Alignment Problem of Mathematical Equation in Beamer PresentationProblem converting images for beamer presentationText alignment in beamerBeamer equation problem settingtext alignment problem in beamerBeamer presentationBeamer presentation: Problem with captionsUsing printeranswers environment, how to print solutions in the box without the title “Solutions”Alignment problem in BeamerAlignment Problem in Beamer for Maths codeAlignment problem with a mathematical equation in a presentation in beamer

Move arrows along a contour

What is my clock telling me to do?

Create two random teams from a list of players

What is the term for completing a route uncleanly?

Why don't short runways use ramps for takeoff?

What parameters are to be considered when choosing a MOSFET?

How do I respond appropriately to an overseas company that obtained a visa for me without hiring me?

"Fewer errors means better products" or fewer errors mean better products."

How does Asimov's second law deal with contradictory orders from different people?

How can a class have multiple methods without breaking the single responsibility principle

Is it unprofessional to mention your cover letter and resume are best viewed in Chrome?

How to prevent a single-element caster from being useless against immune foes?

What to expect in a jazz audition

How does the barbarian bonus damage interact with two weapon fighting?

What do the novel titles of The Expanse series refer to?

Numerically Stable IIR filter

Applications of pure mathematics in operations research

How did Biff return to 2015 from 1955 without a lightning strike?

What is the oxidation state of Mn in HMn(CO)5?

A conjectural trigonometric identity

My employer is refusing to give me the pay that was advertised after an internal job move

Why are we moving in circles with a tandem kayak?

Why Macos creates file mounts for each app?

How would a lunar colony attack Earth?



Alignment Problem of Mathematical Equation in Beamer Presentation


Problem converting images for beamer presentationText alignment in beamerBeamer equation problem settingtext alignment problem in beamerBeamer presentationBeamer presentation: Problem with captionsUsing printeranswers environment, how to print solutions in the box without the title “Solutions”Alignment problem in BeamerAlignment Problem in Beamer for Maths codeAlignment problem with a mathematical equation in a presentation in beamer






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








3















documentclassbeamer
newcommandFontvifontsize24selectfont
usepackage[utf8]inputenc
usepackage[compat=1.1.0]tikz-feynman
usepackageamsmath, amsthm, amssymb,amsfonts
usepackagegraphicx
usepackagetikz
usepackagetcolorbox
usepackageamsmath
usepackageamsthm
usepackageamssymb
usepackagetikz-feynman
setcounterMaxMatrixCols20
%usepackagebreqn
usepackagetikz-feynman
usepackageamsmath
newtheoremrulesRule
usethemeAntibes
newcommandbracket[1]leftlangle #1 rightrangle
usecolortheme
date
begin document
begin frame
frametitleEquivalence with Original Method of Brackets
beginitemize
item Single solution of Modified Method of Brackets contains the full solution obtained from Original Method of Bracket
item If we apply Cauchy's Residue Theorem to the last 1-MB then we get three series for three set of poles to get.
beginequation*
beginsplit
G_1 = frac(-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3Gamma(a_1+a_2+a_3-fracD2)Gamma(fracD2-a_1-a_2)Gamma(fracD2-a_1-a_3)Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)\\
times _2F_1
left(
beginmatrix
1+a_1+a_2+a_3-D, & a_1+a_2+a_3-fracD2\\
hspace0.5cm1+a_1+a_3-fracD2
endmatrix
Bigg frac-M^2Q^2
right)
endsplit
endequation*
For poles: $ z_2=-n-a_1-a_2-a_3+d/2$
enditemize
endframe
end document









share|improve this question
































    3















    documentclassbeamer
    newcommandFontvifontsize24selectfont
    usepackage[utf8]inputenc
    usepackage[compat=1.1.0]tikz-feynman
    usepackageamsmath, amsthm, amssymb,amsfonts
    usepackagegraphicx
    usepackagetikz
    usepackagetcolorbox
    usepackageamsmath
    usepackageamsthm
    usepackageamssymb
    usepackagetikz-feynman
    setcounterMaxMatrixCols20
    %usepackagebreqn
    usepackagetikz-feynman
    usepackageamsmath
    newtheoremrulesRule
    usethemeAntibes
    newcommandbracket[1]leftlangle #1 rightrangle
    usecolortheme
    date
    begin document
    begin frame
    frametitleEquivalence with Original Method of Brackets
    beginitemize
    item Single solution of Modified Method of Brackets contains the full solution obtained from Original Method of Bracket
    item If we apply Cauchy's Residue Theorem to the last 1-MB then we get three series for three set of poles to get.
    beginequation*
    beginsplit
    G_1 = frac(-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3Gamma(a_1+a_2+a_3-fracD2)Gamma(fracD2-a_1-a_2)Gamma(fracD2-a_1-a_3)Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)\\
    times _2F_1
    left(
    beginmatrix
    1+a_1+a_2+a_3-D, & a_1+a_2+a_3-fracD2\\
    hspace0.5cm1+a_1+a_3-fracD2
    endmatrix
    Bigg frac-M^2Q^2
    right)
    endsplit
    endequation*
    For poles: $ z_2=-n-a_1-a_2-a_3+d/2$
    enditemize
    endframe
    end document









