How can I get exact maximal value of this expression?Finding maximum value with position from Table of valuesHow do I find the position of the maximum value in each column of a table?Finding the associated parameter of the maximumHow to maximize the modulus of a multivariate complex-valued function?Finding maximum in the boundary limits using mathematicaNSum: Summand (or its derivative) is not numerical at pointHow to do Maximum Likelihood Estimation with this Multivariate Normal?NMaximize is not converging to a solutionUnable to find maximum value of my custom functionParametric Find Maximum

How to split a string in two substrings of same length using bash?

If Boris Johnson were prosecuted and convicted of lying about Brexit, can that be used to cancel Brexit?

Is the capacitor drawn or wired wrongly?

Is there any word or phrase for negative bearing?

Is it possible for people to live in the eye of a permanent hypercane?

Responsibility for visa checking

Did thousands of women die every year due to illegal abortions before Roe v. Wade?

You've spoiled/damaged the card

Avoiding cliches when writing gods

Metal bar on DMM PCB

Working in the USA for living expenses only; allowed on VWP?

What happens to foam insulation board after you pour concrete slab?

Traffic law UK, pedestrians

Is the decompression of compressed and encrypted data without decryption also theoretically impossible?

Riley's, assemble!

What happens if you do emergency landing on a US base in middle of the ocean?

What are they doing to this poor rocket?

Could the Missouri River be running while Lake Michigan was frozen several meters deep?

Can Green-Flame Blade be cast twice with the Hunter ranger's Horde Breaker ability?

Java 8: How to convert String to Map<String,List<String>>?

Why is c4 bad when playing the London against a King's Indian?

How to pass a regex when finding a directory path in bash?

Did Darth Vader wear the same suit for 20+ years?

Can a magnetic field of an object be stronger than its gravity?



How can I get exact maximal value of this expression?


Finding maximum value with position from Table of valuesHow do I find the position of the maximum value in each column of a table?Finding the associated parameter of the maximumHow to maximize the modulus of a multivariate complex-valued function?Finding maximum in the boundary limits using mathematicaNSum: Summand (or its derivative) is not numerical at pointHow to do Maximum Likelihood Estimation with this Multivariate Normal?NMaximize is not converging to a solutionUnable to find maximum value of my custom functionParametric Find Maximum













3












$begingroup$


I am trying to find the exact maximum value of the expression
$$ E= sqrt5 a^2+a (4 b-2 c)+2b^2+4 b c+5 c^2+sqrt2a^2+a (2 b+2 c)+2 b^2-2 bc+2 c^2+sqrt26 a^2+a (10c-2 b)+26 b^2+10 b c+2 c^2 ,$$ where $a^2 + b^2 + c^2 = 1$ and $a, b, c > 0$.



I know that, the answer is $ 4sqrt3 + sqrt6 .$
When I tried



NMaximize[(Sqrt[2*a^2 + (2*b + 2*c)*a + 2*b^2 - 2*b*c + 2*c^2] + 
Sqrt[5*a^2 + (4*b - 2*c)*a + 2*b^2 + 4*b*c + 5*c^2] +
Sqrt[26*a^2 + (-2*b + 10*c)*a + 26*b^2 + 10*b*c + 2*c^2]),
a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0, a, b, c]


I got the approximate answer



9.37769, a -> 0.801784, b -> 0.534523, c -> 0.267261


When I tried,



Maximize[(Sqrt[2*a^2 + (2*b + 2*c)*a + 2*b^2 - 2*b*c + 2*c^2] + 
Sqrt[5*a^2 + (4*b - 2*c)*a + 2*b^2 + 4*b*c + 5*c^2] +
Sqrt[26*a^2 + (-2*b + 10*c)*a + 26*b^2 + 10*b*c + 2*c^2]),
a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0, a, b, c]


It's take about 3 minutes, I could't get the answer. How can I get exact maximize value of that expression?










share|improve this question











$endgroup$
















    3












    $begingroup$


    I am trying to find the exact maximum value of the expression
    $$ E= sqrt5 a^2+a (4 b-2 c)+2b^2+4 b c+5 c^2+sqrt2a^2+a (2 b+2 c)+2 b^2-2 bc+2 c^2+sqrt26 a^2+a (10c-2 b)+26 b^2+10 b c+2 c^2 ,$$ where $a^2 + b^2 + c^2 = 1$ and $a, b, c > 0$.



