Problem of parity - Can we draw a closed path made up of 20 line segments… [on hold]What am I getting for Christmas? Secret Santa and Graph theoryReturn of the lost ant 3DVariation of the opaque forest problem (a.k.a farmyard problem)A closed path is made up of 11 line segments. Can one line, not containing a vertex of the path, intersect each of its segments?Connecting $1997$ points in the plane- what am I missing?How many paths are there from point P to point Q if each step has to go closer to point Q.A problem involving divisibility , parity and extremely clever thinkingHow to go out from a circular forest if we are lost? Not the straight line?Does finding the line of tightest packing in a packing problem help?Cover the plane with closed disks

What are these boxed doors outside store fronts in New York?

How do you conduct xenoanthropology after first contact?

N.B. ligature in Latex

Extreme, but not acceptable situation and I can't start the work tomorrow morning

Non-Jewish family in an Orthodox Jewish Wedding

How does one intimidate enemies without having the capacity for violence?

What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?

A newer friend of my brother's gave him a load of baseball cards that are supposedly extremely valuable. Is this a scam?

Prevent a directory in /tmp from being deleted

What would happen to a modern skyscraper if it rains micro blackholes?

Can town administrative "code" overule state laws like those forbidding trespassing?

Is Social Media Science Fiction?

Infinite past with a beginning?

Why is "Reports" in sentence down without "The"

Calculus Optimization - Point on graph closest to given point

Closed subgroups of abelian groups

How old can references or sources in a thesis be?

Is it possible to make sharp wind that can cut stuff from afar?

How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)

Why did the Germans forbid the possession of pet pigeons in Rostov-on-Don in 1941?

Why don't electron-positron collisions release infinite energy?

Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)

"which" command doesn't work / path of Safari?

Can you lasso down a wizard who is using the Levitate spell?



Problem of parity - Can we draw a closed path made up of 20 line segments… [on hold]


What am I getting for Christmas? Secret Santa and Graph theoryReturn of the lost ant 3DVariation of the opaque forest problem (a.k.a farmyard problem)A closed path is made up of 11 line segments. Can one line, not containing a vertex of the path, intersect each of its segments?Connecting $1997$ points in the plane- what am I missing?How many paths are there from point P to point Q if each step has to go closer to point Q.A problem involving divisibility , parity and extremely clever thinkingHow to go out from a circular forest if we are lost? Not the straight line?Does finding the line of tightest packing in a packing problem help?Cover the plane with closed disks













3












$begingroup$


Can we draw a closed path made up of 20 line segments, each of which intersects exactly one of the other segments?










share|cite|improve this question







New contributor




Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$



put on hold as off-topic by José Carlos Santos, Javi, user21820, Xander Henderson, RRL 11 hours ago


This question appears to be off-topic. The users who voted to close gave this specific reason:


  • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Javi, user21820, Xander Henderson, RRL
If this question can be reworded to fit the rules in the help center, please edit the question.




















    3












    $begingroup$


    Can we draw a closed path made up of 20 line segments, each of which intersects exactly one of the other segments?










    share|cite|improve this question







    New contributor




    Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$



    put on hold as off-topic by José Carlos Santos, Javi, user21820, Xander Henderson, RRL 11 hours ago


    This question appears to be off-topic. The users who voted to close gave this specific reason:


    • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Javi, user21820, Xander Henderson, RRL
    If this question can be reworded to fit the rules in the help center, please edit the question.


















