Do quaternary sulfur dications exist?Why doesn't H₄O²⁺ exist?Why are many silver salts insoluble?Stability of Sulfides - backbonding?Why is an ionic bond a chemical and not a physical bond?Determine polarity of covalent bond with formal chargeWhy is an S-S bond stronger than an O-O bond?Why do nitro groups preferentially bond through the nitrogen rather than the oxygen?Can heteroatoms with lone pairs be chiral centres?Why can't oxalate ion donate two pairs of electrons from the two double-bonded oxygen atomsWill the carboxylate groups of the citrate anion undergo hydrogen bonding?Why does 1,3-dichloropropane not show stereoisomerism?
Can I use a 11-23 11-speed shimano cassette with the RD-R8000 11-speed Ultegra Shadow Rear Derailleur (short cage)?
Ugin's Conjurant vs. un-preventable damage
What can cause an unfrozen indoor copper drain pipe to crack?
How to handle DM constantly stealing everything from sleeping characters?
What dice to use in a game that revolves around triangles?
Integral with DiracDelta. Can Mathematica be made to solve this?
What is the minimum required technology to reanimate someone who has been cryogenically frozen?
Publishing an article in a journal without a related degree
Identity of a supposed anonymous referee revealed through "Description" of the report
Best species to breed to intelligence
Why are thrust reversers not used to slow down to taxi speeds?
Can you turn a recording upside-down?
How does weapons training transfer to empty hand?
Is there a need for better software for writers?
Do Rabbis admit emotional involvement in their rulings?
Which spells are in some way related to shadows or the Shadowfell?
Is every story set in the future "science fiction"?
Hexagonal Grid Filling
resoldering copper waste pipe
Is there an application which does HTTP PUT?
What does the "DS" in "DS-..." US visa application forms stand for?
Does a surprised creature obey the 1st level spell Command?
How can I make parentheses stick to formula?
how to find out if there's files in a folder and exit accordingly (in KSH)
Do quaternary sulfur dications exist?
Why doesn't H₄O²⁺ exist?Why are many silver salts insoluble?Stability of Sulfides - backbonding?Why is an ionic bond a chemical and not a physical bond?Determine polarity of covalent bond with formal chargeWhy is an S-S bond stronger than an O-O bond?Why do nitro groups preferentially bond through the nitrogen rather than the oxygen?Can heteroatoms with lone pairs be chiral centres?Why can't oxalate ion donate two pairs of electrons from the two double-bonded oxygen atomsWill the carboxylate groups of the citrate anion undergo hydrogen bonding?Why does 1,3-dichloropropane not show stereoisomerism?
$begingroup$
We know that sulfur can form sulfides $ceR2S$, with two substituents bonded to it. The simplest example of this would be hydrogen sulfide.
However, sulfur can also form sulfonium ions $ceR3S+$, where 3 substituents are attached to the sulfur atom and a negatively-charged counteranion is present.
What I am asking is whether there is such a thing as sulfur bonded to 4 substituents, with each bond being a single bond, with 2 counteranions (either $ce(R4S^2+)(X^2-)$ or $ce(R4S^2+)(X^-)2$). Is there such a thing as that or something similar?
organic-chemistry inorganic-chemistry ions organosulfur-compounds
$endgroup$
add a comment |
$begingroup$
We know that sulfur can form sulfides $ceR2S$, with two substituents bonded to it. The simplest example of this would be hydrogen sulfide.
However, sulfur can also form sulfonium ions $ceR3S+$, where 3 substituents are attached to the sulfur atom and a negatively-charged counteranion is present.
What I am asking is whether there is such a thing as sulfur bonded to 4 substituents, with each bond being a single bond, with 2 counteranions (either $ce(R4S^2+)(X^2-)$ or $ce(R4S^2+)(X^-)2$). Is there such a thing as that or something similar?
organic-chemistry inorganic-chemistry ions organosulfur-compounds
$endgroup$
$begingroup$
chemistry.stackexchange.com/questions/112087/…
$endgroup$
– Mithoron
2 days ago
add a comment |
$begingroup$
We know that sulfur can form sulfides $ceR2S$, with two substituents bonded to it. The simplest example of this would be hydrogen sulfide.
