Bounding the absolute value of a function with an integralProve that the Riemann integral of this function is zeroThe absolute value of a Riemann integrable function is Riemann integrable.Problem on using the definition of Riemann IntegralWhat is $int f$ if $f$ is not Riemann integrable in the reverse direction of this theoremEstimating the Riemann integral of $f$ using an upper bound for $f$Limit of an integrable function on [0,1]Why was it necessary for the Riemann integral to consider all partitions and taggings?Help understanding the proof that a Riemann Integrable function is boundedHelp in understanding a boundedness proof for Riemann integrable functionsHow to calculate the upper and lower Riemann sums with respect to this particular partition P?
Why do the Avengers care about returning these items in Endgame?
What does the "DS" in "DS-..." US visa application forms stand for?
Passport stamps art, can it be done?
Is there an idiom that means "revealing a secret unintentionally"?
Lorentz invariance of Maxwell's equations in matter
Employee is self-centered and affects the team negatively
Names of the Six Tastes
Gift for mentor after his thesis defense?
Can I bring back Planetary Romance as a genre?
Why do unstable nuclei form?
Is there any evidence to support the claim that the United States was "suckered into WW1" by Zionists, made by Benjamin Freedman in his 1961 speech
Has there been evidence of any other gods?
Was Mohammed the most popular first name for boys born in Berlin in 2018?
What's an appropriate age to involve kids in life changing decisions?
Why should password hash verification be time consistent?
Was the Highlands Ranch shooting the 115th mass shooting in the US in 2019
how to find out if there's files in a folder and exit accordingly (in KSH)
Why did Missandei say this?
What are these round pads on the bottom of a PCB?
How can Sam Wilson fulfill his future role?
What's the "magic similar to the Knock spell" referenced in the Dungeon of the Mad Mage adventure?
Why is valarray so slow on VS2015?
What's the difference between "ricochet" and "bounce"?
Does STATISTICS IO output include Version Store reads?
Bounding the absolute value of a function with an integral
Prove that the Riemann integral of this function is zeroThe absolute value of a Riemann integrable function is Riemann integrable.Problem on using the definition of Riemann IntegralWhat is $int f$ if $f$ is not Riemann integrable in the reverse direction of this theoremEstimating the Riemann integral of $f$ using an upper bound for $f$Limit of an integrable function on [0,1]Why was it necessary for the Riemann integral to consider all partitions and taggings?Help understanding the proof that a Riemann Integrable function is boundedHelp in understanding a boundedness proof for Riemann integrable functionsHow to calculate the upper and lower Riemann sums with respect to this particular partition P?
$begingroup$
I am having trouble with the following problem in analysis:
Suppose that $f, f^prime in C([0, 1])$. Prove that for all $x in [0, 1]$
$$
|f(x)| leq int_0^1 (|f(t)| + |f^prime (t)|) dt.
$$
Any pointers? I have tried writing this as a Riemann Sum (given arbitrary tagged partition) but am still not sure how to proceed.
real-analysis
$endgroup$
add a comment |
$begingroup$
I am having trouble with the following problem in analysis:
Suppose that $f, f^prime in C([0, 1])$. Prove that for all $x in [0, 1]$
$$
|f(x)| leq int_0^1 (|f(t)| + |f^prime (t)|) dt.
$$
Any pointers? I have tried writing this as a Riemann Sum (given arbitrary tagged partition) but am still not sure how to proceed.
real-analysis
$endgroup$
1
$begingroup$
The constant function $f(t) = 1$ is a counterexample to the stronger inequality, taking any $x < 1$.
$endgroup$
– Theo Bendit
May 6 at 3:44
1
$begingroup$
Wow, I did not realize this. Should have examined it a little more closely, thanks.
$endgroup$
– onesix
May 6 at 3:50
add a comment |
$begingroup$
I am having trouble with the following problem in analysis:
Suppose that $f, f^prime in C([0, 1])$. Prove that for all $x in [0, 1]$
$$
|f(x)| leq int_0^1 (|f(t)| + |f^prime (t)|) dt.
$$
Any pointers? I have tried writing this as a Riemann Sum (given arbitrary tagged partition) but am still not sure how to proceed.
real-analysis
$endgroup$
I am having trouble with the following problem in analysis:
Suppose that $f, f^prime in C([0, 1])$. Prove that for all $x in [0, 1]$
$$
|f(x)| leq int_0^1 (|f(t)| + |f^prime (t)|) dt.
$$
Any pointers? I have tried writing this as a Riemann Sum (given arbitrary tagged partition) but am still not sure how to proceed.
real-analysis
real-analysis
edited May 6 at 3:57
onesix
asked May 6 at 3:24
onesixonesix
616
616
1
$begingroup$
The constant function $f(t) = 1$ is a counterexample to the stronger inequality, taking any $x < 1$.
$endgroup$
– Theo Bendit
May 6 at 3:44
1
$begingroup$
Wow, I did not realize this. Should have examined it a little more closely, thanks.
$endgroup$
– onesix
May 6 at 3:50
add a comment |
1
$begingroup$
The constant function $f(t) = 1$ is a counterexample to the stronger inequality, taking any $x < 1$.