      3












      3








      3


      1



      $begingroup$


      Can we draw a closed path made up of 20 line segments, each of which intersects exactly one of the other segments?










      share|cite|improve this question







      New contributor




      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Can we draw a closed path made up of 20 line segments, each of which intersects exactly one of the other segments?







      recreational-mathematics parity






      share|cite|improve this question







      New contributor




      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked yesterday









      Luiz FariasLuiz Farias

      282




      282




      New contributor




      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Luiz Farias is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




      put on hold as off-topic by José Carlos Santos, Javi, user21820, Xander Henderson, RRL 11 hours ago


      This question appears to be off-topic. The users who voted to close gave this specific reason:


      • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Javi, user21820, Xander Henderson, RRL
      If this question can be reworded to fit the rules in the help center, please edit the question.







      put on hold as off-topic by José Carlos Santos, Javi, user21820, Xander Henderson, RRL 11 hours ago


      This question appears to be off-topic. The users who voted to close gave this specific reason:


      • "This question is missing context or other details: Please provide additional context, which ideally explains why the question is relevant to you and our community. Some forms of context include: background and motivation, relevant definitions, source, possible strategies, your current progress, why the question is interesting or important, etc." – José Carlos Santos, Javi, user21820, Xander Henderson, RRL
      If this question can be reworded to fit the rules in the help center, please edit the question.




















          3 Answers
          3






          active

          oldest

          votes


















          9












          $begingroup$

          David G. Stork's example with $18$ points and edges can easily be changed into an example with $10$ points and edges based on a pentagon inside another pentagon with alternating links. So take two of those $10$ solutions, one inside the other, and then join them appropriately to get something like this with $20$ points and edges.



          enter image description here






          share|cite|improve this answer











          $endgroup$








          • 2




            $begingroup$
            Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
            $endgroup$
            – John Hughes
            yesterday






          • 1




            $begingroup$
            Bravo! (+1).... the key seems to be reversing chirality.
            $endgroup$
            – David G. Stork
            yesterday











          • $begingroup$
            It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
            $endgroup$
            – Henry
            yesterday










          • $begingroup$
            @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
            $endgroup$
            – David G. Stork
            yesterday











          • $begingroup$
            @DavidG.Stork - I am afraid no as I do not do Mathematica. But the answer should be realtively simple: if $k$ is odd (and at least $3$) use your solution, while if $k$ is even (and at least $6$) then split it into two odd numbers (each at least $3$) and use your solution on each, finally adjusting to join them. This means I do not have a solution for $k=4$, i.e. for $n=8$
            $endgroup$
            – Henry
            yesterday


















          5












          $begingroup$

          (I assume there can be no crossings at vertices or corners.)



          Here is one solution for $18$ (and @Henry, below, generalizes to $20$):



          enter image description here



          Since each segment is crossed by exactly one other segment, we can think of the problem as having 10 Xs that have to be linked without crossing.






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Indeed - you seem to use $9$ being odd, though $10$ is not
            $endgroup$
            – Henry
            yesterday


















          2












          $begingroup$

          You can certainly do it if your drawing is on a torus: draw a decagon that goes "through the hole"; then draw a zigzag (like the one in your picture) that crosses each edge of the decagon once. The two ends of the zigzag will end up on opposite "sides" of the original decagon, but can be joined "around the back". By converting the situation to one involving a "square donut" (akin to this one) you can probably do this all with straight lines, although that may be easier if the cross-section is a pentagon rather than a square...






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
            $endgroup$
            – David G. Stork
            yesterday










          • $begingroup$
            You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
            $endgroup$
            – John Hughes
            yesterday

















          3 Answers
          3






          active

          oldest

          votes








          3 Answers
          3






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          9












          $begingroup$

          David G. Stork's example with $18$ points and edges can easily be changed into an example with $10$ points and edges based on a pentagon inside another pentagon with alternating links. So take two of those $10$ solutions, one inside the other, and then join them appropriately to get something like this with $20$ points and edges.



          enter image description here






          share|cite|improve this answer











          $endgroup$








          • 2




            $begingroup$
            Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
            $endgroup$
            – John Hughes
            yesterday






          • 1




            $begingroup$
            Bravo! (+1).... the key seems to be reversing chirality.
            $endgroup$
            – David G. Stork
            yesterday











          • $begingroup$
            It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
            $endgroup$
            – Henry
            yesterday










          • $begingroup$
            @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
            $endgroup$
            – David G. Stork
            yesterday