However, sulfur can also form sulfonium ions $ceR3S+$, where 3 substituents are attached to the sulfur atom and a negatively-charged counteranion is present.
What I am asking is whether there is such a thing as sulfur bonded to 4 substituents, with each bond being a single bond, with 2 counteranions (either $ce(R4S^2+)(X^2-)$ or $ce(R4S^2+)(X^-)2$). Is there such a thing as that or something similar?
organic-chemistry inorganic-chemistry ions organosulfur-compounds
$endgroup$
We know that sulfur can form sulfides $ceR2S$, with two substituents bonded to it. The simplest example of this would be hydrogen sulfide.
However, sulfur can also form sulfonium ions $ceR3S+$, where 3 substituents are attached to the sulfur atom and a negatively-charged counteranion is present.
What I am asking is whether there is such a thing as sulfur bonded to 4 substituents, with each bond being a single bond, with 2 counteranions (either $ce(R4S^2+)(X^2-)$ or $ce(R4S^2+)(X^-)2$). Is there such a thing as that or something similar?
organic-chemistry inorganic-chemistry ions organosulfur-compounds
organic-chemistry inorganic-chemistry ions organosulfur-compounds
edited May 6 at 1:49
orthocresol♦
40.8k7121252
40.8k7121252
asked May 6 at 1:02
user73910user73910
1423
1423
$begingroup$
chemistry.stackexchange.com/questions/112087/…
$endgroup$
– Mithoron
2 days ago
add a comment |
$begingroup$
chemistry.stackexchange.com/questions/112087/…
$endgroup$
– Mithoron
2 days ago
$begingroup$
chemistry.stackexchange.com/questions/112087/…
$endgroup$
– Mithoron
2 days ago
$begingroup$
chemistry.stackexchange.com/questions/112087/…
$endgroup$
– Mithoron
2 days ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Ogawa et al. [1] were first to report a crystal structure (CSD-YAFNOI) of a compound with quaternary sulfur, bis(2,2′-biphenylylene)sulfurane:
Figure 1. Molecular structure of bis(2,2'-biphenylene)sulfurane (CSD-YAFNOI). Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.
Compound 1 was synthesized as follows (Scheme 1). Dibenzothiophene 5-oxide (200 mg, 1.0 mmol) in anhydrous tetrahydrofuran (THF, 10 ml) was treated with trimethylsilyl trifluoromethanesulfonate (0.25 ml, 1.3 mmol) under an $ceN2$ atmosphere at −78 °C. After stirring at 0 °C for 30 min, the
mixture was cooled to −78 °C and was treated with $pu1.0 mol dm-3$ 2,2'-dilithiobiphenyl (1.0 ml, 1.0 mmol) in diethyl ether solution. The whole mixture was stirred at −78 °C for 1 h and at 0 °C for 30 min under an $ceN2$ atmosphere. After evaporation of the solvent, the residue was washed with anhydrous diethyl ether (10 ml) and was extracted with anhydrous benzene (10 ml) under an $ceN2$ atmosphere. The solvent was removed under reduced pressure, and the crude product was recrystallized from anhydrous THF at −20 °C to give 1 as orange rods in 96% yield.
Scheme 1 Reagents: i, trimethylsilyl trifluoromethansulfonate in THF;
ii, 2,2'-dilithiobiphenyl in diethyl ether-THF
Further work by Sato et al. [2] resulted in a synthesis and crystal structure (CSD-NEDCEE) of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate).
Structurally, it's a similar compound with a greater, nearly 90° (in contrast to 60° twist angle in neutral bis(2,2′-biphenylylene)sulfurane), twist angle between 2,2′-biphenylylene ligands, however water molecules and $ce[BF4]$-counterions appear heavily disordered:
Figure 2. Fragment of the molecular structure of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate) (CSD-NEDCEE) showing the bis(2,2′-biphenylylene)sulfuranyl cation. Oxygen atoms from water molecules as well as tetrafluoroborate anions are omitted for clarity. Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.