    I know that, the answer is $ 4sqrt3 + sqrt6 .$
    When I tried



    NMaximize[(Sqrt[2*a^2 + (2*b + 2*c)*a + 2*b^2 - 2*b*c + 2*c^2] + 
    Sqrt[5*a^2 + (4*b - 2*c)*a + 2*b^2 + 4*b*c + 5*c^2] +
    Sqrt[26*a^2 + (-2*b + 10*c)*a + 26*b^2 + 10*b*c + 2*c^2]),
    a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0, a, b, c]


    I got the approximate answer



    9.37769, a -> 0.801784, b -> 0.534523, c -> 0.267261


    When I tried,



    Maximize[(Sqrt[2*a^2 + (2*b + 2*c)*a + 2*b^2 - 2*b*c + 2*c^2] + 
    Sqrt[5*a^2 + (4*b - 2*c)*a + 2*b^2 + 4*b*c + 5*c^2] +
    Sqrt[26*a^2 + (-2*b + 10*c)*a + 26*b^2 + 10*b*c + 2*c^2]),
    a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0, a, b, c]


    It's take about 3 minutes, I could't get the answer. How can I get exact maximize value of that expression?










    share|improve this question











    $endgroup$














      3












      3








      3





      $begingroup$


      I am trying to find the exact maximum value of the expression
      $$ E= sqrt5 a^2+a (4 b-2 c)+2b^2+4 b c+5 c^2+sqrt2a^2+a (2 b+2 c)+2 b^2-2 bc+2 c^2+sqrt26 a^2+a (10c-2 b)+26 b^2+10 b c+2 c^2 ,$$ where $a^2 + b^2 + c^2 = 1$ and $a, b, c > 0$.



      I know that, the answer is $ 4sqrt3 + sqrt6 .$
      When I tried



      NMaximize[(Sqrt[2*a^2 + (2*b + 2*c)*a + 2*b^2 - 2*b*c + 2*c^2] + 
      Sqrt[5*a^2 + (4*b - 2*c)*a + 2*b^2 + 4*b*c + 5*c^2] +
      Sqrt[26*a^2 + (-2*b + 10*c)*a + 26*b^2 + 10*b*c + 2*c^2]),
      a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0, a, b, c]


      I got the approximate answer



      9.37769, a -> 0.801784, b -> 0.534523, c -> 0.267261


      When I tried,



      Maximize[(Sqrt[2*a^2 + (2*b + 2*c)*a + 2*b^2 - 2*b*c + 2*c^2] + 
      Sqrt[5*a^2 + (4*b - 2*c)*a + 2*b^2 + 4*b*c + 5*c^2] +
      Sqrt[26*a^2 + (-2*b + 10*c)*a + 26*b^2 + 10*b*c + 2*c^2]),
      a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0, a, b, c]


      It's take about 3 minutes, I could't get the answer. How can I get exact maximize value of that expression?










      share|improve this question











      $endgroup$




      I am trying to find the exact maximum value of the expression
      $$ E= sqrt5 a^2+a (4 b-2 c)+2b^2+4 b c+5 c^2+sqrt2a^2+a (2 b+2 c)+2 b^2-2 bc+2 c^2+sqrt26 a^2+a (10c-2 b)+26 b^2+10 b c+2 c^2 ,$$ where $a^2 + b^2 + c^2 = 1$ and $a, b, c > 0$.