    share|improve this question




























      3












      3








      3








      documentclassbeamer
      newcommandFontvifontsize24selectfont
      usepackage[utf8]inputenc
      usepackage[compat=1.1.0]tikz-feynman
      usepackageamsmath, amsthm, amssymb,amsfonts
      usepackagegraphicx
      usepackagetikz
      usepackagetcolorbox
      usepackageamsmath
      usepackageamsthm
      usepackageamssymb
      usepackagetikz-feynman
      setcounterMaxMatrixCols20
      %usepackagebreqn
      usepackagetikz-feynman
      usepackageamsmath
      newtheoremrulesRule
      usethemeAntibes
      newcommandbracket[1]leftlangle #1 rightrangle
      usecolortheme
      date
      begin document
      begin frame
      frametitleEquivalence with Original Method of Brackets
      beginitemize
      item Single solution of Modified Method of Brackets contains the full solution obtained from Original Method of Bracket
      item If we apply Cauchy's Residue Theorem to the last 1-MB then we get three series for three set of poles to get.
      beginequation*
      beginsplit
      G_1 = frac(-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3Gamma(a_1+a_2+a_3-fracD2)Gamma(fracD2-a_1-a_2)Gamma(fracD2-a_1-a_3)Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)\\
      times _2F_1
      left(
      beginmatrix
      1+a_1+a_2+a_3-D, & a_1+a_2+a_3-fracD2\\
      hspace0.5cm1+a_1+a_3-fracD2
      endmatrix
      Bigg frac-M^2Q^2
      right)
      endsplit
      endequation*
      For poles: $ z_2=-n-a_1-a_2-a_3+d/2$
      enditemize
      endframe
      end document









      share|improve this question
















      documentclassbeamer
      newcommandFontvifontsize24selectfont
      usepackage[utf8]inputenc
      usepackage[compat=1.1.0]tikz-feynman
      usepackageamsmath, amsthm, amssymb,amsfonts
      usepackagegraphicx
      usepackagetikz
      usepackagetcolorbox
      usepackageamsmath
      usepackageamsthm
      usepackageamssymb
      usepackagetikz-feynman
      setcounterMaxMatrixCols20
      %usepackagebreqn
      usepackagetikz-feynman
      usepackageamsmath
      newtheoremrulesRule
      usethemeAntibes
      newcommandbracket[1]leftlangle #1 rightrangle
      usecolortheme
      date
      begin document
      begin frame
      frametitleEquivalence with Original Method of Brackets
      beginitemize
      item Single solution of Modified Method of Brackets contains the full solution obtained from Original Method of Bracket
      item If we apply Cauchy's Residue Theorem to the last 1-MB then we get three series for three set of poles to get.
      beginequation*
      beginsplit
      G_1 = frac(-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3Gamma(a_1+a_2+a_3-fracD2)Gamma(fracD2-a_1-a_2)Gamma(fracD2-a_1-a_3)Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)\\
      times _2F_1
      left(
      beginmatrix
      1+a_1+a_2+a_3-D, & a_1+a_2+a_3-fracD2\\
      hspace0.5cm1+a_1+a_3-fracD2
      endmatrix
      Bigg frac-M^2Q^2
      right)
      endsplit
      endequation*
      For poles: $ z_2=-n-a_1-a_2-a_3+d/2$
      enditemize
      endframe
      end document






      beamer math-mode horizontal-alignment






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Jul 22 at 6:13









      Red-Cloud

      4,9852 silver badges17 bronze badges




      4,9852 silver badges17 bronze badges










      asked Jul 22 at 6:08









      Sumit BanikSumit Banik

      716 bronze badges




      716 bronze badges























          4 Answers
          4






          active

          oldest

          votes


















          3














          documentclassbeamer
          newcommandFontvifontsize24selectfont
          usepackage[compat=1.1.0]tikz-feynman
          usepackagemathtools
          usepackageamsthm, amssymb,amsfonts
          usepackagegraphicx
          usepackagetcolorbox
          setcounterMaxMatrixCols20
          newtheoremrulesRule
          usethemeAntibes
          newcommandbracket[1]leftlangle #1 rightrangle
          begindocument
          beginframeEquivalence with Original Method of Brackets

          beginitemize
          item Single solution of Modified Method of Brackets contains the full solution obtained from Original
          Method of Bracket
          item If we apply Cauchy's Residue Theorem to the last 1-MB then we get three series for three set of
          poles to get.
          beginmultline*
          G_1 = (-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3\
          timesfracGamma(a_1+a_2+a_3-fracD2)
          Gamma(fracD2-a_1-a_2)Gamma(fracD2-a_1-a_3)
          Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)\
          times _2F_1
          left(
          beginmatrix
          1+a_1+a_2+a_3-D, & a_1+a_2+a_3-fracD2\\
          hspace0.5cm1+a_1+a_3-fracD2
          endmatrix
          Bigg frac-M^2Q^2
          right)
          endmultline*
          For poles: $ z_2=-n-a_1-a_2-a_3+d/2$
          enditemize
          endframe
          enddocument


          enter image description here






          share|improve this answer
































            2














            An alignment on 3 lines, and various improvements as to the size of fractions, with the medium-size fractions frm nccmath. Also, I simplified the code, deleting the multiply loaded packages, and replacing amsmath with its extension mathtools, for its matrix* environments, which accept an optional argument for the columns alignment.