Recently, we have succeeded in the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane [10-S-4(C4)] (1) as a stable sulfurane(IV) having only carbon ligands.[…] We considered that this sulfurane would be a suitable precursor to provide the desired dication. Therefore, we tried the reaction of bis(2,2′-biphenylylene)sulfurane (1) with xenon difluoride ($ceXeF2$) in the presence of $ceBF3 * OEt2$ and indeed obtained the bis(2,2′-biphenylylene)sulfurane dication, [8-S4(C4)]²⁺ (2) as an amazingly stable bis(tetrafluoroborate) salt.[…] Here, we communicate the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane dication (2) having only carbon ligands. […]
The sulfurane 1 was reacted with 1 mol equiv of xenon difluoride in the presence of $ceBF3 * OEt2$ in dry $ceCH3CN$ at −40 °C (Scheme 1). After the solvent was removed at room temperature, the residue was washed with $ceCHCl3$ at room temperature, and bis(2,2′-biphenylylene)sulfurane bis(tetrafluoroborate) (2) was isolated as a stable moisture-insensitive yellow powder in 62% yield.
Scheme 1
Subsequently, hexacoordinated derivatives – bis(2,2′-biphenylylene)dimethyl- and diphenylpersulfuranes – were synthesized and their molecular structures were elucidated [3].
References
- Ogawa, S.; Matsunaga, Y.; Sato, S.; Iida, I.; Furukawa, N. First Preparation of a Sulfurane with Four Carbon–Sulfur Bonds: Synthesis and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfurane. J. Chem. Soc., Chem. Commun. 1992, 0 (16), 1141–1142. https://doi.org/10.1039/C39920001141.
- Sato, S.; Ameta, H.; Horn, E.; Takahashi, O.; Furukawa, N. First Isolation and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfuranyl Bis(Tetrafluoroborate) [8−S−4(C4)]²⁺. J. Am. Chem. Soc. 1997, 119 (50), 12374–12375. https://doi.org/10.1021/ja971336k.
- Sato, S.; Matsunaga, K.; Horn, E.; Furukawa, N.; Nabeshima, T. Isolation and Molecular Structure of the Organo-Persulfuranes [12−S−6(C6)]. J. Am. Chem. Soc. 2006, 128 (21), 6778–6779. https://doi.org/10.1021/ja060497y.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "431"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f114887%2fdo-quaternary-sulfur-dications-exist%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Ogawa et al. [1] were first to report a crystal structure (CSD-YAFNOI) of a compound with quaternary sulfur, bis(2,2′-biphenylylene)sulfurane:
Figure 1. Molecular structure of bis(2,2'-biphenylene)sulfurane (CSD-YAFNOI). Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.
Compound 1 was synthesized as follows (Scheme 1). Dibenzothiophene 5-oxide (200 mg, 1.0 mmol) in anhydrous tetrahydrofuran (THF, 10 ml) was treated with trimethylsilyl trifluoromethanesulfonate (0.25 ml, 1.3 mmol) under an $ceN2$ atmosphere at −78 °C. After stirring at 0 °C for 30 min, the
mixture was cooled to −78 °C and was treated with $pu1.0 mol dm-3$ 2,2'-dilithiobiphenyl (1.0 ml, 1.0 mmol) in diethyl ether solution. The whole mixture was stirred at −78 °C for 1 h and at 0 °C for 30 min under an $ceN2$ atmosphere. After evaporation of the solvent, the residue was washed with anhydrous diethyl ether (10 ml) and was extracted with anhydrous benzene (10 ml) under an $ceN2$ atmosphere. The solvent was removed under reduced pressure, and the crude product was recrystallized from anhydrous THF at −20 °C to give 1 as orange rods in 96% yield.
Scheme 1 Reagents: i, trimethylsilyl trifluoromethansulfonate in THF;
ii, 2,2'-dilithiobiphenyl in diethyl ether-THF
Further work by Sato et al. [2] resulted in a synthesis and crystal structure (CSD-NEDCEE) of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate).
Structurally, it's a similar compound with a greater, nearly 90° (in contrast to 60° twist angle in neutral bis(2,2′-biphenylylene)sulfurane), twist angle between 2,2′-biphenylylene ligands, however water molecules and $ce[BF4]$-counterions appear heavily disordered:
Figure 2. Fragment of the molecular structure of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate) (CSD-NEDCEE) showing the bis(2,2′-biphenylylene)sulfuranyl cation. Oxygen atoms from water molecules as well as tetrafluoroborate anions are omitted for clarity. Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.