          • $begingroup$
            @DavidG.Stork - I am afraid no as I do not do Mathematica. But the answer should be realtively simple: if $k$ is odd (and at least $3$) use your solution, while if $k$ is even (and at least $6$) then split it into two odd numbers (each at least $3$) and use your solution on each, finally adjusting to join them. This means I do not have a solution for $k=4$, i.e. for $n=8$
            $endgroup$
            – Henry
            yesterday















          9












          $begingroup$

          David G. Stork's example with $18$ points and edges can easily be changed into an example with $10$ points and edges based on a pentagon inside another pentagon with alternating links. So take two of those $10$ solutions, one inside the other, and then join them appropriately to get something like this with $20$ points and edges.



          enter image description here






          share|cite|improve this answer











          $endgroup$








          • 2




            $begingroup$
            Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
            $endgroup$
            – John Hughes
            yesterday






          • 1




            $begingroup$
            Bravo! (+1).... the key seems to be reversing chirality.
            $endgroup$
            – David G. Stork
            yesterday











          • $begingroup$
            It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
            $endgroup$
            – Henry
            yesterday










          • $begingroup$
            @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
            $endgroup$
            – David G. Stork
            yesterday











          • $begingroup$
            @DavidG.Stork - I am afraid no as I do not do Mathematica. But the answer should be realtively simple: if $k$ is odd (and at least $3$) use your solution, while if $k$ is even (and at least $6$) then split it into two odd numbers (each at least $3$) and use your solution on each, finally adjusting to join them. This means I do not have a solution for $k=4$, i.e. for $n=8$
            $endgroup$
            – Henry
            yesterday













          9












          9








          9





          $begingroup$

          David G. Stork's example with $18$ points and edges can easily be changed into an example with $10$ points and edges based on a pentagon inside another pentagon with alternating links. So take two of those $10$ solutions, one inside the other, and then join them appropriately to get something like this with $20$ points and edges.



          enter image description here






          share|cite|improve this answer











          $endgroup$



          David G. Stork's example with $18$ points and edges can easily be changed into an example with $10$ points and edges based on a pentagon inside another pentagon with alternating links. So take two of those $10$ solutions, one inside the other, and then join them appropriately to get something like this with $20$ points and edges.



          enter image description here







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited yesterday

























          answered yesterday









          HenryHenry

          101k482170




          101k482170







          • 2




            $begingroup$
            Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
            $endgroup$
            – John Hughes
            yesterday






          • 1




            $begingroup$
            Bravo! (+1).... the key seems to be reversing chirality.
            $endgroup$
            – David G. Stork
            yesterday











          • $begingroup$
            It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
            $endgroup$
            – Henry
            yesterday










          • $begingroup$
            @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
            $endgroup$
            – David G. Stork
            yesterday











          • $begingroup$
            @DavidG.Stork - I am afraid no as I do not do Mathematica. But the answer should be realtively simple: if $k$ is odd (and at least $3$) use your solution, while if $k$ is even (and at least $6$) then split it into two odd numbers (each at least $3$) and use your solution on each, finally adjusting to join them. This means I do not have a solution for $k=4$, i.e. for $n=8$
            $endgroup$
            – Henry
            yesterday












          • 2




            $begingroup$
            Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
            $endgroup$
            – John Hughes
            yesterday






          • 1




            $begingroup$
            Bravo! (+1).... the key seems to be reversing chirality.
            $endgroup$
            – David G. Stork
            yesterday











          • $begingroup$
            It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
            $endgroup$
            – Henry
            yesterday










          • $begingroup$
            @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
            $endgroup$
            – David G. Stork
            yesterday











          • $begingroup$
            @DavidG.Stork - I am afraid no as I do not do Mathematica. But the answer should be realtively simple: if $k$ is odd (and at least $3$) use your solution, while if $k$ is even (and at least $6$) then split it into two odd numbers (each at least $3$) and use your solution on each, finally adjusting to join them. This means I do not have a solution for $k=4$, i.e. for $n=8$
            $endgroup$
            – Henry
            yesterday







          2




          2




          $begingroup$
          Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
          $endgroup$
          – John Hughes
          yesterday