            documentclassbeamer
            newcommandFontvifontsize24selectfont
            usepackage[utf8]inputenc
            usepackagemathtools, nccmath
            usepackageamsthm, amssymb
            usepackagegraphicx
            usepackagetcolorbox
            usepackagetikz
            usepackage[compat=1.1.0]tikz-feynman
            setcounterMaxMatrixCols20
            %usepackagebreqn
            newtheoremrulesRule
            usethemeAntibes
            newcommandbracket[1]leftlangle #1 rightrangle
            usecolortheme
            date

            begin document
            %
            begin frame
            setlengthleftmargini12pt
            frametitleEquivalence with Original Method of Brackets
            beginitemize
            item Single solution of Modified Method of Brackets contains the full solution obtained from Original Method of Bracket
            item If we apply Cauchy's Residue Theorem to the last 1-MB then we get three series for three set of poles to get.
            beginalign*
            G_1 =&(-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3times \
            & fracGammaBigl(a_1+a_2+a_3-mfracD2Bigr) GammaBigl(mfracD2-a_1-a_2Bigr) GammaBigl(mfracD2-a_1-a_3Bigr)Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3) times \
            & _2F_1
            Biggl(
            beginmatrix*[r]
            1+a_1+a_2+a_3-D, & a_1+a_2+a_3-mfracD2\[0.5ex]
            1+a_1+a_3-mfracD2
            endmatrix*
            Biggm | mfrac-M^2Q^2
            Biggr)
            endalign*
            For poles: $ z_2=-n-a_1-a_2-a_3+d/2$
            enditemize
            endframe

            end document


            enter image description here






            share|improve this answer
































              2














              I'd split the thing into three lines.



              documentclassbeamer
              usethemeAntibes

              begindocument

              beginframe
              frametitleEquivalence with Original Method of Brackets

              beginitemize
              item Single solution of Modified Method of Brackets contains the full
              solution obtained from Original Method of Bracket
              item If we apply Cauchy's Residue Theorem to the last 1-MB then we get
              three series for three set of poles to get.
              beginequation*
              beginsplit
              G_1 =& (-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3
              \
              &times
              frac
              Gamma(a_1+a_2+a_3-fracD2)
              Gamma(fracD2-a_1-a_2)
              Gamma(fracD2-a_1-a_3)
              Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)
              \
              &times _2F_1
              left(
              beginsmallmatrix
              1+a_1+a_2+a_3-D, & a_1+a_2+a_3-fracD2\
              1+a_1+a_3-fracD2
              endsmallmatrix
              ;middle|; frac-M^2Q^2
              right)
              endsplit
              endequation*
              For poles: $z_2=-n-a_1-a_2-a_3+d/2$
              enditemize

              endframe

              enddocument


              Note the before the symbol for the hypergeometric function, that's meant to avoid the subscript being attached to times. Note also middle.



              enter image description here






              share|improve this answer
































                0














                You can divide your equation into three part. Consider the following code:



                beginalign
                G_1 =& (-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3nonumber\
                &times
                fracGamma(a_1+a_2+a_3-fracD2)Gamma(fracD2-a_1-a_2)Gamma(fracD2-a_1-a_3)Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)
                nonumber\
                &times _2F_1
                left(
                beginmatrix
                1+a_1+a_2+a_3-D, a_1+a_2+a_3-fracD2\
                hspace0.5cm1+a_1+a_3-fracD2
                endmatrix
                Bigg frac-M^2Q^2
                right)
                endalign


                enter image description here






                share|improve this answer



























                  Your Answer








                  StackExchange.ready(function()
                  var channelOptions =
                  tags: "".split(" "),
                  id: "85"
                  ;
                  initTagRenderer("".split(" "), "".split(" "), channelOptions);

                  StackExchange.using("externalEditor", function()
                  // Have to fire editor after snippets, if snippets enabled
                  if (StackExchange.settings.snippets.snippetsEnabled)
                  StackExchange.using("snippets", function()
                  createEditor();
                  );

                  else
                  createEditor();

                  );

                  function createEditor()
                  StackExchange.prepareEditor(
                  heartbeatType: 'answer',
                  autoActivateHeartbeat: false,
                  convertImagesToLinks: false,
                  noModals: true,
                  showLowRepImageUploadWarning: true,
                  reputationToPostImages: null,
                  bindNavPrevention: true,
                  postfix: "",
                  imageUploader:
                  brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
                  contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
                  allowUrls: true
                  ,
                  onDemand: true,
                  discardSelector: ".discard-answer"
                  ,immediatelyShowMarkdownHelp:true
                  );



                  );













                  draft saved

                  draft discarded


















                  StackExchange.ready(
                  function ()
                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f500889%2falignment-problem-of-mathematical-equation-in-beamer-presentation%23new-answer', 'question_page');

                  );