Recently, we have succeeded in the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane [10-S-4(C4)] (1) as a stable sulfurane(IV) having only carbon ligands.[…] We considered that this sulfurane would be a suitable precursor to provide the desired dication. Therefore, we tried the reaction of bis(2,2′-biphenylylene)sulfurane (1) with xenon difluoride ($ceXeF2$) in the presence of $ceBF3 * OEt2$ and indeed obtained the bis(2,2′-biphenylylene)sulfurane dication, [8-S4(C4)]²⁺ (2) as an amazingly stable bis(tetrafluoroborate) salt.[…] Here, we communicate the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane dication (2) having only carbon ligands. […]
The sulfurane 1 was reacted with 1 mol equiv of xenon difluoride in the presence of $ceBF3 * OEt2$ in dry $ceCH3CN$ at −40 °C (Scheme 1). After the solvent was removed at room temperature, the residue was washed with $ceCHCl3$ at room temperature, and bis(2,2′-biphenylylene)sulfurane bis(tetrafluoroborate) (2) was isolated as a stable moisture-insensitive yellow powder in 62% yield.
Scheme 1
Subsequently, hexacoordinated derivatives – bis(2,2′-biphenylylene)dimethyl- and diphenylpersulfuranes – were synthesized and their molecular structures were elucidated [3].
References
- Ogawa, S.; Matsunaga, Y.; Sato, S.; Iida, I.; Furukawa, N. First Preparation of a Sulfurane with Four Carbon–Sulfur Bonds: Synthesis and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfurane. J. Chem. Soc., Chem. Commun. 1992, 0 (16), 1141–1142. https://doi.org/10.1039/C39920001141.
- Sato, S.; Ameta, H.; Horn, E.; Takahashi, O.; Furukawa, N. First Isolation and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfuranyl Bis(Tetrafluoroborate) [8−S−4(C4)]²⁺. J. Am. Chem. Soc. 1997, 119 (50), 12374–12375. https://doi.org/10.1021/ja971336k.
- Sato, S.; Matsunaga, K.; Horn, E.; Furukawa, N.; Nabeshima, T. Isolation and Molecular Structure of the Organo-Persulfuranes [12−S−6(C6)]. J. Am. Chem. Soc. 2006, 128 (21), 6778–6779. https://doi.org/10.1021/ja060497y.
$endgroup$
add a comment |
$begingroup$
Ogawa et al. [1] were first to report a crystal structure (CSD-YAFNOI) of a compound with quaternary sulfur, bis(2,2′-biphenylylene)sulfurane:
Figure 1. Molecular structure of bis(2,2'-biphenylene)sulfurane (CSD-YAFNOI). Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.
Compound 1 was synthesized as follows (Scheme 1). Dibenzothiophene 5-oxide (200 mg, 1.0 mmol) in anhydrous tetrahydrofuran (THF, 10 ml) was treated with trimethylsilyl trifluoromethanesulfonate (0.25 ml, 1.3 mmol) under an $ceN2$ atmosphere at −78 °C. After stirring at 0 °C for 30 min, the
mixture was cooled to −78 °C and was treated with $pu1.0 mol dm-3$ 2,2'-dilithiobiphenyl (1.0 ml, 1.0 mmol) in diethyl ether solution. The whole mixture was stirred at −78 °C for 1 h and at 0 °C for 30 min under an $ceN2$ atmosphere. After evaporation of the solvent, the residue was washed with anhydrous diethyl ether (10 ml) and was extracted with anhydrous benzene (10 ml) under an $ceN2$ atmosphere. The solvent was removed under reduced pressure, and the crude product was recrystallized from anhydrous THF at −20 °C to give 1 as orange rods in 96% yield.
Scheme 1 Reagents: i, trimethylsilyl trifluoromethansulfonate in THF;
ii, 2,2'-dilithiobiphenyl in diethyl ether-THF
Further work by Sato et al. [2] resulted in a synthesis and crystal structure (CSD-NEDCEE) of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate).