      I know that, the answer is $ 4sqrt3 + sqrt6 .$
      When I tried



      NMaximize[(Sqrt[2*a^2 + (2*b + 2*c)*a + 2*b^2 - 2*b*c + 2*c^2] + 
      Sqrt[5*a^2 + (4*b - 2*c)*a + 2*b^2 + 4*b*c + 5*c^2] +
      Sqrt[26*a^2 + (-2*b + 10*c)*a + 26*b^2 + 10*b*c + 2*c^2]),
      a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0, a, b, c]


      I got the approximate answer



      9.37769, a -> 0.801784, b -> 0.534523, c -> 0.267261


      When I tried,



      Maximize[(Sqrt[2*a^2 + (2*b + 2*c)*a + 2*b^2 - 2*b*c + 2*c^2] + 
      Sqrt[5*a^2 + (4*b - 2*c)*a + 2*b^2 + 4*b*c + 5*c^2] +
      Sqrt[26*a^2 + (-2*b + 10*c)*a + 26*b^2 + 10*b*c + 2*c^2]),
      a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0, a, b, c]


      It's take about 3 minutes, I could't get the answer. How can I get exact maximize value of that expression?







      maximum






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited May 27 at 4:08







      minhthien_2016

















      asked May 26 at 12:58









      minhthien_2016minhthien_2016

      600311




      600311




















          2 Answers
          2






          active

          oldest

          votes


















          7












          $begingroup$

          Writing:



          rad1 = Sqrt[5 a^2 + 4 a b + 2 b^2 - 2 a c + 4 b c + 5 c^2];
          rad2 = Sqrt[2] Sqrt[a^2 + b^2 - b c + c^2 + a (b + c)];
          rad3 = Sqrt[2] Sqrt[13 a^2 - a b + 13 b^2 + 5 (a + b) c + c^2];
          str = "PossibleClosedForm", 1, "FormulaData";

          fct = rad1 + rad2 + rad3;
          bond = a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0;
          sol1 = NMaximize[fct, bond, a, b, c, WorkingPrecision -> 40];

          max = WolframAlpha[ToString[sol1[[1]]], str][[1, 1]];
          a0 = WolframAlpha[ToString[sol1[[2, 1, 2]]], str][[1, 1]];
          b0 = WolframAlpha[ToString[sol1[[2, 2, 2]]], str][[1, 1]];
          c0 = WolframAlpha[ToString[sol1[[2, 3, 2]]], str][[1, 1]];

          sol2 = max, a -> a0, b -> b0, c -> c0
          sol1 == N[sol2]


          I get:




          4 Sqrt[3] + Sqrt[6], a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14]



          True




          which is what is desired.






          share|improve this answer











          $endgroup$




















            7












            $begingroup$

            I don't know why Maximize is unable to find the maximum. Instead of using Maximize, you could try using Lagrange multipliers. To make the algebra easier, define:



            constraint1 = 2*a^2+(2*b+2*c)*a+2*b^2-2*b*c+2*c^2 - d^2;
            constraint2 = 5*a^2+(4*b-2*c)*a+2*b^2+4*b*c+5*c^2 - e^2;
            constraint3 = 26*a^2+(-2*b+10*c)*a+26*b^2+10*b*c+2*c^2 - f^2;
            constraint4 = a^2 + b^2 + c^2 - 1;


            Then, the goal is to maximize d + e + f subject to having each constraint equal to 0 (I'm ignoring the positivity constraint for now). Using Lagrange multipliers, we want to extremize the function:



            obj = d + e + f + λ1 constraint1 + λ2 constraint2 + λ3 constraint3 + λ4 constraint4;


            Setting the derivatives with respect to each of the unknowns to 0:



            eqns = Thread[D[obj, a, b, c, d, e, f, λ1, λ2, λ3, λ4] == 0];