                  Post as a guest















                  Required, but never shown

























                  4 Answers
                  4






                  active

                  oldest

                  votes








                  4 Answers
                  4






                  active

                  oldest

                  votes









                  active

                  oldest

                  votes






                  active

                  oldest

                  votes









                  3














                  documentclassbeamer
                  newcommandFontvifontsize24selectfont
                  usepackage[compat=1.1.0]tikz-feynman
                  usepackagemathtools
                  usepackageamsthm, amssymb,amsfonts
                  usepackagegraphicx
                  usepackagetcolorbox
                  setcounterMaxMatrixCols20
                  newtheoremrulesRule
                  usethemeAntibes
                  newcommandbracket[1]leftlangle #1 rightrangle
                  begindocument
                  beginframeEquivalence with Original Method of Brackets

                  beginitemize
                  item Single solution of Modified Method of Brackets contains the full solution obtained from Original
                  Method of Bracket
                  item If we apply Cauchy's Residue Theorem to the last 1-MB then we get three series for three set of
                  poles to get.
                  beginmultline*
                  G_1 = (-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3\
                  timesfracGamma(a_1+a_2+a_3-fracD2)
                  Gamma(fracD2-a_1-a_2)Gamma(fracD2-a_1-a_3)
                  Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)\
                  times _2F_1
                  left(
                  beginmatrix
                  1+a_1+a_2+a_3-D, & a_1+a_2+a_3-fracD2\\
                  hspace0.5cm1+a_1+a_3-fracD2
                  endmatrix
                  Bigg frac-M^2Q^2
                  right)
                  endmultline*
                  For poles: $ z_2=-n-a_1-a_2-a_3+d/2$
                  enditemize
                  endframe
                  enddocument


                  enter image description here






                  share|improve this answer





























                    3














                    documentclassbeamer
                    newcommandFontvifontsize24selectfont
                    usepackage[compat=1.1.0]tikz-feynman
                    usepackagemathtools
                    usepackageamsthm, amssymb,amsfonts
                    usepackagegraphicx
                    usepackagetcolorbox
                    setcounterMaxMatrixCols20
                    newtheoremrulesRule
                    usethemeAntibes
                    newcommandbracket[1]leftlangle #1 rightrangle
                    begindocument
                    beginframeEquivalence with Original Method of Brackets

                    beginitemize
                    item Single solution of Modified Method of Brackets contains the full solution obtained from Original
                    Method of Bracket
                    item If we apply Cauchy's Residue Theorem to the last 1-MB then we get three series for three set of
                    poles to get.
                    beginmultline*
                    G_1 = (-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3\
                    timesfracGamma(a_1+a_2+a_3-fracD2)
                    Gamma(fracD2-a_1-a_2)Gamma(fracD2-a_1-a_3)
                    Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)\
                    times _2F_1
                    left(
                    beginmatrix
                    1+a_1+a_2+a_3-D, & a_1+a_2+a_3-fracD2\\
                    hspace0.5cm1+a_1+a_3-fracD2
                    endmatrix
                    Bigg frac-M^2Q^2
                    right)
                    endmultline*
                    For poles: $ z_2=-n-a_1-a_2-a_3+d/2$
                    enditemize
                    endframe
                    enddocument


                    enter image description here






                    share|improve this answer



























                      3












                      3








                      3







                      documentclassbeamer
                      newcommandFontvifontsize24selectfont
                      usepackage[compat=1.1.0]tikz-feynman
                      usepackagemathtools
                      usepackageamsthm, amssymb,amsfonts
                      usepackagegraphicx
                      usepackagetcolorbox
                      setcounterMaxMatrixCols20
                      newtheoremrulesRule
                      usethemeAntibes
                      newcommandbracket[1]leftlangle #1 rightrangle
                      begindocument
                      beginframeEquivalence with Original Method of Brackets

                      beginitemize
                      item Single solution of Modified Method of Brackets contains the full solution obtained from Original
                      Method of Bracket
                      item If we apply Cauchy's Residue Theorem to the last 1-MB then we get three series for three set of
                      poles to get.
                      beginmultline*
                      G_1 = (-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3\
                      timesfracGamma(a_1+a_2+a_3-fracD2)
                      Gamma(fracD2-a_1-a_2)Gamma(fracD2-a_1-a_3)
                      Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)\
                      times _2F_1
                      left(
                      beginmatrix
                      1+a_1+a_2+a_3-D, & a_1+a_2+a_3-fracD2\\
                      hspace0.5cm1+a_1+a_3-fracD2
                      endmatrix
                      Bigg frac-M^2Q^2
                      right)
                      endmultline*
                      For poles: $ z_2=-n-a_1-a_2-a_3+d/2$
                      enditemize
                      endframe
                      enddocument


                      enter image description here






                      share|improve this answer













                      documentclassbeamer
                      newcommandFontvifontsize24selectfont
                      usepackage[compat=1.1.0]tikz-feynman
                      usepackagemathtools
                      usepackageamsthm, amssymb,amsfonts
                      usepackagegraphicx
                      usepackagetcolorbox
                      setcounterMaxMatrixCols20
                      newtheoremrulesRule
                      usethemeAntibes
                      newcommandbracket[1]leftlangle #1 rightrangle
                      begindocument
                      beginframeEquivalence with Original Method of Brackets