Structurally, it's a similar compound with a greater, nearly 90° (in contrast to 60° twist angle in neutral bis(2,2′-biphenylylene)sulfurane), twist angle between 2,2′-biphenylylene ligands, however water molecules and $ce[BF4]$-counterions appear heavily disordered:
Figure 2. Fragment of the molecular structure of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate) (CSD-NEDCEE) showing the bis(2,2′-biphenylylene)sulfuranyl cation. Oxygen atoms from water molecules as well as tetrafluoroborate anions are omitted for clarity. Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.
Recently, we have succeeded in the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane [10-S-4(C4)] (1) as a stable sulfurane(IV) having only carbon ligands.[…] We considered that this sulfurane would be a suitable precursor to provide the desired dication. Therefore, we tried the reaction of bis(2,2′-biphenylylene)sulfurane (1) with xenon difluoride ($ceXeF2$) in the presence of $ceBF3 * OEt2$ and indeed obtained the bis(2,2′-biphenylylene)sulfurane dication, [8-S4(C4)]²⁺ (2) as an amazingly stable bis(tetrafluoroborate) salt.[…] Here, we communicate the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane dication (2) having only carbon ligands. […]
The sulfurane 1 was reacted with 1 mol equiv of xenon difluoride in the presence of $ceBF3 * OEt2$ in dry $ceCH3CN$ at −40 °C (Scheme 1). After the solvent was removed at room temperature, the residue was washed with $ceCHCl3$ at room temperature, and bis(2,2′-biphenylylene)sulfurane bis(tetrafluoroborate) (2) was isolated as a stable moisture-insensitive yellow powder in 62% yield.
Scheme 1
Subsequently, hexacoordinated derivatives – bis(2,2′-biphenylylene)dimethyl- and diphenylpersulfuranes – were synthesized and their molecular structures were elucidated [3].
References
- Ogawa, S.; Matsunaga, Y.; Sato, S.; Iida, I.; Furukawa, N. First Preparation of a Sulfurane with Four Carbon–Sulfur Bonds: Synthesis and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfurane. J. Chem. Soc., Chem. Commun. 1992, 0 (16), 1141–1142. https://doi.org/10.1039/C39920001141.
- Sato, S.; Ameta, H.; Horn, E.; Takahashi, O.; Furukawa, N. First Isolation and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfuranyl Bis(Tetrafluoroborate) [8−S−4(C4)]²⁺. J. Am. Chem. Soc. 1997, 119 (50), 12374–12375. https://doi.org/10.1021/ja971336k.
- Sato, S.; Matsunaga, K.; Horn, E.; Furukawa, N.; Nabeshima, T. Isolation and Molecular Structure of the Organo-Persulfuranes [12−S−6(C6)]. J. Am. Chem. Soc. 2006, 128 (21), 6778–6779. https://doi.org/10.1021/ja060497y.
$endgroup$
add a comment |
$begingroup$
Ogawa et al. [1] were first to report a crystal structure (CSD-YAFNOI) of a compound with quaternary sulfur, bis(2,2′-biphenylylene)sulfurane:
Figure 1. Molecular structure of bis(2,2'-biphenylene)sulfurane (CSD-YAFNOI). Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.
Compound 1 was synthesized as follows (Scheme 1). Dibenzothiophene 5-oxide (200 mg, 1.0 mmol) in anhydrous tetrahydrofuran (THF, 10 ml) was treated with trimethylsilyl trifluoromethanesulfonate (0.25 ml, 1.3 mmol) under an $ceN2$ atmosphere at −78 °C. After stirring at 0 °C for 30 min, the
mixture was cooled to −78 °C and was treated with $pu1.0 mol dm-3$ 2,2'-dilithiobiphenyl (1.0 ml, 1.0 mmol) in diethyl ether solution. The whole mixture was stirred at −78 °C for 1 h and at 0 °C for 30 min under an $ceN2$ atmosphere. After evaporation of the solvent, the residue was washed with anhydrous diethyl ether (10 ml) and was extracted with anhydrous benzene (10 ml) under an $ceN2$ atmosphere. The solvent was removed under reduced pressure, and the crude product was recrystallized from anhydrous THF at −20 °C to give 1 as orange rods in 96% yield.