          $begingroup$
          Interesting that it has to "reverse direction"; I wonder if there's a winding-number argument to show something like this must be true...but I'm too groggy to work one out.
          $endgroup$
          – John Hughes
          yesterday




          1




          1




          $begingroup$
          Bravo! (+1).... the key seems to be reversing chirality.
          $endgroup$
          – David G. Stork
          yesterday





          $begingroup$
          Bravo! (+1).... the key seems to be reversing chirality.
          $endgroup$
          – David G. Stork
          yesterday













          $begingroup$
          It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
          $endgroup$
          – Henry
          yesterday




          $begingroup$
          It would be similarly possible to combine $6$ and $14$ solutions, and to have the sub-solutions next to each other rather than one inside the other
          $endgroup$
          – Henry
          yesterday












          $begingroup$
          @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
          $endgroup$
          – David G. Stork
          yesterday





          $begingroup$
          @Henry: Can you write code (Mathematica?) to generate a solution given $n = 2k$? That would be incredible. (I wrote code for my $n = 18$ "solution.")
          $endgroup$
          – David G. Stork
          yesterday













          $begingroup$
          @DavidG.Stork - I am afraid no as I do not do Mathematica. But the answer should be realtively simple: if $k$ is odd (and at least $3$) use your solution, while if $k$ is even (and at least $6$) then split it into two odd numbers (each at least $3$) and use your solution on each, finally adjusting to join them. This means I do not have a solution for $k=4$, i.e. for $n=8$
          $endgroup$
          – Henry
          yesterday




          $begingroup$
          @DavidG.Stork - I am afraid no as I do not do Mathematica. But the answer should be realtively simple: if $k$ is odd (and at least $3$) use your solution, while if $k$ is even (and at least $6$) then split it into two odd numbers (each at least $3$) and use your solution on each, finally adjusting to join them. This means I do not have a solution for $k=4$, i.e. for $n=8$
          $endgroup$
          – Henry
          yesterday











          5












          $begingroup$

          (I assume there can be no crossings at vertices or corners.)



          Here is one solution for $18$ (and @Henry, below, generalizes to $20$):



          enter image description here



          Since each segment is crossed by exactly one other segment, we can think of the problem as having 10 Xs that have to be linked without crossing.






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Indeed - you seem to use $9$ being odd, though $10$ is not
            $endgroup$
            – Henry
            yesterday















          5












          $begingroup$

          (I assume there can be no crossings at vertices or corners.)



          Here is one solution for $18$ (and @Henry, below, generalizes to $20$):



          enter image description here



          Since each segment is crossed by exactly one other segment, we can think of the problem as having 10 Xs that have to be linked without crossing.






          share|cite|improve this answer











          $endgroup$








          • 1




            $begingroup$
            Indeed - you seem to use $9$ being odd, though $10$ is not
            $endgroup$
            – Henry
            yesterday













          5












          5








          5





          $begingroup$

          (I assume there can be no crossings at vertices or corners.)



          Here is one solution for $18$ (and @Henry, below, generalizes to $20$):



          enter image description here



          Since each segment is crossed by exactly one other segment, we can think of the problem as having 10 Xs that have to be linked without crossing.






          share|cite|improve this answer











          $endgroup$



          (I assume there can be no crossings at vertices or corners.)



          Here is one solution for $18$ (and @Henry, below, generalizes to $20$):



          enter image description here



          Since each segment is crossed by exactly one other segment, we can think of the problem as having 10 Xs that have to be linked without crossing.







          share|cite|improve this answer














          share|cite|improve this answer



          share|cite|improve this answer








          edited yesterday

























          answered yesterday









          David G. StorkDavid G. Stork

          12k41735




          12k41735







          • 1




            $begingroup$
            Indeed - you seem to use $9$ being odd, though $10$ is not
            $endgroup$
            – Henry
            yesterday












          • 1




            $begingroup$
            Indeed - you seem to use $9$ being odd, though $10$ is not
            $endgroup$
            – Henry
            yesterday