                      beginitemize
                      item Single solution of Modified Method of Brackets contains the full solution obtained from Original
                      Method of Bracket
                      item If we apply Cauchy's Residue Theorem to the last 1-MB then we get three series for three set of
                      poles to get.
                      beginmultline*
                      G_1 = (-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3\
                      timesfracGamma(a_1+a_2+a_3-fracD2)
                      Gamma(fracD2-a_1-a_2)Gamma(fracD2-a_1-a_3)
                      Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)\
                      times _2F_1
                      left(
                      beginmatrix
                      1+a_1+a_2+a_3-D, & a_1+a_2+a_3-fracD2\\
                      hspace0.5cm1+a_1+a_3-fracD2
                      endmatrix
                      Bigg frac-M^2Q^2
                      right)
                      endmultline*
                      For poles: $ z_2=-n-a_1-a_2-a_3+d/2$
                      enditemize
                      endframe
                      enddocument


                      enter image description here







                      share|improve this answer












                      share|improve this answer



                      share|improve this answer










                      answered Jul 22 at 6:28









                      Red-CloudRed-Cloud

                      4,9852 silver badges17 bronze badges




                      4,9852 silver badges17 bronze badges


























                          2














                          An alignment on 3 lines, and various improvements as to the size of fractions, with the medium-size fractions frm nccmath. Also, I simplified the code, deleting the multiply loaded packages, and replacing amsmath with its extension mathtools, for its matrix* environments, which accept an optional argument for the columns alignment.



                          documentclassbeamer
                          newcommandFontvifontsize24selectfont
                          usepackage[utf8]inputenc
                          usepackagemathtools, nccmath
                          usepackageamsthm, amssymb
                          usepackagegraphicx
                          usepackagetcolorbox
                          usepackagetikz
                          usepackage[compat=1.1.0]tikz-feynman
                          setcounterMaxMatrixCols20
                          %usepackagebreqn
                          newtheoremrulesRule
                          usethemeAntibes
                          newcommandbracket[1]leftlangle #1 rightrangle
                          usecolortheme
                          date

                          begin document
                          %
                          begin frame
                          setlengthleftmargini12pt
                          frametitleEquivalence with Original Method of Brackets
                          beginitemize
                          item Single solution of Modified Method of Brackets contains the full solution obtained from Original Method of Bracket
                          item If we apply Cauchy's Residue Theorem to the last 1-MB then we get three series for three set of poles to get.
                          beginalign*
                          G_1 =&(-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3times \
                          & fracGammaBigl(a_1+a_2+a_3-mfracD2Bigr) GammaBigl(mfracD2-a_1-a_2Bigr) GammaBigl(mfracD2-a_1-a_3Bigr)Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3) times \
                          & _2F_1
                          Biggl(
                          beginmatrix*[r]
                          1+a_1+a_2+a_3-D, & a_1+a_2+a_3-mfracD2\[0.5ex]
                          1+a_1+a_3-mfracD2
                          endmatrix*
                          Biggm | mfrac-M^2Q^2
                          Biggr)
                          endalign*
                          For poles: $ z_2=-n-a_1-a_2-a_3+d/2$
                          enditemize
                          endframe

                          end document


                          enter image description here






                          share|improve this answer





























                            2














                            An alignment on 3 lines, and various improvements as to the size of fractions, with the medium-size fractions frm nccmath. Also, I simplified the code, deleting the multiply loaded packages, and replacing amsmath with its extension mathtools, for its matrix* environments, which accept an optional argument for the columns alignment.



                            documentclassbeamer
                            newcommandFontvifontsize24selectfont
                            usepackage[utf8]inputenc
                            usepackagemathtools, nccmath
                            usepackageamsthm, amssymb
                            usepackagegraphicx
                            usepackagetcolorbox
                            usepackagetikz
                            usepackage[compat=1.1.0]tikz-feynman
                            setcounterMaxMatrixCols20
                            %usepackagebreqn
                            newtheoremrulesRule
                            usethemeAntibes
                            newcommandbracket[1]leftlangle #1 rightrangle
                            usecolortheme
                            date

                            begin document
                            %
                            begin frame
                            setlengthleftmargini12pt
                            frametitleEquivalence with Original Method of Brackets
                            beginitemize
                            item Single solution of Modified Method of Brackets contains the full solution obtained from Original Method of Bracket
                            item If we apply Cauchy's Residue Theorem to the last 1-MB then we get three series for three set of poles to get.
                            beginalign*
                            G_1 =&(-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3times \
                            & fracGammaBigl(a_1+a_2+a_3-mfracD2Bigr) GammaBigl(mfracD2-a_1-a_2Bigr) GammaBigl(mfracD2-a_1-a_3Bigr)Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3) times \
                            & _2F_1
                            Biggl(
                            beginmatrix*[r]
                            1+a_1+a_2+a_3-D, & a_1+a_2+a_3-mfracD2\[0.5ex]
                            1+a_1+a_3-mfracD2
                            endmatrix*
                            Biggm | mfrac-M^2Q^2
                            Biggr)
                            endalign*
                            For poles: $ z_2=-n-a_1-a_2-a_3+d/2$
                            enditemize
                            endframe

                            end document


                            enter image description here






                            share|improve this answer



























                              2












                              2








                              2







                              An alignment on 3 lines, and various improvements as to the size of fractions, with the medium-size fractions frm nccmath. Also, I simplified the code, deleting the multiply loaded packages, and replacing amsmath with its extension mathtools, for its matrix* environments, which accept an optional argument for the columns alignment.