            Let's solve them:



            sols = Solve[eqns, a, b, c, d, e, f, λ1, λ2, λ3, λ4, Reals];//AbsoluteTiming



            1.77698, Null




            Now, let's impose the constraints that a, b, c, d, e, and f are all positive:



            r = Cases[sols, x_ /; AllTrue[a, b, c, d, e, f /. x, GreaterEqualThan[0]]]



            a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14], d -> Sqrt[3],
            e -> Sqrt[6],
            f -> 3 Sqrt[3], λ1 -> 1/(2 Sqrt[3]), λ2 -> 1/(
            2 Sqrt[6]), λ3 -> 1/(6 Sqrt[3]), λ4 ->
            1/2 (-4 Sqrt[3] - Sqrt[6])




            So, the maximum value is:



            d + e + f /. First [r]



            4 Sqrt[3] + Sqrt[6]







            share|improve this answer









            $endgroup$













              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "387"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f199132%2fhow-can-i-get-exact-maximal-value-of-this-expression%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              7












              $begingroup$

              Writing:



              rad1 = Sqrt[5 a^2 + 4 a b + 2 b^2 - 2 a c + 4 b c + 5 c^2];
              rad2 = Sqrt[2] Sqrt[a^2 + b^2 - b c + c^2 + a (b + c)];
              rad3 = Sqrt[2] Sqrt[13 a^2 - a b + 13 b^2 + 5 (a + b) c + c^2];
              str = "PossibleClosedForm", 1, "FormulaData";

              fct = rad1 + rad2 + rad3;
              bond = a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0;
              sol1 = NMaximize[fct, bond, a, b, c, WorkingPrecision -> 40];

              max = WolframAlpha[ToString[sol1[[1]]], str][[1, 1]];
              a0 = WolframAlpha[ToString[sol1[[2, 1, 2]]], str][[1, 1]];
              b0 = WolframAlpha[ToString[sol1[[2, 2, 2]]], str][[1, 1]];
              c0 = WolframAlpha[ToString[sol1[[2, 3, 2]]], str][[1, 1]];

              sol2 = max, a -> a0, b -> b0, c -> c0
              sol1 == N[sol2]


              I get:




              4 Sqrt[3] + Sqrt[6], a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14]



              True




              which is what is desired.






              share|improve this answer











              $endgroup$

















                7












                $begingroup$

                Writing:



                rad1 = Sqrt[5 a^2 + 4 a b + 2 b^2 - 2 a c + 4 b c + 5 c^2];
                rad2 = Sqrt[2] Sqrt[a^2 + b^2 - b c + c^2 + a (b + c)];
                rad3 = Sqrt[2] Sqrt[13 a^2 - a b + 13 b^2 + 5 (a + b) c + c^2];
                str = "PossibleClosedForm", 1, "FormulaData";

                fct = rad1 + rad2 + rad3;
                bond = a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0;
                sol1 = NMaximize[fct, bond, a, b, c, WorkingPrecision -> 40];

                max = WolframAlpha[ToString[sol1[[1]]], str][[1, 1]];
                a0 = WolframAlpha[ToString[sol1[[2, 1, 2]]], str][[1, 1]];
                b0 = WolframAlpha[ToString[sol1[[2, 2, 2]]], str][[1, 1]];
                c0 = WolframAlpha[ToString[sol1[[2, 3, 2]]], str][[1, 1]];

                sol2 = max, a -> a0, b -> b0, c -> c0
                sol1 == N[sol2]


                I get:




                4 Sqrt[3] + Sqrt[6], a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14]



                True




                which is what is desired.






