Prove that NP is closed under karp reduction?Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?
Is it possible to make sharp wind that can cut stuff from afar?
Why Is Death Allowed In the Matrix?
Can I make popcorn with any corn?
Why CLRS example on residual networks does not follows its formula?
DOS, create pipe for stdin/stdout of command.com(or 4dos.com) in C or Batch?
My colleague's body is amazing
Why has Russell's definition of numbers using equivalence classes been finally abandoned? ( If it has actually been abandoned).
The use of multiple foreign keys on same column in SQL Server
What would happen to a modern skyscraper if it rains micro blackholes?
Japan - Plan around max visa duration
Example of a relative pronoun
How to make payment on the internet without leaving a money trail?
Can town administrative "code" overule state laws like those forbidding trespassing?
Banach space and Hilbert space topology
How can the DM most effectively choose 1 out of an odd number of players to be targeted by an attack or effect?
How to report a triplet of septets in NMR tabulation?
How can bays and straits be determined in a procedurally generated map?
Simulate Bitwise Cyclic Tag
How old can references or sources in a thesis be?
What defenses are there against being summoned by the Gate spell?
What are these boxed doors outside store fronts in New York?
Non-Jewish family in an Orthodox Jewish Wedding
least quadratic residue under GRH: an EXPLICIT bound
Can a German sentence have two subjects?
Prove that NP is closed under karp reduction?
Space(n) not closed under Karp reductions - what about NTime(n)?Class P is closed under rotation?Prove or disprove that $NL$ is closed under polynomial many-one reductions$mathbfNC_2$ is closed under log-space reductionOn Karp reductionwhen can I know if a class (complexity) is closed under reduction (cook/karp)Check if class $PSPACE$ is closed under polyonomially space reductionIs NPSPACE also closed under polynomial-time reduction and under log-space reduction?Prove PSPACE is closed under complement?Prove PSPACE is closed under union?
$begingroup$
A complexity class $mathbbC$ is said to be closed under a reduction if:
$A$ reduces to $B$ and $B in mathbbC$ $implies$ $A in mathbbC$
How would you go about proving this if $mathbbC = NP$ and the reduction to be the karp reduction? i.e.
Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$
complexity-theory
New contributor
$endgroup$
add a comment |
$begingroup$
A complexity class $mathbbC$ is said to be closed under a reduction if:
$A$ reduces to $B$ and $B in mathbbC$ $implies$ $A in mathbbC$
How would you go about proving this if $mathbbC = NP$ and the reduction to be the karp reduction? i.e.
Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$
complexity-theory
New contributor
$endgroup$
3
$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
yesterday
add a comment |
$begingroup$
A complexity class $mathbbC$ is said to be closed under a reduction if:
$A$ reduces to $B$ and $B in mathbbC$ $implies$ $A in mathbbC$
How would you go about proving this if $mathbbC = NP$ and the reduction to be the karp reduction? i.e.
Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$
complexity-theory
New contributor
$endgroup$
A complexity class $mathbbC$ is said to be closed under a reduction if:
$A$ reduces to $B$ and $B in mathbbC$ $implies$ $A in mathbbC$
How would you go about proving this if $mathbbC = NP$ and the reduction to be the karp reduction? i.e.
Prove that if $A$ karp reduces to $B$ and $B in NP$ $implies$ $A in NP$
complexity-theory
complexity-theory
New contributor
New contributor
New contributor
asked yesterday
Ankit BahlAnkit Bahl
814
814
New contributor
New contributor
3
$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
yesterday
add a comment |
3
$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
yesterday
3
3
$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
yesterday
$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
yesterday
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I was able to figure it out. In case anyone was wondering:
$B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.
$A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),
Therefore, an algorithm for $A$ can be made as follows:
$A (i)$
- Take input $i$ and apply $m$ to yield $m(i)$
- Apply $b$ with input $m(i)$
This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.
New contributor
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "419"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106574%2fprove-that-np-is-closed-under-karp-reduction%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I was able to figure it out. In case anyone was wondering:
$B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.
$A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),
Therefore, an algorithm for $A$ can be made as follows:
$A (i)$
- Take input $i$ and apply $m$ to yield $m(i)$
- Apply $b$ with input $m(i)$
This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.
New contributor
$endgroup$
add a comment |
$begingroup$
I was able to figure it out. In case anyone was wondering:
$B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.
$A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),
Therefore, an algorithm for $A$ can be made as follows:
$A (i)$
- Take input $i$ and apply $m$ to yield $m(i)$
- Apply $b$ with input $m(i)$
This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.
New contributor
$endgroup$
add a comment |
$begingroup$
I was able to figure it out. In case anyone was wondering:
$B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.
$A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),
Therefore, an algorithm for $A$ can be made as follows:
$A (i)$
- Take input $i$ and apply $m$ to yield $m(i)$
- Apply $b$ with input $m(i)$
This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.
New contributor
$endgroup$
I was able to figure it out. In case anyone was wondering:
$B in NP$ means that there exists a non-deterministic polynomial time algorithm for $B$. Let's call that $b(i)$, where $i$ is the input to $B$.
$A$ karp reducing to $B implies$ that there exists a function $m$ such that $m$ can take an input $i$ to $A$ and map it to some input $m(i)$ for $B$, and if an instance of $i$ is true for $A$ then $m(i)$ is true for B (and same for false case),
Therefore, an algorithm for $A$ can be made as follows:
$A (i)$
- Take input $i$ and apply $m$ to yield $m(i)$
- Apply $b$ with input $m(i)$
This yields an output for $A$. Since both $m$ and $b$ are non-deterministic polynomial time, this algorithm is non-deterministic polynomial time. Therefore $A$ must be in NP.
New contributor
edited 5 hours ago
New contributor
answered yesterday
Ankit BahlAnkit Bahl
814
814
New contributor
New contributor
add a comment |
add a comment |
Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.
Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.
Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.
Ankit Bahl is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Computer Science Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f106574%2fprove-that-np-is-closed-under-karp-reduction%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
3
$begingroup$
Try using the definitions.
$endgroup$
– Yuval Filmus
yesterday
$begingroup$
@YuvalFilmus thanks for the advice, this helped me figure it out!
$endgroup$
– Ankit Bahl
yesterday