                              documentclassbeamer
                              newcommandFontvifontsize24selectfont
                              usepackage[utf8]inputenc
                              usepackagemathtools, nccmath
                              usepackageamsthm, amssymb
                              usepackagegraphicx
                              usepackagetcolorbox
                              usepackagetikz
                              usepackage[compat=1.1.0]tikz-feynman
                              setcounterMaxMatrixCols20
                              %usepackagebreqn
                              newtheoremrulesRule
                              usethemeAntibes
                              newcommandbracket[1]leftlangle #1 rightrangle
                              usecolortheme
                              date

                              begin document
                              %
                              begin frame
                              setlengthleftmargini12pt
                              frametitleEquivalence with Original Method of Brackets
                              beginitemize
                              item Single solution of Modified Method of Brackets contains the full solution obtained from Original Method of Bracket
                              item If we apply Cauchy's Residue Theorem to the last 1-MB then we get three series for three set of poles to get.
                              beginalign*
                              G_1 =&(-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3times \
                              & fracGammaBigl(a_1+a_2+a_3-mfracD2Bigr) GammaBigl(mfracD2-a_1-a_2Bigr) GammaBigl(mfracD2-a_1-a_3Bigr)Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3) times \
                              & _2F_1
                              Biggl(
                              beginmatrix*[r]
                              1+a_1+a_2+a_3-D, & a_1+a_2+a_3-mfracD2\[0.5ex]
                              1+a_1+a_3-mfracD2
                              endmatrix*
                              Biggm | mfrac-M^2Q^2
                              Biggr)
                              endalign*
                              For poles: $ z_2=-n-a_1-a_2-a_3+d/2$
                              enditemize
                              endframe

                              end document


                              enter image description here






                              share|improve this answer













                              An alignment on 3 lines, and various improvements as to the size of fractions, with the medium-size fractions frm nccmath. Also, I simplified the code, deleting the multiply loaded packages, and replacing amsmath with its extension mathtools, for its matrix* environments, which accept an optional argument for the columns alignment.



                              documentclassbeamer
                              newcommandFontvifontsize24selectfont
                              usepackage[utf8]inputenc
                              usepackagemathtools, nccmath
                              usepackageamsthm, amssymb
                              usepackagegraphicx
                              usepackagetcolorbox
                              usepackagetikz
                              usepackage[compat=1.1.0]tikz-feynman
                              setcounterMaxMatrixCols20
                              %usepackagebreqn
                              newtheoremrulesRule
                              usethemeAntibes
                              newcommandbracket[1]leftlangle #1 rightrangle
                              usecolortheme
                              date

                              begin document
                              %
                              begin frame
                              setlengthleftmargini12pt
                              frametitleEquivalence with Original Method of Brackets
                              beginitemize
                              item Single solution of Modified Method of Brackets contains the full solution obtained from Original Method of Bracket
                              item If we apply Cauchy's Residue Theorem to the last 1-MB then we get three series for three set of poles to get.
                              beginalign*
                              G_1 =&(-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3times \
                              & fracGammaBigl(a_1+a_2+a_3-mfracD2Bigr) GammaBigl(mfracD2-a_1-a_2Bigr) GammaBigl(mfracD2-a_1-a_3Bigr)Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3) times \
                              & _2F_1
                              Biggl(
                              beginmatrix*[r]
                              1+a_1+a_2+a_3-D, & a_1+a_2+a_3-mfracD2\[0.5ex]
                              1+a_1+a_3-mfracD2
                              endmatrix*
                              Biggm | mfrac-M^2Q^2
                              Biggr)
                              endalign*
                              For poles: $ z_2=-n-a_1-a_2-a_3+d/2$
                              enditemize
                              endframe

                              end document


                              enter image description here







                              share|improve this answer












                              share|improve this answer



                              share|improve this answer










                              answered Jul 22 at 9:53









                              BernardBernard

                              186k7 gold badges84 silver badges220 bronze badges




                              186k7 gold badges84 silver badges220 bronze badges
























                                  2














                                  I'd split the thing into three lines.



                                  documentclassbeamer
                                  usethemeAntibes

                                  begindocument

                                  beginframe
                                  frametitleEquivalence with Original Method of Brackets

                                  beginitemize
                                  item Single solution of Modified Method of Brackets contains the full
                                  solution obtained from Original Method of Bracket
                                  item If we apply Cauchy's Residue Theorem to the last 1-MB then we get
                                  three series for three set of poles to get.
                                  beginequation*
                                  beginsplit
                                  G_1 =& (-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3
                                  \
                                  &times
                                  frac
                                  Gamma(a_1+a_2+a_3-fracD2)
                                  Gamma(fracD2-a_1-a_2)
                                  Gamma(fracD2-a_1-a_3)
                                  Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)
                                  \
                                  &times _2F_1
                                  left(
                                  beginsmallmatrix
                                  1+a_1+a_2+a_3-D, & a_1+a_2+a_3-fracD2\
                                  1+a_1+a_3-fracD2
                                  endsmallmatrix
                                  ;middle|; frac-M^2Q^2
                                  right)
                                  endsplit
                                  endequation*
                                  For poles: $z_2=-n-a_1-a_2-a_3+d/2$
                                  enditemize

                                  endframe

                                  enddocument


                                  Note the before the symbol for the hypergeometric function, that's meant to avoid the subscript being attached to times. Note also middle.