                share|improve this answer











                $endgroup$















                  7












                  7








                  7





                  $begingroup$

                  Writing:



                  rad1 = Sqrt[5 a^2 + 4 a b + 2 b^2 - 2 a c + 4 b c + 5 c^2];
                  rad2 = Sqrt[2] Sqrt[a^2 + b^2 - b c + c^2 + a (b + c)];
                  rad3 = Sqrt[2] Sqrt[13 a^2 - a b + 13 b^2 + 5 (a + b) c + c^2];
                  str = "PossibleClosedForm", 1, "FormulaData";

                  fct = rad1 + rad2 + rad3;
                  bond = a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0;
                  sol1 = NMaximize[fct, bond, a, b, c, WorkingPrecision -> 40];

                  max = WolframAlpha[ToString[sol1[[1]]], str][[1, 1]];
                  a0 = WolframAlpha[ToString[sol1[[2, 1, 2]]], str][[1, 1]];
                  b0 = WolframAlpha[ToString[sol1[[2, 2, 2]]], str][[1, 1]];
                  c0 = WolframAlpha[ToString[sol1[[2, 3, 2]]], str][[1, 1]];

                  sol2 = max, a -> a0, b -> b0, c -> c0
                  sol1 == N[sol2]


                  I get:




                  4 Sqrt[3] + Sqrt[6], a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14]



                  True




                  which is what is desired.






                  share|improve this answer











                  $endgroup$



                  Writing:



                  rad1 = Sqrt[5 a^2 + 4 a b + 2 b^2 - 2 a c + 4 b c + 5 c^2];
                  rad2 = Sqrt[2] Sqrt[a^2 + b^2 - b c + c^2 + a (b + c)];
                  rad3 = Sqrt[2] Sqrt[13 a^2 - a b + 13 b^2 + 5 (a + b) c + c^2];
                  str = "PossibleClosedForm", 1, "FormulaData";

                  fct = rad1 + rad2 + rad3;
                  bond = a^2 + b^2 + c^2 == 1, a > 0, b > 0, c > 0;
                  sol1 = NMaximize[fct, bond, a, b, c, WorkingPrecision -> 40];

                  max = WolframAlpha[ToString[sol1[[1]]], str][[1, 1]];
                  a0 = WolframAlpha[ToString[sol1[[2, 1, 2]]], str][[1, 1]];
                  b0 = WolframAlpha[ToString[sol1[[2, 2, 2]]], str][[1, 1]];
                  c0 = WolframAlpha[ToString[sol1[[2, 3, 2]]], str][[1, 1]];

                  sol2 = max, a -> a0, b -> b0, c -> c0
                  sol1 == N[sol2]


                  I get:




                  4 Sqrt[3] + Sqrt[6], a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14]



                  True




                  which is what is desired.







                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited May 26 at 17:11

























                  answered May 26 at 17:05









                  TeMTeM

                  2,131621




                  2,131621





















                      7












                      $begingroup$

                      I don't know why Maximize is unable to find the maximum. Instead of using Maximize, you could try using Lagrange multipliers. To make the algebra easier, define:



                      constraint1 = 2*a^2+(2*b+2*c)*a+2*b^2-2*b*c+2*c^2 - d^2;
                      constraint2 = 5*a^2+(4*b-2*c)*a+2*b^2+4*b*c+5*c^2 - e^2;
                      constraint3 = 26*a^2+(-2*b+10*c)*a+26*b^2+10*b*c+2*c^2 - f^2;
                      constraint4 = a^2 + b^2 + c^2 - 1;


                      Then, the goal is to maximize d + e + f subject to having each constraint equal to 0 (I'm ignoring the positivity constraint for now). Using Lagrange multipliers, we want to extremize the function:



                      obj = d + e + f + λ1 constraint1 + λ2 constraint2 + λ3 constraint3 + λ4 constraint4;


                      Setting the derivatives with respect to each of the unknowns to 0:



                      eqns = Thread[D[obj, a, b, c, d, e, f, λ1, λ2, λ3, λ4] == 0];