Scheme 1 Reagents: i, trimethylsilyl trifluoromethansulfonate in THF;
ii, 2,2'-dilithiobiphenyl in diethyl ether-THF
Further work by Sato et al. [2] resulted in a synthesis and crystal structure (CSD-NEDCEE) of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate).
Structurally, it's a similar compound with a greater, nearly 90° (in contrast to 60° twist angle in neutral bis(2,2′-biphenylylene)sulfurane), twist angle between 2,2′-biphenylylene ligands, however water molecules and $ce[BF4]$-counterions appear heavily disordered:
Figure 2. Fragment of the molecular structure of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate) (CSD-NEDCEE) showing the bis(2,2′-biphenylylene)sulfuranyl cation. Oxygen atoms from water molecules as well as tetrafluoroborate anions are omitted for clarity. Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.
Recently, we have succeeded in the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane [10-S-4(C4)] (1) as a stable sulfurane(IV) having only carbon ligands.[…] We considered that this sulfurane would be a suitable precursor to provide the desired dication. Therefore, we tried the reaction of bis(2,2′-biphenylylene)sulfurane (1) with xenon difluoride ($ceXeF2$) in the presence of $ceBF3 * OEt2$ and indeed obtained the bis(2,2′-biphenylylene)sulfurane dication, [8-S4(C4)]²⁺ (2) as an amazingly stable bis(tetrafluoroborate) salt.[…] Here, we communicate the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane dication (2) having only carbon ligands. […]
The sulfurane 1 was reacted with 1 mol equiv of xenon difluoride in the presence of $ceBF3 * OEt2$ in dry $ceCH3CN$ at −40 °C (Scheme 1). After the solvent was removed at room temperature, the residue was washed with $ceCHCl3$ at room temperature, and bis(2,2′-biphenylylene)sulfurane bis(tetrafluoroborate) (2) was isolated as a stable moisture-insensitive yellow powder in 62% yield.
Scheme 1
Subsequently, hexacoordinated derivatives – bis(2,2′-biphenylylene)dimethyl- and diphenylpersulfuranes – were synthesized and their molecular structures were elucidated [3].
References
- Ogawa, S.; Matsunaga, Y.; Sato, S.; Iida, I.; Furukawa, N. First Preparation of a Sulfurane with Four Carbon–Sulfur Bonds: Synthesis and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfurane. J. Chem. Soc., Chem. Commun. 1992, 0 (16), 1141–1142. https://doi.org/10.1039/C39920001141.
- Sato, S.; Ameta, H.; Horn, E.; Takahashi, O.; Furukawa, N. First Isolation and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfuranyl Bis(Tetrafluoroborate) [8−S−4(C4)]²⁺. J. Am. Chem. Soc. 1997, 119 (50), 12374–12375. https://doi.org/10.1021/ja971336k.
- Sato, S.; Matsunaga, K.; Horn, E.; Furukawa, N.; Nabeshima, T. Isolation and Molecular Structure of the Organo-Persulfuranes [12−S−6(C6)]. J. Am. Chem. Soc. 2006, 128 (21), 6778–6779. https://doi.org/10.1021/ja060497y.
$endgroup$
Ogawa et al. [1] were first to report a crystal structure (CSD-YAFNOI) of a compound with quaternary sulfur, bis(2,2′-biphenylylene)sulfurane:
Figure 1. Molecular structure of bis(2,2'-biphenylene)sulfurane (CSD-YAFNOI). Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.
Compound 1 was synthesized as follows (Scheme 1). Dibenzothiophene 5-oxide (200 mg, 1.0 mmol) in anhydrous tetrahydrofuran (THF, 10 ml) was treated with trimethylsilyl trifluoromethanesulfonate (0.25 ml, 1.3 mmol) under an $ceN2$ atmosphere at −78 °C. After stirring at 0 °C for 30 min, the
mixture was cooled to −78 °C and was treated with $pu1.0 mol dm-3$ 2,2'-dilithiobiphenyl (1.0 ml, 1.0 mmol) in diethyl ether solution. The whole mixture was stirred at −78 °C for 1 h and at 0 °C for 30 min under an $ceN2$ atmosphere. After evaporation of the solvent, the residue was washed with anhydrous diethyl ether (10 ml) and was extracted with anhydrous benzene (10 ml) under an $ceN2$ atmosphere. The solvent was removed under reduced pressure, and the crude product was recrystallized from anhydrous THF at −20 °C to give 1 as orange rods in 96% yield.