                                  enter image description here






                                  share|improve this answer





























                                    2














                                    I'd split the thing into three lines.



                                    documentclassbeamer
                                    usethemeAntibes

                                    begindocument

                                    beginframe
                                    frametitleEquivalence with Original Method of Brackets

                                    beginitemize
                                    item Single solution of Modified Method of Brackets contains the full
                                    solution obtained from Original Method of Bracket
                                    item If we apply Cauchy's Residue Theorem to the last 1-MB then we get
                                    three series for three set of poles to get.
                                    beginequation*
                                    beginsplit
                                    G_1 =& (-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3
                                    \
                                    &times
                                    frac
                                    Gamma(a_1+a_2+a_3-fracD2)
                                    Gamma(fracD2-a_1-a_2)
                                    Gamma(fracD2-a_1-a_3)
                                    Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)
                                    \
                                    &times _2F_1
                                    left(
                                    beginsmallmatrix
                                    1+a_1+a_2+a_3-D, & a_1+a_2+a_3-fracD2\
                                    1+a_1+a_3-fracD2
                                    endsmallmatrix
                                    ;middle|; frac-M^2Q^2
                                    right)
                                    endsplit
                                    endequation*
                                    For poles: $z_2=-n-a_1-a_2-a_3+d/2$
                                    enditemize

                                    endframe

                                    enddocument


                                    Note the before the symbol for the hypergeometric function, that's meant to avoid the subscript being attached to times. Note also middle.



                                    enter image description here






                                    share|improve this answer



























                                      2












                                      2








                                      2







                                      I'd split the thing into three lines.



                                      documentclassbeamer
                                      usethemeAntibes

                                      begindocument

                                      beginframe
                                      frametitleEquivalence with Original Method of Brackets

                                      beginitemize
                                      item Single solution of Modified Method of Brackets contains the full
                                      solution obtained from Original Method of Bracket
                                      item If we apply Cauchy's Residue Theorem to the last 1-MB then we get
                                      three series for three set of poles to get.
                                      beginequation*
                                      beginsplit
                                      G_1 =& (-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3
                                      \
                                      &times
                                      frac
                                      Gamma(a_1+a_2+a_3-fracD2)
                                      Gamma(fracD2-a_1-a_2)
                                      Gamma(fracD2-a_1-a_3)
                                      Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)
                                      \
                                      &times _2F_1
                                      left(
                                      beginsmallmatrix
                                      1+a_1+a_2+a_3-D, & a_1+a_2+a_3-fracD2\
                                      1+a_1+a_3-fracD2
                                      endsmallmatrix
                                      ;middle|; frac-M^2Q^2
                                      right)
                                      endsplit
                                      endequation*
                                      For poles: $z_2=-n-a_1-a_2-a_3+d/2$
                                      enditemize

                                      endframe

                                      enddocument


                                      Note the before the symbol for the hypergeometric function, that's meant to avoid the subscript being attached to times. Note also middle.



                                      enter image description here






                                      share|improve this answer













                                      I'd split the thing into three lines.



                                      documentclassbeamer
                                      usethemeAntibes

                                      begindocument

                                      beginframe
                                      frametitleEquivalence with Original Method of Brackets

                                      beginitemize
                                      item Single solution of Modified Method of Brackets contains the full
                                      solution obtained from Original Method of Bracket
                                      item If we apply Cauchy's Residue Theorem to the last 1-MB then we get
                                      three series for three set of poles to get.
                                      beginequation*
                                      beginsplit
                                      G_1 =& (-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3
                                      \
                                      &times
                                      frac
                                      Gamma(a_1+a_2+a_3-fracD2)
                                      Gamma(fracD2-a_1-a_2)
                                      Gamma(fracD2-a_1-a_3)
                                      Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)
                                      \
                                      &times _2F_1
                                      left(
                                      beginsmallmatrix
                                      1+a_1+a_2+a_3-D, & a_1+a_2+a_3-fracD2\
                                      1+a_1+a_3-fracD2
                                      endsmallmatrix
                                      ;middle|; frac-M^2Q^2
                                      right)
                                      endsplit
                                      endequation*
                                      For poles: $z_2=-n-a_1-a_2-a_3+d/2$
                                      enditemize

                                      endframe

                                      enddocument


                                      Note the before the symbol for the hypergeometric function, that's meant to avoid the subscript being attached to times. Note also middle.