                      Let's solve them:



                      sols = Solve[eqns, a, b, c, d, e, f, λ1, λ2, λ3, λ4, Reals];//AbsoluteTiming



                      1.77698, Null




                      Now, let's impose the constraints that a, b, c, d, e, and f are all positive:



                      r = Cases[sols, x_ /; AllTrue[a, b, c, d, e, f /. x, GreaterEqualThan[0]]]



                      a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14], d -> Sqrt[3],
                      e -> Sqrt[6],
                      f -> 3 Sqrt[3], λ1 -> 1/(2 Sqrt[3]), λ2 -> 1/(
                      2 Sqrt[6]), λ3 -> 1/(6 Sqrt[3]), λ4 ->
                      1/2 (-4 Sqrt[3] - Sqrt[6])




                      So, the maximum value is:



                      d + e + f /. First [r]



                      4 Sqrt[3] + Sqrt[6]







                      share|improve this answer









                      $endgroup$

















                        7












                        $begingroup$

                        I don't know why Maximize is unable to find the maximum. Instead of using Maximize, you could try using Lagrange multipliers. To make the algebra easier, define:



                        constraint1 = 2*a^2+(2*b+2*c)*a+2*b^2-2*b*c+2*c^2 - d^2;
                        constraint2 = 5*a^2+(4*b-2*c)*a+2*b^2+4*b*c+5*c^2 - e^2;
                        constraint3 = 26*a^2+(-2*b+10*c)*a+26*b^2+10*b*c+2*c^2 - f^2;
                        constraint4 = a^2 + b^2 + c^2 - 1;


                        Then, the goal is to maximize d + e + f subject to having each constraint equal to 0 (I'm ignoring the positivity constraint for now). Using Lagrange multipliers, we want to extremize the function:



                        obj = d + e + f + λ1 constraint1 + λ2 constraint2 + λ3 constraint3 + λ4 constraint4;


                        Setting the derivatives with respect to each of the unknowns to 0:



                        eqns = Thread[D[obj, a, b, c, d, e, f, λ1, λ2, λ3, λ4] == 0];


                        Let's solve them:



                        sols = Solve[eqns, a, b, c, d, e, f, λ1, λ2, λ3, λ4, Reals];//AbsoluteTiming



                        1.77698, Null




                        Now, let's impose the constraints that a, b, c, d, e, and f are all positive:



                        r = Cases[sols, x_ /; AllTrue[a, b, c, d, e, f /. x, GreaterEqualThan[0]]]



                        a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14], d -> Sqrt[3],
                        e -> Sqrt[6],
                        f -> 3 Sqrt[3], λ1 -> 1/(2 Sqrt[3]), λ2 -> 1/(
                        2 Sqrt[6]), λ3 -> 1/(6 Sqrt[3]), λ4 ->
                        1/2 (-4 Sqrt[3] - Sqrt[6])




                        So, the maximum value is:



                        d + e + f /. First [r]



                        4 Sqrt[3] + Sqrt[6]







                        share|improve this answer









                        $endgroup$















                          7












                          7








                          7





                          $begingroup$

                          I don't know why Maximize is unable to find the maximum. Instead of using Maximize, you could try using Lagrange multipliers. To make the algebra easier, define:



                          constraint1 = 2*a^2+(2*b+2*c)*a+2*b^2-2*b*c+2*c^2 - d^2;
                          constraint2 = 5*a^2+(4*b-2*c)*a+2*b^2+4*b*c+5*c^2 - e^2;
                          constraint3 = 26*a^2+(-2*b+10*c)*a+26*b^2+10*b*c+2*c^2 - f^2;
                          constraint4 = a^2 + b^2 + c^2 - 1;


                          Then, the goal is to maximize d + e + f subject to having each constraint equal to 0 (I'm ignoring the positivity constraint for now). Using Lagrange multipliers, we want to extremize the function:



                          obj = d + e + f + λ1 constraint1 + λ2 constraint2 + λ3 constraint3 + λ4 constraint4;


                          Setting the derivatives with respect to each of the unknowns to 0:



                          eqns = Thread[D[obj, a, b, c, d, e, f, λ1, λ2, λ3, λ4] == 0];


                          Let's solve them:



                          sols = Solve[eqns, a, b, c, d, e, f, λ1, λ2, λ3, λ4, Reals];//AbsoluteTiming



                          1.77698, Null




                          Now, let's impose the constraints that a, b, c, d, e, and f are all positive:



                          r = Cases[sols, x_ /; AllTrue[a, b, c, d, e, f /. x, GreaterEqualThan[0]]]



                          a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14], d -> Sqrt[3],
                          e -> Sqrt[6],
                          f -> 3 Sqrt[3], λ1 -> 1/(2 Sqrt[3]), λ2 -> 1/(
                          2 Sqrt[6]), λ3 -> 1/(6 Sqrt[3]), λ4 ->
                          1/2 (-4 Sqrt[3] - Sqrt[6])




                          So, the maximum value is:



                          d + e + f /. First [r]



                          4 Sqrt[3] + Sqrt[6]







                          share|improve this answer









                          $endgroup$



                          I don't know why Maximize is unable to find the maximum. Instead of using Maximize, you could try using Lagrange multipliers. To make the algebra easier, define:



                          constraint1 = 2*a^2+(2*b+2*c)*a+2*b^2-2*b*c+2*c^2 - d^2;
                          constraint2 = 5*a^2+(4*b-2*c)*a+2*b^2+4*b*c+5*c^2 - e^2;
                          constraint3 = 26*a^2+(-2*b+10*c)*a+26*b^2+10*b*c+2*c^2 - f^2;
                          constraint4 = a^2 + b^2 + c^2 - 1;


                          Then, the goal is to maximize d + e + f subject to having each constraint equal to 0 (I'm ignoring the positivity constraint for now). Using Lagrange multipliers, we want to extremize the function:



                          obj = d + e + f + λ1 constraint1 + λ2 constraint2 + λ3 constraint3 + λ4 constraint4;


                          Setting the derivatives with respect to each of the unknowns to 0:



                          eqns = Thread[D[obj, a, b, c, d, e, f, λ1, λ2, λ3, λ4] == 0];


                          Let's solve them:



                          sols = Solve[eqns, a, b, c, d, e, f, λ1, λ2, λ3, λ4, Reals];//AbsoluteTiming



                          1.77698, Null




                          Now, let's impose the constraints that a, b, c, d, e, and f are all positive:



                          r = Cases[sols, x_ /; AllTrue[a, b, c, d, e, f /. x, GreaterEqualThan[0]]]



                          a -> 3/Sqrt[14], b -> Sqrt[2/7], c -> 1/Sqrt[14], d -> Sqrt[3],
                          e -> Sqrt[6],
                          f -> 3 Sqrt[3], λ1 -> 1/(2 Sqrt[3]), λ2 -> 1/(
                          2 Sqrt[6]), λ3 -> 1/(6 Sqrt[3]), λ4 ->
                          1/2 (-4 Sqrt[3] - Sqrt[6])




                          So, the maximum value is:



                          d + e + f /. First [r]



                          4 Sqrt[3] + Sqrt[6]








                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered May 26 at 20:33









                          Carl WollCarl Woll

                          81.7k3105209




                          81.7k3105209



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Mathematica Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f199132%2fhow-can-i-get-exact-maximal-value-of-this-expression%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

                              Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation

                              Magento 2 “No Payment Methods” in Admin New OrderHow to integrate Paypal Express Checkout with the Magento APIMagento 1.5 - Sales > Order > edit order and shipping methods disappearAuto Invoice Check/Money Order Payment methodAdd more simple payment methods?Shipping methods not showingWhat should I do to change payment methods if changing the configuration has no effects?1.9 - No Payment Methods showing upMy Payment Methods not Showing for downloadable/virtual product when checkout?Magento2 API to access internal payment methodHow to call an existing payment methods in the registration form?