          1




          1




          $begingroup$
          Indeed - you seem to use $9$ being odd, though $10$ is not
          $endgroup$
          – Henry
          yesterday




          $begingroup$
          Indeed - you seem to use $9$ being odd, though $10$ is not
          $endgroup$
          – Henry
          yesterday











          2












          $begingroup$

          You can certainly do it if your drawing is on a torus: draw a decagon that goes "through the hole"; then draw a zigzag (like the one in your picture) that crosses each edge of the decagon once. The two ends of the zigzag will end up on opposite "sides" of the original decagon, but can be joined "around the back". By converting the situation to one involving a "square donut" (akin to this one) you can probably do this all with straight lines, although that may be easier if the cross-section is a pentagon rather than a square...






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
            $endgroup$
            – David G. Stork
            yesterday










          • $begingroup$
            You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
            $endgroup$
            – John Hughes
            yesterday















          2












          $begingroup$

          You can certainly do it if your drawing is on a torus: draw a decagon that goes "through the hole"; then draw a zigzag (like the one in your picture) that crosses each edge of the decagon once. The two ends of the zigzag will end up on opposite "sides" of the original decagon, but can be joined "around the back". By converting the situation to one involving a "square donut" (akin to this one) you can probably do this all with straight lines, although that may be easier if the cross-section is a pentagon rather than a square...






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
            $endgroup$
            – David G. Stork
            yesterday










          • $begingroup$
            You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
            $endgroup$
            – John Hughes
            yesterday













          2












          2








          2





          $begingroup$

          You can certainly do it if your drawing is on a torus: draw a decagon that goes "through the hole"; then draw a zigzag (like the one in your picture) that crosses each edge of the decagon once. The two ends of the zigzag will end up on opposite "sides" of the original decagon, but can be joined "around the back". By converting the situation to one involving a "square donut" (akin to this one) you can probably do this all with straight lines, although that may be easier if the cross-section is a pentagon rather than a square...






          share|cite|improve this answer









          $endgroup$



          You can certainly do it if your drawing is on a torus: draw a decagon that goes "through the hole"; then draw a zigzag (like the one in your picture) that crosses each edge of the decagon once. The two ends of the zigzag will end up on opposite "sides" of the original decagon, but can be joined "around the back". By converting the situation to one involving a "square donut" (akin to this one) you can probably do this all with straight lines, although that may be easier if the cross-section is a pentagon rather than a square...







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered yesterday









          John HughesJohn Hughes

          65.2k24293




          65.2k24293











          • $begingroup$
            I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
            $endgroup$
            – David G. Stork
            yesterday










          • $begingroup$
            You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
            $endgroup$
            – John Hughes
            yesterday
















          • $begingroup$
            I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
            $endgroup$
            – David G. Stork
            yesterday










          • $begingroup$
            You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
            $endgroup$
            – John Hughes
            yesterday















          $begingroup$
          I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
          $endgroup$
          – David G. Stork
          yesterday




          $begingroup$
          I wonder if your "square donut" will force kinks in lines, thereby breaking the conditions of the problem. Possible... but not certain...
          $endgroup$
          – David G. Stork
          yesterday












          $begingroup$
          You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
          $endgroup$
          – John Hughes
          yesterday




          $begingroup$
          You may well be right. Could be that there's a Z/2Z obstruction hiding in here somewhere.
          $endgroup$
          – John Hughes
          yesterday



          Popular posts from this blog

          Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

          Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation

          Magento 2 “No Payment Methods” in Admin New OrderHow to integrate Paypal Express Checkout with the Magento APIMagento 1.5 - Sales > Order > edit order and shipping methods disappearAuto Invoice Check/Money Order Payment methodAdd more simple payment methods?Shipping methods not showingWhat should I do to change payment methods if changing the configuration has no effects?1.9 - No Payment Methods showing upMy Payment Methods not Showing for downloadable/virtual product when checkout?Magento2 API to access internal payment methodHow to call an existing payment methods in the registration form?