                                      enter image description here







                                      share|improve this answer












                                      share|improve this answer



                                      share|improve this answer










                                      answered Jul 22 at 10:12









                                      egregegreg

                                      759k90 gold badges1986 silver badges3332 bronze badges




                                      759k90 gold badges1986 silver badges3332 bronze badges
























                                          0














                                          You can divide your equation into three part. Consider the following code:



                                          beginalign
                                          G_1 =& (-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3nonumber\
                                          &times
                                          fracGamma(a_1+a_2+a_3-fracD2)Gamma(fracD2-a_1-a_2)Gamma(fracD2-a_1-a_3)Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)
                                          nonumber\
                                          &times _2F_1
                                          left(
                                          beginmatrix
                                          1+a_1+a_2+a_3-D, a_1+a_2+a_3-fracD2\
                                          hspace0.5cm1+a_1+a_3-fracD2
                                          endmatrix
                                          Bigg frac-M^2Q^2
                                          right)
                                          endalign


                                          enter image description here






                                          share|improve this answer





























                                            0














                                            You can divide your equation into three part. Consider the following code:



                                            beginalign
                                            G_1 =& (-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3nonumber\
                                            &times
                                            fracGamma(a_1+a_2+a_3-fracD2)Gamma(fracD2-a_1-a_2)Gamma(fracD2-a_1-a_3)Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)
                                            nonumber\
                                            &times _2F_1
                                            left(
                                            beginmatrix
                                            1+a_1+a_2+a_3-D, a_1+a_2+a_3-fracD2\
                                            hspace0.5cm1+a_1+a_3-fracD2
                                            endmatrix
                                            Bigg frac-M^2Q^2
                                            right)
                                            endalign


                                            enter image description here






                                            share|improve this answer



























                                              0












                                              0








                                              0







                                              You can divide your equation into three part. Consider the following code:



                                              beginalign
                                              G_1 =& (-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3nonumber\
                                              &times
                                              fracGamma(a_1+a_2+a_3-fracD2)Gamma(fracD2-a_1-a_2)Gamma(fracD2-a_1-a_3)Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)
                                              nonumber\
                                              &times _2F_1
                                              left(
                                              beginmatrix
                                              1+a_1+a_2+a_3-D, a_1+a_2+a_3-fracD2\
                                              hspace0.5cm1+a_1+a_3-fracD2
                                              endmatrix
                                              Bigg frac-M^2Q^2
                                              right)
                                              endalign


                                              enter image description here






                                              share|improve this answer













                                              You can divide your equation into three part. Consider the following code:



                                              beginalign
                                              G_1 =& (-1)^-D/2(Q^2)^D/2-a_1-a_2-a_3nonumber\
                                              &times
                                              fracGamma(a_1+a_2+a_3-fracD2)Gamma(fracD2-a_1-a_2)Gamma(fracD2-a_1-a_3)Gamma(a_2)Gamma(a_3)Gamma(D-a_1-a_2-a_3)
                                              nonumber\
                                              &times _2F_1
                                              left(
                                              beginmatrix
                                              1+a_1+a_2+a_3-D, a_1+a_2+a_3-fracD2\
                                              hspace0.5cm1+a_1+a_3-fracD2
                                              endmatrix
                                              Bigg frac-M^2Q^2
                                              right)
                                              endalign


                                              enter image description here







                                              share|improve this answer












                                              share|improve this answer



                                              share|improve this answer










                                              answered Jul 22 at 6:25









                                              A DiyanatA Diyanat

                                              4192 silver badges8 bronze badges




                                              4192 silver badges8 bronze badges






























                                                  draft saved

                                                  draft discarded
















































                                                  Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


                                                  • Please be sure to answer the question. Provide details and share your research!

                                                  But avoid


                                                  • Asking for help, clarification, or responding to other answers.

                                                  • Making statements based on opinion; back them up with references or personal experience.

                                                  To learn more, see our tips on writing great answers.




                                                  draft saved


                                                  draft discarded














                                                  StackExchange.ready(
                                                  function ()
                                                  StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f500889%2falignment-problem-of-mathematical-equation-in-beamer-presentation%23new-answer', 'question_page');

                                                  );

                                                  Post as a guest















                                                  Required, but never shown





















































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown

































                                                  Required, but never shown














                                                  Required, but never shown












                                                  Required, but never shown







                                                  Required, but never shown







                                                  Popular posts from this blog

                                                  Category:9 (number) SubcategoriesMedia in category "9 (number)"Navigation menuUpload mediaGND ID: 4485639-8Library of Congress authority ID: sh85091979ReasonatorScholiaStatistics

                                                  Circuit construction for execution of conditional statements using least significant bitHow are two different registers being used as “control”?How exactly is the stated composite state of the two registers being produced using the $R_zz$ controlled rotations?Efficiently performing controlled rotations in HHLWould this quantum algorithm implementation work?How to prepare a superposed states of odd integers from $1$ to $sqrtN$?Why is this implementation of the order finding algorithm not working?Circuit construction for Hamiltonian simulationHow can I invert the least significant bit of a certain term of a superposed state?Implementing an oracleImplementing a controlled sum operation

                                                  Magento 2 “No Payment Methods” in Admin New OrderHow to integrate Paypal Express Checkout with the Magento APIMagento 1.5 - Sales > Order > edit order and shipping methods disappearAuto Invoice Check/Money Order Payment methodAdd more simple payment methods?Shipping methods not showingWhat should I do to change payment methods if changing the configuration has no effects?1.9 - No Payment Methods showing upMy Payment Methods not Showing for downloadable/virtual product when checkout?Magento2 API to access internal payment methodHow to call an existing payment methods in the registration form?