more "topological" proof, to show that no extension of $f$ is continuous at $x=0,$ we suppose there is one (we still call it $f$ for convenience), and we show that there is an $epsilon>0$ so that for any $delta >0$, there is an $xin (-delta,delta$), such that$f(x)>f(0)+epsilon$ (or that $f(x)<f(0)-epsilon$). Let's do the former.



                Now, drawing a picture will make the following obvious:



                Take $epsilon=1.$ Then, if $f(0)+1le 0$, then $textany xin (0,delta)$ will do because $f(x)=1/x>0.$



                If $f(0)+1> 0$, all we need do is choose $x$ small enough so that $f(x)=1/x>f(0)+1,$ which is to say, choose $x<mindelta, frac1f(0)+1$






                share|cite|improve this answer









                $endgroup$

















                  2












                  $begingroup$

                  Using sequences is the easiest way to go, but for a more "topological" proof, to show that no extension of $f$ is continuous at $x=0,$ we suppose there is one (we still call it $f$ for convenience), and we show that there is an $epsilon>0$ so that for any $delta >0$, there is an $xin (-delta,delta$), such that$f(x)>f(0)+epsilon$ (or that $f(x)<f(0)-epsilon$). Let's do the former.



                  Now, drawing a picture will make the following obvious:



                  Take $epsilon=1.$ Then, if $f(0)+1le 0$, then $textany xin (0,delta)$ will do because $f(x)=1/x>0.$



                  If $f(0)+1> 0$, all we need do is choose $x$ small enough so that $f(x)=1/x>f(0)+1,$ which is to say, choose $x<mindelta, frac1f(0)+1$






                  share|cite|improve this answer









                  $endgroup$















                    2












                    2








                    2





                    $begingroup$

                    Using sequences is the easiest way to go, but for a more "topological" proof, to show that no extension of $f$ is continuous at $x=0,$ we suppose there is one (we still call it $f$ for convenience), and we show that there is an $epsilon>0$ so that for any $delta >0$, there is an $xin (-delta,delta$), such that$f(x)>f(0)+epsilon$ (or that $f(x)<f(0)-epsilon$). Let's do the former.



                    Now, drawing a picture will make the following obvious:



                    Take $epsilon=1.$ Then, if $f(0)+1le 0$, then $textany xin (0,delta)$ will do because $f(x)=1/x>0.$



                    If $f(0)+1> 0$, all we need do is choose $x$ small enough so that $f(x)=1/x>f(0)+1,$ which is to say, choose $x<mindelta, frac1f(0)+1$






                    share|cite|improve this answer









                    $endgroup$



                    Using sequences is the easiest way to go, but for a more "topological" proof, to show that no extension of $f$ is continuous at $x=0,$ we suppose there is one (we still call it $f$ for convenience), and we show that there is an $epsilon>0$ so that for any $delta >0$, there is an $xin (-delta,delta$), such that$f(x)>f(0)+epsilon$ (or that $f(x)<f(0)-epsilon$). Let's do the former.



                    Now, drawing a picture will make the following obvious:



                    Take $epsilon=1.$ Then, if $f(0)+1le 0$, then $textany xin (0,delta)$ will do because $f(x)=1/x>0.$



                    If $f(0)+1> 0$, all we need do is choose $x$ small enough so that $f(x)=1/x>f(0)+1,$ which is to say, choose $x<mindelta, frac1f(0)+1$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered yesterday









                    MatematletaMatematleta

                    12.1k21020




                    12.1k21020





















                        2












                        $begingroup$

                        Another reason: continuous in the whole line implies locally bounded near every point.



                        And another counterexample based in a different idea: $Bbb Q$ is dense in $Bbb R$ with the usual topology. The function
                        $$f:Bbb QlongrightarrowBbb R$$
                        $$
                        f(x) =
                        begincases
                        0:& x < sqrt2,\
                        1:& x > sqrt2,
                        endcases
                        $$

                        is continuous (check it) and can't be extended continuously to $Bbb R$.






                        share|cite|improve this answer











                        $endgroup$

















                          2












                          $begingroup$

                          Another reason: continuous in the whole line implies locally bounded near every point.



                          And another counterexample based in a different idea: $Bbb Q$ is dense in $Bbb R$ with the usual topology. The function
                          $$f:Bbb QlongrightarrowBbb R$$
                          $$
                          f(x) =
                          begincases
                          0:& x < sqrt2,\
                          1:& x > sqrt2,
                          endcases
                          $$

                          is continuous (check it) and can't be extended continuously to $Bbb R$.






                          share|cite|improve this answer











                          $endgroup$















                            2












                            2








                            2





                            $begingroup$

                            Another reason: continuous in the whole line implies locally bounded near every point.



                            And another counterexample based in a different idea: $Bbb Q$ is dense in $Bbb R$ with the usual topology. The function
                            $$f:Bbb QlongrightarrowBbb R$$
                            $$
                            f(x) =
                            begincases
                            0:& x < sqrt2,\
                            1:& x > sqrt2,
                            endcases
                            $$

                            is continuous (check it) and can't be extended continuously to $Bbb R$.






                            share|cite|improve this answer











                            $endgroup$



                            Another reason: continuous in the whole line implies locally bounded near every point.



                            And another counterexample based in a different idea: $Bbb Q$ is dense in $Bbb R$ with the usual topology. The function
                            $$f:Bbb QlongrightarrowBbb R$$
                            $$
                            f(x) =
                            begincases
                            0:& x < sqrt2,\
                            1:& x > sqrt2,
                            endcases
                            $$

                            is continuous (check it) and can't be extended continuously to $Bbb R$.







                            share|cite|improve this answer














                            share|cite|improve this answer



                            share|cite|improve this answer








                            edited 22 hours ago

























                            answered yesterday









                            Martín-Blas Pérez PinillaMartín-Blas Pérez Pinilla

                            35.4k42972




                            35.4k42972



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3177651%2fexample-of-a-continuous-function-that-dont-have-a-continuous-extension%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

                                Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation

                                Magento 2 “No Payment Methods” in Admin New OrderHow to integrate Paypal Express Checkout with the Magento APIMagento 1.5 - Sales > Order > edit order and shipping methods disappearAuto Invoice Check/Money Order Payment methodAdd more simple payment methods?Shipping methods not showingWhat should I do to change payment methods if changing the configuration has no effects?1.9 - No Payment Methods showing upMy Payment Methods not Showing for downloadable/virtual product when checkout?Magento2 API to access internal payment methodHow to call an existing payment methods in the registration form?