Scheme 1 Reagents: i, trimethylsilyl trifluoromethansulfonate in THF;
ii, 2,2'-dilithiobiphenyl in diethyl ether-THF
Further work by Sato et al. [2] resulted in a synthesis and crystal structure (CSD-NEDCEE) of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate).
Structurally, it's a similar compound with a greater, nearly 90° (in contrast to 60° twist angle in neutral bis(2,2′-biphenylylene)sulfurane), twist angle between 2,2′-biphenylylene ligands, however water molecules and $ce[BF4]$-counterions appear heavily disordered:
Figure 2. Fragment of the molecular structure of bis(2,2′-biphenylylene)sulfuranyl bis(tetrafluoroborate) (CSD-NEDCEE) showing the bis(2,2′-biphenylylene)sulfuranyl cation. Oxygen atoms from water molecules as well as tetrafluoroborate anions are omitted for clarity. Color code: $color#EEEEEELargebullet~ceH$; $color#909090Largebullet~ceC$; $color#FFFF30Largebullet~ceS$.
Recently, we have succeeded in the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane [10-S-4(C4)] (1) as a stable sulfurane(IV) having only carbon ligands.[…] We considered that this sulfurane would be a suitable precursor to provide the desired dication. Therefore, we tried the reaction of bis(2,2′-biphenylylene)sulfurane (1) with xenon difluoride ($ceXeF2$) in the presence of $ceBF3 * OEt2$ and indeed obtained the bis(2,2′-biphenylylene)sulfurane dication, [8-S4(C4)]²⁺ (2) as an amazingly stable bis(tetrafluoroborate) salt.[…] Here, we communicate the first isolation and structural determination of bis(2,2′-biphenylylene)sulfurane dication (2) having only carbon ligands. […]
The sulfurane 1 was reacted with 1 mol equiv of xenon difluoride in the presence of $ceBF3 * OEt2$ in dry $ceCH3CN$ at −40 °C (Scheme 1). After the solvent was removed at room temperature, the residue was washed with $ceCHCl3$ at room temperature, and bis(2,2′-biphenylylene)sulfurane bis(tetrafluoroborate) (2) was isolated as a stable moisture-insensitive yellow powder in 62% yield.
Scheme 1
Subsequently, hexacoordinated derivatives – bis(2,2′-biphenylylene)dimethyl- and diphenylpersulfuranes – were synthesized and their molecular structures were elucidated [3].
References
- Ogawa, S.; Matsunaga, Y.; Sato, S.; Iida, I.; Furukawa, N. First Preparation of a Sulfurane with Four Carbon–Sulfur Bonds: Synthesis and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfurane. J. Chem. Soc., Chem. Commun. 1992, 0 (16), 1141–1142. https://doi.org/10.1039/C39920001141.
- Sato, S.; Ameta, H.; Horn, E.; Takahashi, O.; Furukawa, N. First Isolation and Molecular Structure of Bis(2,2′-Biphenylylene)Sulfuranyl Bis(Tetrafluoroborate) [8−S−4(C4)]²⁺. J. Am. Chem. Soc. 1997, 119 (50), 12374–12375. https://doi.org/10.1021/ja971336k.
- Sato, S.; Matsunaga, K.; Horn, E.; Furukawa, N.; Nabeshima, T. Isolation and Molecular Structure of the Organo-Persulfuranes [12−S−6(C6)]. J. Am. Chem. Soc. 2006, 128 (21), 6778–6779. https://doi.org/10.1021/ja060497y.
edited May 6 at 2:35
answered May 6 at 1:35
andseliskandselisk
20.8k770136
20.8k770136
add a comment |
add a comment |
Thanks for contributing an answer to Chemistry Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f114887%2fdo-quaternary-sulfur-dications-exist%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
chemistry.stackexchange.com/questions/112087/…
$endgroup$
– Mithoron
2 days ago