$endgroup$
– Theo Bendit
May 6 at 3:44
1
$begingroup$
Wow, I did not realize this. Should have examined it a little more closely, thanks.
$endgroup$
– onesix
May 6 at 3:50
1
1
$begingroup$
The constant function $f(t) = 1$ is a counterexample to the stronger inequality, taking any $x < 1$.
$endgroup$
– Theo Bendit
May 6 at 3:44
$begingroup$
The constant function $f(t) = 1$ is a counterexample to the stronger inequality, taking any $x < 1$.
$endgroup$
– Theo Bendit
May 6 at 3:44
1
1
$begingroup$
Wow, I did not realize this. Should have examined it a little more closely, thanks.
$endgroup$
– onesix
May 6 at 3:50
$begingroup$
Wow, I did not realize this. Should have examined it a little more closely, thanks.
$endgroup$
– onesix
May 6 at 3:50
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
$int_0^1|f(t)| dt$ is the average of $|f(t)|$ in the interval, and $int_0^1|f'(t)|dt$ is the total variation of $f(t)$, if you think about this, it makes sense. By MVT, you have that $$int_0^1|f(t)| dt=|f(a)|$$ for some $ain[0,1]$. Let $xin[0,1]$, WLOG say $x>a$, then beginalign*|f(x)|&leq |f(a)|+|f(x)-f(a)|\
&=int_0^1|f(t)|dt+|int_a^xf'(t)dt|\
&leq int_0^1|f(t)|dt+int_a^x|f'(t)|dt\
&leqint_0^1|f(t)|dt+int_0^1|f'(t)|dt
endalign*
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3215370%2fbounding-the-absolute-value-of-a-function-with-an-integral%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
$int_0^1|f(t)| dt$ is the average of $|f(t)|$ in the interval, and $int_0^1|f'(t)|dt$ is the total variation of $f(t)$, if you think about this, it makes sense. By MVT, you have that $$int_0^1|f(t)| dt=|f(a)|$$ for some $ain[0,1]$. Let $xin[0,1]$, WLOG say $x>a$, then beginalign*|f(x)|&leq |f(a)|+|f(x)-f(a)|\
&=int_0^1|f(t)|dt+|int_a^xf'(t)dt|\
&leq int_0^1|f(t)|dt+int_a^x|f'(t)|dt\
&leqint_0^1|f(t)|dt+int_0^1|f'(t)|dt
endalign*
$endgroup$
add a comment |
$begingroup$
$int_0^1|f(t)| dt$ is the average of $|f(t)|$ in the interval, and $int_0^1|f'(t)|dt$ is the total variation of $f(t)$, if you think about this, it makes sense. By MVT, you have that $$int_0^1|f(t)| dt=|f(a)|$$ for some $ain[0,1]$. Let $xin[0,1]$, WLOG say $x>a$, then beginalign*|f(x)|&leq |f(a)|+|f(x)-f(a)|\
&=int_0^1|f(t)|dt+|int_a^xf'(t)dt|\
&leq int_0^1|f(t)|dt+int_a^x|f'(t)|dt\
&leqint_0^1|f(t)|dt+int_0^1|f'(t)|dt
endalign*
$endgroup$
add a comment |
$begingroup$
$int_0^1|f(t)| dt$ is the average of $|f(t)|$ in the interval, and $int_0^1|f'(t)|dt$ is the total variation of $f(t)$, if you think about this, it makes sense. By MVT, you have that $$int_0^1|f(t)| dt=|f(a)|$$ for some $ain[0,1]$. Let $xin[0,1]$, WLOG say $x>a$, then beginalign*|f(x)|&leq |f(a)|+|f(x)-f(a)|\
&=int_0^1|f(t)|dt+|int_a^xf'(t)dt|\
&leq int_0^1|f(t)|dt+int_a^x|f'(t)|dt\
&leqint_0^1|f(t)|dt+int_0^1|f'(t)|dt
endalign*
$endgroup$
$int_0^1|f(t)| dt$ is the average of $|f(t)|$ in the interval, and $int_0^1|f'(t)|dt$ is the total variation of $f(t)$, if you think about this, it makes sense. By MVT, you have that $$int_0^1|f(t)| dt=|f(a)|$$ for some $ain[0,1]$. Let $xin[0,1]$, WLOG say $x>a$, then beginalign*|f(x)|&leq |f(a)|+|f(x)-f(a)|\
&=int_0^1|f(t)|dt+|int_a^xf'(t)dt|\
&leq int_0^1|f(t)|dt+int_a^x|f'(t)|dt\
&leqint_0^1|f(t)|dt+int_0^1|f'(t)|dt
endalign*
answered May 6 at 4:59
Julian MejiaJulian Mejia
1,643212
1,643212
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3215370%2fbounding-the-absolute-value-of-a-function-with-an-integral%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
The constant function $f(t) = 1$ is a counterexample to the stronger inequality, taking any $x < 1$.
$endgroup$
– Theo Bendit
May 6 at 3:44
1
$begingroup$
Wow, I did not realize this. Should have examined it a little more closely, thanks.
$endgroup$
– onesix
May 6 at 3:50